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Figure 1. Appreciating snapshot views of our mind in the style of your liking. Left: The proposed neural decoder Mind Artist supports
not only the reconstruction of visual stimuli from fMRI signals but also acts as an “artistic mind camera” without extra optimizations and
image-to-image translation operations. Right: We show the decoding results of our MindArt in oil, cartoon, Picasso and ink wash styles.

Abstract

We introduce Mind Artist (MindArt), a novel and efficient
neural decoding architecture to snap artistic photographs
from our mind in a controllable manner. Recently, progress
has been made in image reconstruction with non-invasive
brain recordings, but it’s still difficult to generate realis-
tic images with high semantic fidelity due to the scarcity of
data annotations. Unlike previous methods, this work casts
the neural decoding into optimal transport (OT) and rep-
resentation decoupling problems. Specifically, under dis-
crete OT theory, we design a graph matching-guided neu-
ral representation learning framework to seek the under-
lying correspondences between conceptual semantics and
neural signals, which yields a natural and meaningful self-
supervisory task. Moreover, the proposed MindArt, struc-
tured with multiple stand-alone modal branches, enables
the seamless incorporation of semantic representation into
any visual style information, thus leaving it to have multi-
modal reconstruction and training-free semantic editing ca-
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pabilities. By doing so, the reconstructed images of Min-
dArt have phenomenal realism both in terms of semantics
and appearance. We compare our MindArt with leading al-
ternatives, and achieve SOTA performance in different de-
coding tasks. Importantly, our approach can directly gen-
erate a series of stylized “mind snapshots” w/o extra opti-
mizations, which may open up more potential applications.
Code is available at https://github.com/JxuanC/
MindArt.

1. Introduction
As we venture into the frontiers of human creativity, one
captivating question has surfaced: Can our brains serve as
hidden “artistic cameras”? Let’s envision a world where
painting tools, and photographic skills are going out of fash-
ion. All you need is to think or gaze upon a visual object
or immerse yourself in the wonders of nature. Then, your
brain will be turned into an artistic lens transforming your
perceptions into astonishing works of art, perhaps resem-
bling a Van Gogh-style snapshot with vibrant yellow and
orange sunflowers. To actualize aforesaid goals, we present
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a new way of thinking about the neural decoding problems.
Humans are adept at abstracting rich sensory informa-

tion into simple concepts. For example, the photograph of
a dog, the cartoon depiction of Snoopy, or even the word
“dog” can activate similar conceptual representations in our
mind [21, 38, 51, 64]. That, in turn, demonstrates concrete
concepts for different contexts (i.e. personal experience)
contribute to shaping sensory perception-derived represen-
tations [20, 48]. To incorporate this principle into com-
putational models, we present a “1+N” neural decoding
paradigm (Fig. 1 Left) to translate your thoughts into indi-
vidual works of art, where “1” stands for amodal concepts
(semantics), while “N” denotes different context conditions
acted as prior knowledge like layout or style information.

There are all sorts of practices to evoke conceptual se-
mantics, among them viewing natural images is an ideal
choice. Neuroscience [20, 21, 33] has revealed that when
people look at objective stimuli, the parts of their brains
linked to thoughts and feelings about the knowledge of that
object lighting up (Fig. 1 Left). For another, with the help
of generative models [25, 36, 58] and self-supervised learn-
ing [9, 29, 55], recently, progress has been made in the task
of reconstructing visual stimulus from brain recordings,
especially using non-invasive neuroimaging methodology
such as functional Magnetic Resonance Imaging (fMRI)
[10, 60, 63]. However, as a non-invasive tool, fMRI is
highly susceptible to various interferences like noise [39],
and the acquisition is a cumbersome, costly process [11].

Therefore, it is vital to revisit generalizable semantic
correspondences between visual stimuli and brain activi-
ties, which is also key to the success of the “1+N” decod-
ing paradigm. Given a random set of neural patterns and
images, a biological-valid model should assign the neural
patterns to the images that are semantically closest to their
true stimuli. Under the circumstances, we introduce a novel
“mind reading” technique, termed Mind Artist (MindArt),
which boils the neural decoding down to finding the opti-
mal semantic matching between stimuli and brain activities
by solving a generalized linear assignment problem. This
target can be elegantly formulated as a graph-based optimal
transport (OT) framework, aiming to shift the mass from
one distribution to another while minimizing cost.

