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Figure 1. Comparison of our MVIP-NeRF with two state-of-the-art approaches, Remove-NeRF [35] and SPIn-NeRF [17]. Existing

methods heavily depend on explicit RGB and depth inpainting results. This type of inpainting prior frequently shows inconsistency,

inaccuracy, and misalignment to a certain degree (sub-figure (b)). In contrast, our approach implicitly exploits the diffusion prior (sub-

figure (c)), resulting in more faithful and consistent results, in terms of both appearance and geometry.

Abstract

Despite the emergence of successful NeRF inpainting
methods built upon explicit RGB and depth 2D inpainting
supervisions, these methods are inherently constrained by
the capabilities of their underlying 2D inpainters. This is
due to two key reasons: (i) independently inpainting con-
stituent images results in view-inconsistent imagery, and
(ii) 2D inpainters struggle to ensure high-quality geometry
completion and alignment with inpainted RGB images.

To overcome these limitations, we propose a novel ap-
proach called MVIP-NeRF that harnesses the potential of
diffusion priors for NeRF inpainting, addressing both ap-
pearance and geometry aspects. MVIP-NeRF performs
joint inpainting across multiple views to reach a consis-
tent solution, which is achieved via an iterative optimization
process based on Score Distillation Sampling (SDS). Apart
from recovering the rendered RGB images, we also extract
normal maps as a geometric representation and define a
normal SDS loss that motivates accurate geometry inpaint-

ing and alignment with the appearance. Additionally, we
formulate a multi-view SDS score function to distill gener-
ative priors simultaneously from different view images, en-
suring consistent visual completion when dealing with large
view variations. Our experimental results show better ap-
pearance and geometry recovery than previous NeRF in-
painting methods.

1. Introduction
Neural Radiance Fields (NeRFs) [14] inpainting involves

the removal of undesired regions from a 3D scene, with the

objective of completing these regions in a contextually co-

herent, visually plausible, geometrically accurate, and con-

sistent manner across multiple views. This form of 3D edit-

ing holds significant value for diverse applications, includ-

ing 3D content creation and virtual/augmented reality.

Inpainting on NeRF scenes presents two intricate chal-

lenges: (i) how to ensure that the same region observed

in multiple views is completed in a consistent way, espe-
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cially when the view changes significantly; and (ii) inpaint-

ing must address not only the 2D appearance of NeRFs but

also yield geometrically valid completion.

Several NeRF inpainting techniques have been devel-

oped to address specific aspects of these challenges [10, 16,

17, 35, 37, 38]. The majority of these approaches heav-

ily rely on explicit RGB and depth inpainting priors, of-

ten employing 2D inpainters like LaMa [27] to indepen-

dently inpaint all views and subsequently address the multi-

view inconsistency. For example, SPIn-NeRF [17] and

InpaintNeRF360 [30] incorporate a perceptual loss within

masked regions to account for low-level inconsistency, but

the perceptual-level inconsistency still cannot be fully ad-

dressed (see from Fig. 1 (b)(e)). Another approach involves

preventing inconsistent and incorrect views from being used

in NeRF optimization. To achieve this, Weder et al. [35] in-

troduce uncertainty variables to model the confidence of 2D

inpainting results, facilitating automated view selection. As

a simpler alternative, Mirzaei et al. [16] propose to use a

single inpainted reference view to guide the entire scene in-

painting process. However, this method is difficult to adapt

to scenes with large view variations and requires non-trivial

depth alignment. In summary, these methods remain con-

strained by the capabilities of underlying 2D inpainters. Be-

sides, they share the common limitation of neglecting the

correlation between inpainted RGB images and inpainted

depth maps, resulting in less pleasing geometry completion.

In this work, we are interested in addressing these chal-

lenges via a new paradigm. Instead of employing 2D in-

painting independently for each view, we believe that ide-

ally, the inpainting at different views should work jointly to

reach a solution that i) fulfills the 2D inpainting goal at each

view and ii) ensures 3D consistency. Fortunately, 2D diffu-

sion models present an ideal prior for achieving this goal.