Specifically, we propose a self-supervised graph match-
ing (GM) framework to predict the cost function of OT op-
timization by explicitly modelling dynamic graphs that de-
scribe more flexible relationships between image and fMRI
entities. In doing so, the assignment structure of the predic-
tions can steer us toward capturing the high-level seman-
tic representations preserved within neural signals. Previ-
ous works [1, 5, 10, 40, 60, 63], by contrast, largely treat
fMRI data independently, which neglects the rich connec-
tion among fMRI signals. Finally, following the “1+N” de-
coding paradigm, the MindArt is designed as a multi-branch

architecture, which not only supports multi-modal genera-
tion, but also allows us to snap a photograph imbued with
artistic ambiance from our own thoughts in a training-free
prompt fashion. The key here is to incorporate prior knowl-
edge into the GM-guided neural semantic representations
by the collaborative use of diffusion models [31, 58] and
large language models [3, 53, 54].

In a nutshell, our main contributions are threefold: (i) We
introduce a novel self-supervision framework within an op-
timal transport perspective to tackle neural decoding by for-
malizing neural representation learning as a graph matching
problem; (ii) We propose Mind Artist, a two-stream neural
decoding structure, which not only supports multi-modal re-
construction, but also can be served as an “artistic mind
camera” to snap stylized views (See Fig.1), without the
need for extra optimization or fine-tuning; (iii) Compared
with previous state-of-the-art methods, the reconstructed
images (and the stylized snapshots) of MindArt are more
faithful to the stimulus images with better preserved high
visual quality, and high-level semantic fidelity.

2. Related Work
There is a large body of works in the literature focused on
visual neural decoding problem, which can be broadly bro-
ken down into stimuli classification [7, 13, 20, 27, 65, 71],
identification [28, 32, 34, 45], and reconstruction [18, 42,
45, 57, 62]. An exhaustive review covering all branches is
out of the scope of this paper, thus in this section, we only
summarize the pertinent background material of reconstruc-
tion tasks that puts our MindArt into context.

Stimuli reconstruction is an exciting yet demanding task,
which purposes to directly recover the perceived image
from brain recordings. In the early stages, the image re-
construction works [42, 45] commonly leverage simple lin-
ear regression models to seek mappings between fMRI
and handcrafted image descriptors. Though previous tech-
niques successfully recovered simple low-level detail im-
ages, severely relying on manual configuration has limited
the applicability, and the decoding results are also blurry.
With the advent of deep learning, researchers have opted
for leveraging generative models (e.g., generative adver-
sarial networks [4, 25] and diffusion models [31, 58]) or
self-supervised learning [29] to address the perceived im-
age reconstruction problem. Authors in [1, 24] introduced
a self-supervision visual decoding architecture by stack-
ing the image-to-fMRI encoder and fMRI-to-image decoder
back-to-back. The symmetric design enables the model to
be trained on more extensive unlabeled image and fMRI
datasets. Based on a similar philosophy, [5] rethought self-
supervised visual reconstruction problem via some neuro-
science principles [15], and proposed a cross-modal inpaint-
ing framework, termed VQ-fMRI, to implement visual con-
tent completion mechanism, thereby avoiding the decoding
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Figure 2. The proposed neural representation learning framework guided by graph matching (GM). This pipeline is made up of three major
components: dynamic multiplex graph construction, alternating aggregation of node embeddings, seeking optimal transport (OT) plan.

of imperceptible local details. The decoded results of self-
supervised models can match the original stimuli in terms
of contours and poses, but lack distinguishable semantic
information. To generate more plausible images, [10] ex-
plored a masked brain modeling with a latent diffusion
model (LDM) [58], named MinD-Vis. A concurrent work
[63] also used the LDM as the generative prior but adopted a
ridge regression to predict latent representations. Addition-
ally to the methods above, other representative studies in-
clude [19, 22, 37, 40, 43, 47, 60, 61]. The generative model-
based reconstruction techniques have limitations in low-
level detail control like shape and posture, albeit capable of
yielding high-fidelity images. From a broader perspective,
some efforts have demonstrated that sequential data, e.g.,
video [11, 68] and language [6, 23, 41, 64], also can be gen-
erated from non-invasive brain recordings. What we wish
to highlight is that our MindArt takes a step beyond, of-
fering desirable properties: multi-modal reconstruction and
training-free style transfer, which can be regarded as a sup-
plement to the existing visual decoding methods.