While recent advances like DreamFusion [19] have demon-

strated their capability in 3D generation, the adaptation of

diffusion priors to tackle the NeRF inpainting problem re-

mains an untapped area.

To this end, we present MVIP-NeRF, a novel approach

that performs multiview-consistent inpainting in NeRF

scenes via diffusion priors. Given an RGB sequence and

per-frame masks specifying the region to be removed, we

train a NeRF using a reconstruction loss in the observed

region and an inpainting loss in the masked region. The

inpainting loss is based on the Score Distillation Sampling

(SDS) [19] that attempts to align each rendered view with

the text-conditioned diffusion prior. This approach allows

our model to progressively fill the missing regions in the

shared 3D space, thus the inpainting goal at multiple views

can work jointly to reach a consistent 3D inpainting solu-

tion. To further ensure a valid and coherent geometry in

the inpainted region, we also adopt diffusion priors to opti-

mize the rendered normal maps. In addition, observing that

the stochasticity of SDS often leads to a sub-optimal solu-

tion under large view variations, we formulate a multi-view

score distillation, which ensures that each score distillation

step takes into account multiple views that share the same

SDS parameters. This achieves improved consistency and

sharpness within the filled regions when the view changes

significantly. We summarize our contributions as follows:

(i) A diffusion prior guided approach for high-quality

NeRF inpainting, achieved without the need for explicit su-

pervision of inpainted RGB images and depth maps.

(ii) An RGB and normal map co-filling scheme with it-

erative SDS losses that can simultaneously complete and

align the appearance and geometry of NeRF scenes.

(iii) A multi-view score function to enhance collabora-

tive knowledge distillation from diffusion models, avoiding

detail blurring when dealing with large view variations.

(iv) Extensive experiments to show the effectiveness of

our method over existing NeRF inpainting techniques.

2. Related Work

2.1. NeRF Inpainting

The use of NeRFs [14] for representing 3D scenes has en-

abled high-quality, photorealistic novel view synthesis. De-

spite this, only a limited number of studies have delved

into the task of object removal or inpainting from pre-

trained NeRF models. Early approaches such as Edit-

NeRF [11], Clip-NeRF [29] and LaTeRF [15], introduced

methods to modify objects represented by NeRFs. How-

ever, the efficacy of these approaches is largely limited to

simple objects rather than scenes featuring significant clut-

ter and texture. Object-NeRF [36] supports the manipu-

lation of multiple objects, like moving, rotating, and du-

plicating, but does not carefully handle the inpainting sce-

nario. More closely, Instruct-NeRF2NeRF [4] proposes to

use an image-conditioned diffusion model to facilitate text-

instructed NeRF scene stylization.

NeRF-In [10], Remove-NeRF [35], SPIn-NeRF [17],

and InpaintNeRF360 [30] are most closely related to our

method. All of these approaches use RGB and depth pri-

ors from 2D image inpainters to inpaint NeRF scenes. The

main difference among them is how they resolve view in-

consistencies. Remove-NeRF [35] tackles inconsistencies

by adaptively selecting views based on the confidence of

the 2D inpainting results. Following it, a more straight-

forward scheme is to only use a single inpainted refer-

ence image to guide NeRF scene inpainting [16]. However,

this method necessitates tedious and exact depth alignment.

SPIn-NeRF [17] and InpaintNeRF360 [30] employ a per-

ceptual loss within inpainted regions to account for the in-

consistencies between different views. In contrast to these

methods, we propose to inpaint NeRF scenes through an

iterative optimization process that distills appearance and
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geometry knowledge from the pre-trained diffusion model.

Consequently, our approach attains a more consistent and

realistic representation of the entire NeRF scene, without

requiring explicit RGB or depth supervision. It is worth not-

ing that a recent work, RePaint-NeRF [38], also leverages

a pre-trained diffusion model for NeRF painting. However,

its primary focus is on object replacement within a NeRF

scene. This task differs from ours in that it does not neces-

sitate considering the coherence with the local context or

ensuring high-quality geometry filling.

2.2. Diffusion Priors

Recently, we have witnessed remarkable advancements in

the field of image generation, driven by the evolution of

diffusion models [3, 5, 25, 26]. These models excel by

progressively removing noise from Gaussian distributions

using a UNet noise predictor, enabling the generation of

high-quality images that align well with the training data.

By training on large-scale text-image pairs [23], diffusion

models have gained unprecedented success in text-to-image

generation, with Stable Diffusion [21] as a phenomenal ex-

ample. Therefore, many efforts have been made to explore

the use of diffusion models as priors for a range of image

restoration tasks such as super-resolution, colorization, in-

painting, and deburring, etc. [6, 7, 9, 32, 33].

Beyond their use in 2D tasks, diffusion priors have also

seen successful applications in 3D generation. A pioneer-

ing work in this direction is Dreamfusion [19], which lever-

ages multiview 2D diffusion priors for 3D generation via

an SDS loss, a concept derived from the distillation pro-

cess of Imagen [22]. This approach gets rid of the need for

large amount of 3D training data and thus has been widely

adopted in subsequent text-to-3D synthesis endeavors such

as MakeIt3D [28], Magic3D [8], Fantasia3D [1], and Pro-

lificDreamer [34]. The SDS loss can not only synthesize

objects but also edit existing ones, as studied in Latent-

NeRF [13], Vox-E [24], and AvatarStudio [12]. Unlike

these works that aim to create or edit 3D objects, our work

is targeted to inpaint undesired regions to be coherent with

the context for NeRF scenes.

3. Method
In this section, we provide a brief introduction to NeRF and

SDS, followed by the formulation of our problem setting.

3.1. Preliminary

Neural Radiance Fields. NeRFs [14] encodes a 3D scene,

by a function g that maps a 3D coordinate p and a view-

ing direction d into a color value c and a density value

σ. The function g is a neural network parameterized by

θ, so that gθ : (γ(p), γ(d)) �→ (c, σ), where γ is a po-

sitional encoding. Each expected pixel color Ĉ(r) is ren-

dered by casting a ray r with near and far bounds tn and tf .

Typically, we divide [tn, tf ] into N sections (t1, t2, ..., tN )

along a ray r and then compute the pixel color by Ĉ(r) =∑N
i=1 c

∗
i . The weighted color c∗i of a 3D point is com-

puted by c∗i = wici, where wi = Ti(1 − exp(−σiδi)),

Ti = exp(−∑i−1
j=1 σjδj), and δi = ti − ti−1. Therefore,

the NeRF reconstruction loss can be formulated as

La =
∑
r∈R

||Ĉ(r)− C(r)||2, (1)

where Ĉ(r) represents the rendered color blended from N
samples, R is a batch of rays randomly sampled from the

training views, and C(r) corresponds to the ground-truth

pixel color. If equipped with the ground-truth depth infor-

mation, we can add another reconstruction loss to further

optimize the geometry of NeRF scenes [2]:

Lg =
∑
r∈R

||D̂(r)−D(r)||2, (2)

where D̂(r) represents the rendered depth/disparity and

D(r) corresponds to the ground-truth pixel depth.