3. The MindArt Approach
In the following, we detail our MindArt architecture, which
contains two stages: a graph matching (GM) guided neural
representation learning procedure (See Fig. 2), followed by
a two-branch multi-modal decoding structure, as illustrated
in Fig. 3. The formulation of the visual decoding problem
from a perspective of optimal transport (OT) is first intro-
duced, and then the concrete implementations successively.

3.1. Problem Formulation

Consider an image-fMRI dataset D = {(xi, yi)}Ni=1, where
xi indicates an fMRI signal, and yi denotes the stimulus
image of xi. For seeking a good neural representation, a
prevailing practice is to fit a mapping f∗

θ ,

s.t. f∗
θ = argmin

fθ

Exi,yi∼D||T (yi)− fθ(xi)||, (1)

where T (·) is normally a frozen network pre-trained on
large image datasets. However, it is challenging to accu-
rately align the potential representations in all dimensions,
since the cardinality of D is relatively small [5]. To conquer
this, we attempt to discover biologically valid cross-domain
relations within a more principled framework germinating
from recent advances in OT [8, 59, 67].

Formally, suppose we have sampled two random sets of
entities from fMRI and image domains, defined as X =
{xi}ni=1 and Y = {yi}mi=1, where n and m are the number
of entities. Let the entity be a sample point, represented by
a vector, in the complete separable metric spaces, µ, ν de-
note two vector variables, and then their discrete measures
are formulated as µ =

∑n
i=1 piδxi

and ν =
∑m

i=1 qiδyi
,

where δxi
is the Dirac function centered on xi. The above

formulation describes probability measures if the wights
[pi]1:n ∈ ∆n := {p ∈ Rn

+ : pT1n} and [qi]1:m ∈ ∆m :=
{q ∈ Rm

+ : qT1m} belong the n- and m-dimensional sim-
plex, respectively [50], where 1n is an n-dimensional all-
one vector. OT aims to seek the least costly transport plan
Γ between distribution µ and ν, which can be written as

Dw(µ,ν) := inf
γ∈Π

E(X,Y)∼γ [c(X,Y)] = min
Γ∈Π

⟨Γ,C⟩ , (2)

where Π(p,q) := {Γ ∈ Rn×m
+ |Γ1m = p,ΓT1n = q} in-

dicates all the joint distributions with marginal p and q, C is
a cost matrix calculated by the function c(·, ·) such as cosine
distance, and ⟨·, ·⟩ denotes Frobenius inner product. Over-
all, Eq. 2 defines an OT distance (a.k.a. Wasserstein dis-
tance) that measures the discrepancy across two domains.

By modelling X and Y as complete graphs and perform-
ing GM, not only intra- and cross-domain relations can be
captured via adding undirected edges, but also more flexible
supervision signals can be exploited, i.e.

Cij = min{Ci1, · · · ,Cij} if yj = argmax
y∈Y

d(y, ȳi), (3)

where ȳi denotes the true visual stimulus of xi, and d(·, ·)
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Figure 3. The illustration of the MindArt. In our architecture, the cross-attention is leveraged to bridge a frozen GPT-2 decoder with two
fMRI encoders. Note that the fMRI signal is divided into fixed size voxel vectors, which is the only input to the ViT-based encoders.

returns the semantic similarity of the images. Note that
there is not a one-to-one correspondence between X and
Y. Intuitively, Eq. 3 explicitly encourages models to find
semantically similar nodes, rather than confined to limited
ground-truth relations, which yields a natural and significa-
tive self-supervised task by representing image-fMRI anno-
tation into dynamically-constructed graphs (See Sec. 3.2).