Score distillation sampling. SDS [19] enables the opti-

mization of any differentiable image generator, e.g., NeRFs

or the image space itself. Formally, let x = g(θ) represent

an image rendered by a differentiable generator g with pa-

rameter θ, then SDS minimizes density distillation loss [18]

which is essentially the KL divergence between the poste-

rior of x = g(θ) and the text-conditional density pωφ :

LDist(θ) = Et,ε

[
w(t)DKL

(
q
(
xt|x

) ‖ pωφ(xt; y, t)
)]
, (3)

where w(t) is a weighting function, y is the text embed-

ding, and t is the noise level. For an efficient implemen-

tation, SDS updates the parameter θ by randomly choos-

ing timesteps t ∼ U(tmin, tmax) and forward x = g(θ) with

noise ε ∼ N (0, I) to compute the gradient as:

∇θLSDS(θ) = Et,ε

[
w(t)

(
εωφ(xt; y, t)− ε

)∂x
∂θ

]
. (4)

3.2. Problem formulation and overview

Given a set of RGB images, I = {Ii}ni=1, with correspond-

ing 3D poses G = {Gi}ni=1, 2D masks M = {mi}ni=1, and

a text description y, our goal is to produce a NeRF model

for the scene. This NeRF model should have the capability

to generate an inpainted image from any novel viewpoint.

In general, we address unmasked and masked regions sepa-

rately, following this general formulation:

L = La
unmasked +λ1Lg

unmasked +λ2La
masked +λ3Lg

masked.
(5)

The entire process is visualized in Figure 2. Specifically,

for unmasked regions, we utilize pixel-wise color (Eq. 1)

5346



Input views, masks, 
and camera poses
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Geometry SDS 

Text prompt:“stone bench”
and the mask

Color Depth Normal

Outputs (novel view rendering)
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Figure 2. Method overview. Given posed RGB images with corresponding masks, depth maps (optional), and a text description, MVIP-

NeRF can faithfully recover plausible textures and accurate surface detail. In the optimization process, for unmasked regions, we employ

direct pixel-wise RGB and depth reconstruction losses. For masked regions, we introduce an RGB and normal map co-filling approach,

utilizing SDS losses. This approach iteratively completes and aligns the appearance and geometry of NeRF scenes without the need

for explicit supervision. Furthermore, we implement a multi-view scoring mechanism within the diffusion process to effectively handle

significant variations in viewpoints. Finally, novel views can be rendered from the NeRF scene, where the object has been removed.

and depth (Eq. 2) reconstruction loss. For masked regions,

we first render an RGB image and a normal map from the

NeRF scene. Then, a latent diffusion model is employed as

the appearance and geometry prior. Rather than directly uti-

lizing inconsistent 2D inpainting results as supervisions and

resolving these inconsistencies post hoc, we employ two

SDS losses to compute a gradient direction iteratively for

detailed and high-quality appearance and geometry com-

pletion. To further enhance consistency for large-view mo-

tion, we introduce a multi-view score function. This func-

tion ensures that multiple sampled views share the knowl-

edge distilled from the diffusion models, thereby promoting

cross-view consistency. Next, we will explain how to define

La
masked and Lg

masked, and how to extend these concepts to

a multi-view version.

3.3. Appearance Diffusion Prior

We have noticed that independently inpainting individual

images does not guarantee a consistent completion of the

same region observed from multiple views. Sometimes, the

inpainted results may even be incorrect. Therefore, instead

of relying on explicit inpainting images, we incorporate a

diffusion prior. We treat the inpainting task as a progressive

denoising problem, which not only ensures view consis-

tency but also enhances the visual realism of the completed

scenes. To be more specific, we define the appearance SDS

within the latent space of Stable Diffusion:

∇θLa
masked = w(t)

(
εωφ(zt;m, y, t)− ε

) ∂z
∂x

∂x

∂θ
, (6)

where the noisy latent zt is obtained from a novel view ren-

dering x by Stable Diffusion encoder and m is the corre-

sponding mask. It is important to note that we only back-

propagate the gradient for the masked pixels. The range

of timesteps tmin and tmax are chosen to sample from not too

small or large noise levels and the text prompt y should align

with the missing regions. In this work, we use the stable-

diffusion-inpainting model [21] as our guidance model.