3.2. GM-Guided Neural Representation Learning

Dynamic Multiplex Graph Construction. To tackle the
neural representation learning problem via adopting OT for
GM, we start by taking a simple yet effective graph defini-
tion step. Given an image-fMRI dataset D, we first ran-
domly sample two subsets of K entities from the fMRI
and image domains, respectively, and construct them into
a single complete graph G(Vx,Vy, Eself , Ecross), which has
two types of initial graph node embeddings computed by
a ViT-based fMRI encoder [17], and a CLIP visual en-
coder [55] (See Fig. 2 Left). The graph G also has two
types of undirected edges (a.k.a. multiplex graph [44, 46]):
self edges Eself connecting within the unilateral domain
(namely, fMRI and image), and cross edges Ecross connect-
ing one domain to another. Unlike raw image-fMRI pairs,
various context information exists in the multiplex graphs,
and seeking good potential correspondences between Vx

and Vy is naturally formulated into a GM problem.
Multiplex Graph Neural Network. With the above defi-
nition, huge amounts of graph-structured data can be easily
generated, and this construction process is of “dynamic” na-
ture due to the update of encoder’s parameters during train-
ing. To propagate information along both self edges Eself
and cross edges Ecross, we leverage a multiplex attention
graph neural network (MAGNN) [59] for aggregating mes-
sages, which starts with the initial node state, and calculates
an updated node representation at each layer. Specifically,

let X ℓ
i be the intermediate representation at layer ℓ for node

i in Vx. The residual message passing scheme is:

X ℓ+1
i = X ℓ

i +MLP
([

X ℓ
i ||mE→i

])
, (4)

where [·||·] is a concatenation operation, and mE→i denotes
the result of the alternate aggregation (i.e. E = Eself if ℓ
is odd, otherwise, E = Ecross) with multi-head attention
(MHA) [66] from all nodes. The MHA weights enable the
network to selectively focus on a subset of Vx that poten-
tially shares similar neural semantic patterns. An analogous
update procedure can be simultaneously performed for Vy .
Optimal Matching. From the OT formulation (Eq. 2), we
see that the OT plan Γ (a.k.a. coupling matrix) can be in-
ferred by providing a cost matrix C, and then solving a lin-
ear assignment problem. Here, we express the pairwise co-
sine similarity of final node representations as a score ma-
trix to reflect the matching cost:

Cij = 1− X̂T
i Ŷj

||X̂i||2||Ŷj ||2
, 1 ≤ i, j ≤ K, (5)

where X̂i ∈ R·×1 and Ŷj ∈ R·×1 are the final represen-
tations for node i in Vx and node j in Vy , respectively.
The complexity of minimizing ⟨Γ,C⟩ under the constraint
Γ ∈ Π is O(N3logN) [49, 67]. To reduce the complex-
ity, we leverage entropy-regularized OT, which is a strictly
convex optimization problem, to find the OT distance, i.e.

Ds(µ,ν,Γ) := min
Γ∈Π

⟨Γ,C⟩ − εH(Γ), (6)

where ε > 0 is a trade-off parameter (by making ε higher,
Γ will be smoother), and H(Γ) = −

∑
ij Γij logΓij is

an entropy constriaint term. Under this entropic regular-
ization, the solution [12] reads Γ∗ = diag(a)Kdiag(b),
where K = e−(1/ε)C ∈ Rn×m

+ is a Gibbs kernel, a ∈ Rn
+
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and b ∈ Rm
+ can be computed by Sinkhorn iterations [12].

Since the iterations are differentiable, it is straightforward
to backpropagate within deep learning models.