3.4. Geometry Diffusion Prior

In NeRF scenes, aside from appearance, achieving accurate

geometry is a crucial component. Previous NeRF inpaint-

ing methods employ inpainted depth maps as an additional

form of guidance for the NeRF model. However, we have

observed that these inpainted depth maps often lead to visu-

ally unsatisfactory results and exhibit poor alignment with

RGB images (see from Fig. 1 (b)). Consequently, this ap-

proach tends to be less effective in achieving high-quality

geometry restoration in the masked areas.

In our work, we have two observations: (i) text-to-image

diffusion models have a strong shape prior due to their train-

ing on diverse objects, and (ii) surface normals clearly re-

veal the geometric structures. Both observations encourage
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Gradient of density Oursw/o normal map

Figure 3. Effect of different normal map generation methods. In

the first column, we present the input image with a mask (black

region) and the depth map generated by NeRF, optimized with

unmasked pixels. The second column displays the normal map

derived from the density field gradient and the corresponding opti-

mized depth map. The final column highlights the improved accu-

racy and reliability of geometry reconstruction achieved through

the use of a smoothed normal field.

us to decouple the generation of geometry from appearance

while further exploiting the potential geometry information

from the diffusion prior. More specifically, considering the

current NeRF function as g(θ), we generate a normal map n
by rendering it from a randomly sampled camera pose. To

update θ, we again employ the SDS loss that computes the

gradient w.r.t. θ as:

∇θLg
masked = w(t)

(
εωφ(zt;m, y, t)− ε

) ∂z
∂n

∂n

∂θ
. (7)

Smoothed normal map generation. Surface normals are

commonly derived by computing the gradient of the density

field σ with respect to sampled positions. Nevertheless, the

computed normals may exhibit some degree of noise, lead-

ing to an unclear geometric context. This, in turn, results in

instability when generating geometry within the masked re-

gion, as demonstrated in Figure 3. Considering the readily

available camera parameters and depth map, we introduce

to calculate the smoothed surface normal from the depth

map, treating it as a differentiable plane fitting problem.

Specifically, we denote (ui, vi) as the location of pixel i
in the 2D image. Its corresponding location in 3D space is

(xi, yi, zi). We adopt the camera intrinsic matrix to com-

pute (xi, yi, zi) from its 2D coordinates (ui, vi), where zi
is the depth and given. Based on the assumption that pix-

els within a local neighborhood of pixel i lie on the same

tangent plane, we then build the tangent plane to compute

the surface normal of pixel i. In particular, we search the K

view 38view 18Inputs view 48

w
/o m

ulti-view
w

/ m
ulti-view

Figure 4. Effect of multi-view score distillation. The first row

shows inpainting results without the multi-view score, while the

second row shows the results with the multi-view score (N = 5).

(K = 9 in default) nearest neighbors in 3D space and calcu-

late the surface normal estimate n based on these neighbor-

ing pixels on the tangent plane. The surface normal estimate

n should satisfy the linear system of equations:

An = b, subject to ‖n‖22 = 1, (8)

where A ∈ RK×3 is a matrix grouped by neighboring pix-

els and b ∈ RK×1 is a constant vector. Finally, we obtain

the surface normal by minimizing ‖An − b‖2 whose least

square solution has the closed form.

3.5. Multi-view Score Distillation

While our method consistently produces reliable results, it

is worth noting that some blurring may occur in scenarios

with large view variation, as shown in Fig. 4. The pri-

mary reason behind this may be that previous gradient up-

dating, which relies on single-view information, does not

adequately account for cross-view information. To this end,

we define a multi-view distillation score function, which en-

hances the correlation in the recovery of each view. Given

N viewpoints, we accordingly render N images, denoted

as {x1, ...,xN}. Naturally, we can compute a multi-view

score as:

∇θLma
masked =

N∑
i=1

(
w(t)(εωφ(z

i
t;m

i, y, t)− εi)
∂zi

∂xi

∂xi

∂θ

)
.

(9)

Note that the noise estimator and the noise level t are shared

for all N images. Intuitively, this function implies that when

updating θ, we take into account the interactions with other

sampled views, thereby promoting view consistency.