As mentioned in Sec.3.1, rather than seeking a precise
correspondence between fMRI and raw stimulus, we pur-
sue an assignment structure that allocates neural patterns to
images that share visual or semantic similarities with the
ground truth stimuli. For this purpose, a reasonable prac-
tice is to consider images of the same category as poten-
tial matching objects. This also lets us for data augmen-
tation via adding candidate images from ImageNet [14].
For the fMRI domain, we generate virtual neural signals by
performing linear interpolation on the fMRIs that evoked
by the identical class of images, which shares similari-
ties with mixup [72], but the difference is our labels are
from a random candidate set. In addition, to handle un-
matched cases (namely, w/o identical class), we adopt a
dustbin technique widely employed in GM [16, 59], which
allows us to explicitly assign unmatched entities (nodes) to
the extra bin by augmenting the cost matrix C ∈ Rn×m

to Ĉ ∈ R(n+1)×(m+1), filled with learnable parameters.
Finally, given potential correspondence labels M and un-
matched indexes R, our optimization goal is to minimize
the negative log-likelihood of the coupling matrix Γ∗:

Lgraph = −
∑

(i,j)∈M

logΓ∗
i,j −

∑
(i,j)∈R

logΓ∗
i,j . (7)

This supervision explicitly encourages models to capture
shared high-level semantic embedding across X and Y.

3.3. Multimodal Reconstruction Architecture

The semantic representation for human brains has its origin
in various perceptual-cognitive systems: it is supramodal in
nature [2, 21, 51, 64]. Psychological evidence suggests that
humans acquire language by grounding meanings to knowl-
edge about the world [26, 52, 73]. That meant verbal lan-
guage is a proper neurosemantic proxy. Inspired by this, the
proposed decoding model MindArt is configured as a two-
stream structure (See illustration in Fig. 3). Technically,
our MindArt is a “1+2” decoding instance, which incorpo-
rates the GM-guided fMRI encoder and two stand-alone vi-
sion and language branches, where visual sub-module pro-
vides visual generative prior (e.g. shape and position), and
linguistic branch guides the learned neural representations
toward a desired high-level linguistic semantic direction.
More importantly, the “divide and conquer” strategy allows
us to exactly control semantics by prompt-based text edit-
ing, thereby opening a door for adding style information
prior in a training-free fashion.

In this work, the visual stream includes a latent diffusion
model (LDM) [58] and a linear model, conditioning on the
pre-trained fMRI representation zi. Following [63], we first
leverage L2-regularized linear regression to predict a latent

embedding of the ground truth stimulus ȳi, where the target
variable is the latent representation of ȳi compressed by the
auto-encoder (AE) of LDM, and the weights of linear map-
ping are estimated from all the training data. Second, the
predicted embedding is fed into the decoder of AE to gen-
erate an intermediate image Xzi , which is then resized to
512 × 512. On the other hand, the language stream is built
on GPT-2 [54]. To bridge two fMRI encoders and a GPT-
2 decoder, we use multi-head cross-attention mechanism,
leaving each layer of the GPT decoder attends to the outputs
of the fMRI encoders [66]. It is noteworthy that we freeze
the GPT-2 decoder and GM-guided fMRI encoder, which
is why we need two fMRI encoders. To harness the inher-
ent contextual language capabilities of GPT-2, we leverage
fMRI-to-image retrieval to access image captions, which
are then used to populate the placeholder * in a prompt tem-
plate like “Similar image shows *. The seen image shows”.
In this context, the goal of the stand-alone language stream
can be boiled down to an fMRI-to-text translation problem
that can be approached by minimizing the cost function:

Ltext = −
M∑
i=1

logP
(
si|s<i, [EG(x)||EΦ(x)]; Θ

)
+λ

∣∣∣∣∣∣[Eclip(y)]0 − [EΦ(x)]0

∣∣∣∣∣∣2
2
,

(8)

where Θ is the parameters of cross-attention modules,
[si]1:M is a visual captioning (pseudo-labels) of stimulus
ȳ generated from [56], EG , EΦ and Eclip denote the frozen
GM-guided encoder, the ViT-based encoder with trainable
weights Φ, and the frozen CLIP encoder, respectively. The
first term is the sum of the negative log-likelihood condi-
tioned on the fMRI embeddings and the previous tokens, the
second is a mean-squared loss to constrain EΦ, and λ = 10
is a hyper-parameter weighting these items.

To fulfill stylized visual reconstruction, now we only
need to integrate the two information flows into the LDM,
and provide extra style prompts. This controllable decoding
mechanism can be described as:

x̂ = StableDiffusion
(
Xz; concat([oi]1:, [ŝi]1:M )

)
, (9)

where [ŝi]1:M is the predicted word sequence, and [oi]1: in-
dicates an extra conditional prompt such as “A Van Gogh-
style painting showing”, concatenated in front of [ŝi]1:M .

4. Experimental Results
4.1. Implementation Details

The architecture of our MindArt comprises three off-the-
shelf sub-models CLIP-B/32, GPT-2Base, and Stable Dif-
fusion (version 1.4), which can be available on Hugging-
Face [69]. Other configurations of MindArt are summarized
as follows. All fMRI encoders within MindArt adopt ViT
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Method DS
Visual Perception ↑ Semantic Perception ↑

SSIM CLIPScore FID ↓ CLIPT@10 CLIPT@50

Takagi et al. [63] DIR 0.152±0.11 0.572±0.07 17.4 24.6%±3.7% 10.0%

VQ-fMRI [5] DIR 0.433±0.12 0.520±0.09 36.8 24.3%±4.1% 12.0%

MindGPT [6] DIR 0.177±0.11 0.575±0.12 2.70 31.6%±3.8% 14.0%

Ours DIR 0.223±0.12 0.622±0.14 2.67 40.3%±3.8% 26.0%

Takagi et al. [63] GOD 0.182±0.11 0.602±0.08 18.5 29.8%±4.0% 10.0%

MinD-Vis [10] GOD 0.251±0.15 0.625±0.10 2.69 39.7%±5.6% 12.0%

VQ-fMRI [5] GOD 0.423±0.11 0.548±0.09 37.0 24.8%±4.4% 10.0%

GESS [22] GOD 0.267±0.15 0.620±0.10 5.05 43.1%±5.3% 12.0%

Ours GOD 0.242±0.13 0.631±0.13 2.55 43.6%±3.9% 24.0%

Table 1. Quantitative comparison of six reconstruction methods (↑
denotes the higher the better, and Bold is the optimal value).

models with 8-head self-attention. During pre-training, we
use an embedding size of 512 and 12 network layers. For
the MAGNN, we use 6 layers of alternating 4-head self- and
cross-attention with an embedding size of 512, K = 1024
nodes of the dynamic graphs, and perform 100 Sinkhorn it-
erations. In the fine-tuning phase, the embedding size and
layer number of encoder are 768 and 16, respectively. The
12-head cross-attention layer is added to each of the 12 lay-
ers of GPT-2 decoder. The MindArt is optimized using
Adam solver [35] with β1 = 0.9, β2 = 0.999, weight decay
of 1e-4 and learning rate of 1e-4 until convergence. More-
over, the batch size is 256, and the candidate images are
selected from ImageNet including 200 categories totaling
273.4k images. The MindArt is implemented by Pytorch,
and trained on 4 NVIDIA GeForce RTX3090 GPUs.

4.2. Dataset and Evaluation Metrics

Two public image-fMRI datasets are used to verify the de-
coding performance of our MindArt: DIR dataset [62], and
GOD dataset [32]. In DIR and GOD datasets, eight subjects
were required to see 1250 natural images involving 200 cat-
egories, and simultaneously fMRI signals were recorded us-
ing a 3.0-Tesla Siemens MAGNETOM Verio scanner. The
visual stimuli involved in the image presentation experi-
ments for both DIR and GOD datasets are identical, which
are selected from ImageNet [14], where 1200 images across
150 categories are utilized for training sessions, and 50 im-
ages from 50 categories for test sessions. Note that the train-
ing/test split has no overlapping classes.

To make comprehensive quantitative comparisons with
existing approaches, we initially consider visual percep-
tion metrics including SSIM that calculating the similar-
ity of local spatial pixels, FID [30] and CLIP visual score
(CLIPscore) [55], which reflect the high-level visual similar-
ity between images. Besides, we employ 10- and 50-way
CLIP image-text scores (CLIPT@10 and CLIPT@50) to
evaluate the semantic fidelity of the reconstructed images.
Specifically, we use the names of all the categories in the
test stimulus images as the set of potential text, and focus
on identifying the class name of the ground truth stimulus

Method
Language Similarity Metrics ↑

B@1 B@4 ROUGE METEOR SPICE
MindGPT [6] 37.9 15.7 35.9 12.8 10.3

Ours 38.5 16.0 37.2 13.1 11.3

Table 2. Quantitative comparison on language reconstruction (↑
denotes the higher the better, and Bold is the optimal value).

image among candidate texts (one being the actual ground
truth and the other selected from the remaining test set).