Final loss function. Finally, we replace the La
masked with
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its multi-view version, and jointly train the loss as:

L = La
unmasked +λ1Lg

unmasked +λ2Lma
masked +λ3Lg

masked.
(10)

Note that we do not apply a multi-view version for the ge-

ometry diffusion prior. This is because, experimentally, we

found that it contributes less while requiring more time cost.

4. Experiments
4.1. Experimental Setup

Datasets. We collect two real-world datasets for the ex-

periments, called Real-S and Real-L. Next, we provide a

detailed description of both datasets.

Real-S. This dataset comprises all 10 real-world scenes with

slight viewpoint variations from [17]. In each scene, there

are 60 training RGB images that include the unwanted ob-

ject and the corresponding human-annotated masks. Addi-

tionally, 40 test images without the object are provided for

quantitative evaluations. When assessing depth quality, we

adhere to a standard scheme [31] of training a robust NeRF

model exclusively on test views to produce pseudo-ground-

truth depth maps. It is also important to note that both RGB

and depth images have been resized to 1008×567, aligning

with the dimensions used in [17].

Real-L. This dataset, sourced from [35], comprises 16
scenes with large viewpoint variations. They offer a wide

range of diversity, encompassing differences in background

texture, object size, and scene geometry. For each scene,

two RGB-D sequences are available. One sequence in-

cludes the object, while the other does not, facilitating com-

prehensive evaluation and analysis. Since the depth maps

are provided, we do not need to generate pseudo-ground-

truth depth maps. Also, note that the RGB-D images have

been resized to 192× 256.

Metrics. To assess inpainting quality, we compare the out-

put novel-view images generated by different approaches to

the corresponding ground-truth images for each test image.

Specifically, for Real-S, all metrics in the paper are exclu-

sively calculated within the bounding boxes of masked re-

gions, while for Real-L, due to the limited input resolution,

we directly evaluate the full image. For appearance eval-

uation, we employ three standard metrics: PSNR, LPIPS,

and FID. To assess geometric recovery, we compute the L2

errors between the depth maps rendered by our system and

the (pseudo) ground-truth depth maps. Observing that the

masking scheme (whether the unmasked region is set to 0

or GT) and the LPIPS version (VGG or Alex) can affect the

results, we provided more results in the supplementary file.

Parameters. We implemented our NeRF inpainting model

built upon SPIn-NeRF [17] and trained it on 4 NVIDIA

V100 GPUs for 10, 000 iterations using the Adam optimizer

with a learning rate of 10−4. As for the diffusion prior, the

size of all latent inputs is set to 256× 256. We set the range

of timesteps as tmin = 0.02 and tmax = 0.98. In addition, we

implement an annealing timestep scheduling strategy [39],

which allocates more training steps to lower values of t.
For the classifier-free guidance (CFG), we choose values

within the range of [7.5, 25] for Lma
masked and [2.5, 7.5] for

Lg
masked. The number of sampled views N is set to 5 in

all cases. When rendering a single view, we select its four

nearby views to calculate the multi-view score. Lastly, for

the balance weights in Eq. 10, we empirically set λ1 = 0.1
and λ2 = λ3 = 0.0001.

Training with high-resolution images. To enable training

on high-resolution images, such as those with dimensions

like 1008 × 567, we employ a separate batching scheme.

In each iteration, we randomly select 1024 rays from the

unmasked regions across all training views to reconstruct

those areas. Given the context-sensitive nature of the text-

to-image diffusion model, for the masked region, we select

all rays within a single image that correspond to the masked

regions. Following this, we combine the rendered colors

from these rays with the unmasked pixels to create a com-

plete image, which is subsequently fed into the diffusion

model for further processing.

4.2. Results

Baselines. Considering the superior performance demon-

strated by recent NeRF inpainting methods [17, 35] com-

pared to traditional video and image-based inpainting

pipelines, our focus is primarily on approaches that leverage

the foundational NeRF representation. In total, we compare

two NeRF inpainting approaches: SPIn-NeRF [17] with

LaMa [27], and Remove-NeRF [35] with LaMa [27]. Al-

though the two baselines have provided several evaluation

results on their datasets, since they both require LaMa in-

painting results, we re-executed their released code and re-

ported the results accordingly to ensure a fair comparison.

Also, it is noteworthy that we employ LaMa [27] as a 2D

inpainter instead of Stable Diffusion. This choice is based

on the former’s superior quantitative performance [16, 21].

Quantitative inpainting results. We conducted a quanti-

tative evaluation to assess the effectiveness of our method

compared to the two baselines in terms of both appearance

and geometry aspects. The results are reported in Table 1.

In detail, on the Real-S dataset where the view range is

limited, all methods yield similar PSNR values. However,

when considering the metric of LPIPS, which measures the

perceptual quality and realism of the inpainted image, our

method excels and demonstrates superiority over existing

methods. When evaluating the Real-L dataset, which fea-

tures significant view variations, we observed that Remove-

NeRF performs better than SPIn-NeRF on the LPIPS met-

ric. This difference in performance can be attributed to

the presence of incorrect and inconsistent 2D inpainting

results. In such cases, the view selection mechanism of
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Remove-NeRF SPIn-NeRFInput views

GT (two novel views)OursMasks

Remove-NeRF SPIn-NeRFInput views

GT (two novel views)OursMasks

Figure 5. Visual comparison with two representative approaches [17, 35] on two scenes. The first scene is from the Real-S dataset with

accurate masks, while the latter is from the Real-L dataset with large, roughly-covered masks. In the first scene, the input text prompt is “A
stone bench” and for the second scene, it is “A brick wall”. Our method effectively handles both types of scenes, successfully generating

view-consistent scenes with valid geometries (see the bench shape) and detailed textures (see the brick seam).

Table 1. Comparison with state-of-the-art methods on two real-world datasets. Our method is best compared to other novel-view

synthesis baselines in inpainting the missing regions of the scene. Columns show the deviation from known ground-truth RGB images or

depth maps of the scene (without the target object), based on the peak signal-to-noise ratio (PSNR), perceptual metric (LPIPS), feature-

based statistical distance (FID), and pixel-wise L2 depth errors.

Real-S Real-L

PSNR↑ LPIPS↓ FID↓ Depth L2 ↓ PSNR↑ LPIPS↓ FID↓ Depth L2 ↓
Remove-NeRF + LaMa [35] 17.556 0.665 254.345 8.748 25.176 0.187 88.245 0.038

SPIn-NeRF + LaMa [17] 17.466 0.574 239.990 1.534 25.403 0.215 103.573 0.090

Ours 17.667 0.507 255.514 1.499 25.690 0.181 100.452 0.021

Remove-NeRF can help avoid the incorporation of many

incorrect views, resulting in improved performance. Our

MVIP-NeRF achieves superior performance compared to

other methods for several reasons. It not only avoids direct

dependence on 2D inpainting but also leverages rich knowl-

edge distilled from diffusion prior and shares multiple sam-

pled views. This approach, in turn, enhances performance

and contributes to its exceptional results.

Visual inpainting results. Apart from the quantitative

comparisons, we also present visual comparisons. For each

scene, we select two views with relatively large viewing an-

gle deviations to showcase the respective inpainting results.

Figure 5 illustrates the inpainting results for a scene from

the Real-S dataset, characterized by highly accurate masks,

in the first two rows. In contrast, the latter two rows de-

pict results for a scene from the Real-L dataset, featuring

large masks that roughly cover unwanted areas. Visual re-

sults demonstrate that our method effectively handles both
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Table 2. Ablation analysis. Our method is best compared to different variants of our method in inpainting the missing regions of the scene.

Columns show the deviation from known ground-truth RGB images or depth maps of the scene (without the target object). By ablating

each component of our approach, we can observe a clear overview of their individual contributions.

Real-S Real-L

PSNR↑ LPIPS↓ FID↓ Depth L2 ↓ PSNR↑ LPIPS↓ FID↓ Depth L2 ↓
(i) (Masked NeRF) 17.121 0.761 353.766 3.089 24.189 0.222 137.960 0.040

(ii) (+appearance diffusion) 17.020 0.587 349.066 2.574 24.870 0.191 134.520 0.029

(iii) (+inpainted depth map) 17.028 0.565 355.002 1.869 24.206 0.254 138.256 0.044

(iv) (+geometry diffusion) 17.246 0.556 346.558 1.542 25.303 0.195 129.919 0.031

(v) (+multi-view) 17.667 0.507 255.514 1.499 25.690 0.181 100.452 0.021

types of scenes, successfully reconstructing view-consistent

scenes with detailed textures (as evidenced by the visible

brick seams in the second scene) and reasonable geometries

(see the completed shape of the bench in the first scene). For

more visual results, please refer to the supplemental file.

Ablation study. We first demonstrate the impact of ablat-

ing various components of our approach. We begin with

training a Masked-NeRF (i) as a baseline and progressively

incorporate the core modules: (i) Masked-NeRF, namely

training a NeRF only using the unmasked pixels; (ii) in-

troducing the appearance diffusion prior; (iii) using explicit

depth inpainting results; (iv) replace the explicit depth in-

painting prior with our geometry diffusion prior; and (v)

employing a multi-view diffusion score function.

Table 2 provides a clear overview of the contribution of

each module on the two datasets. Comparing (i) and (ii), the

notable improvement in the LPIPS metric underscores the

effectiveness of the appearance diffusion prior. However,

it is worth noting that the PSNR metric may occasionally

show less significant improvements due to the blurring ef-

fect, which can result in higher PSNR values. In addition,

through a comparison of (ii), (iii), and (iv), we observed that

when employing explicit depth inpainting results for NeRF

reconstruction, the occasional inaccuracies in the inpainted

depth lead to suboptimal geometry recovery. However, by

leveraging the geometry diffusion prior, the reconstructed

scenes exhibit enhanced geometry quality. Finally, by com-

paring (iv) and (v), the observed improvement further af-

firms the effectiveness of the multi-view score.

Results with CLIP prior. Interestingly, we found that

many previous approaches use the CLIP loss [20] to super-

vise the alignment between synthesized views and the input

text cues. To further exploit the potential prior and validate

the effectiveness of our work, we replace the diffusion prior

with the CLIP loss, which computes a feature loss between

the inpainted image and the given text prompt. As illus-

trated in Fig. 6, we believe that the CLIP loss is relatively

weak, making it challenging to recover the underlying ap-

pearance and geometry.

CLIP loss 
(guidance=7)

Ours 
(“stone stairs”)

Input scene
and mask

CLIP loss 
(guidance=100)

Figure 6. Comparison with CLIP guidances. The input text prompt

is “Stone Stairs”. For each method, we show two novel view ren-

derings. Our method can faithfully remove the unwanted object

and recover the underlying structure.

5. Conclusion
In this work, we introduce MVIP-NeRF, a novel paradigm

that harnesses the expressive power of diffusion models for

multiview-consistent inpainting on NeRF scenes. Techni-

cally, to ensure a valid and coherent recovery of both ap-

pearance and geometry, we employ diffusion priors to co-

optimize the rendered RGB images and normal maps. To

handle scenes with large view variations, we propose a

multi-view SDS score function, distilling generative priors

from multiple views for consistent visual completion. We

demonstrate the effectiveness of our approach over existing

3D inpainting methods and validate our key ideas by care-

fully crafting model variants. However, our work has sev-

eral limitations: (i) the use of diffusion priors for iterative

detail recovery affects efficiency, (ii) our method requires

effort to tune hyper-parameters of diffusion priors, such as

the CFGs, and (iii) as previous work [17, 35], our method

cannot remove shadows.
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