4.3. Visual Reconstruction with Style Control

This section focuses on the performance of our MindArt
in perceptual image reconstruction. To intuitively demon-
strate the decoding capabilities of MindArt under the vari-
ous style prompts, we consider 7 prompt-based conditional
inputs: default (w/o style prompt), cartoon, Picasso, oil,
ink wash, abstract, and doodling. Qualitative results of our
MindArt (as well as leading techniques including Takagi et
al. [63], MinD-Vis [10], VQ-fMRI [5], MindGPT [6] and
GESS [22]) on one subject are presented in Fig. 4 (See Ap-
pendix for full samples). The first column represents the
raw visual stimuli, and the rest columns are the reconstruc-
tion images from different methods. From the results, we
see that our MindArt produces detail-rich images with high-
level semantic fidelity. Compared with recently published
methods, the proposed MindArt exhibits superior capabili-
ties in recovering shapes, tones, and overall layouts, while
maintaining relatively faithful semantic attributes. The styl-
ized snapshots also demonstrate satisfying quality in terms
of low-level details and high-level semantic information,
which conform with the stimulus image in most cases. The
reconstructions from VQ-fMRI [5] excel in pixel-level lay-
out, however, the generated images tend to be blurry.

We also present a comprehensive quantitative evaluation
of our MindArt on subject 3 of the DIR and GOD, as de-
tailed in Tab. 1. We outperform the state-of-the-art meth-
ods on three criteria. Specifically, concerning CLIPT@10
and CLIPT@50, reflecting the semantic fidelity of recon-
structed images, MindArt achieves the highest recognition
accuracy in both DIR and GOD datasets, which surpasses
that of competitors by a margin ranging from 0.5% to
15.7%. In terms of visual perception criteria, our method
also attains an optimal CLIP visual score. Consistent with
qualitative findings, the pixel-level reconstruction method
VQ-fMRI excel in low-level similarity metric like SSIM.

4.4. Describing What You See

In order to understand the language semantics decoding ca-
pacity of the proposed MindArt, we provide some genera-
tion examples from subject 3 of the DIR dataset, and com-
pare them with MindGPT [6], as shown in Fig. 5. We ob-
serve that MindArt can generate semantically satisfying text
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Figure 4. Reconstruction results. We present seven stylized reconstructions of the MindArt. The first column provides ground truth images.

sequences, extracting not only the precise class names of
the raw stimuli (e.g., “boat”, “hat”, and “bat”), but often
even details like “in the water”, “through the air” and “a
black and white photo”. The quantitative results for all test
data, calculated based on the pseudo labels generated by the
image captioning method SMALLCAP [56], are also sum-
marized in Tab. 2. The results indicate that our method
surpasses MindGPT in all five language similarity metrics.

4.5. Ablation Studies

Architecture Variants. We conduct the first ablation ex-
periments to assess the influence of various architectural
configuration choices. In what follows, we employ ab-
breviated notation to denote the model size. Specifically,
MindArt-S, MindArt-B, and MindArt-L mean variants with
encoders of 4, 8, and 16 layers. The quantitative results
of our MindArt on different model configurations are il-

lustrated in Tab. 3. The biggest model, MindArt-L, out-
performs the smaller models MindArt-B and MindArt-S in
both visual and semantic perception metrics, especially for
the challenging CLIPT@50. We also note that the pro-
posed GM-guided neural representation learning module ef-
fectively boosts MindArt’s capability to capture semantic
information, which is reflected in the significant improve-
ment in semantic perception.
Performance of Different Brain Areas. To examine the
potential contributions of different brain areas to the vi-
sual reconstruction task, we repeatedly run quantitative ex-
periments using voxels from various ROIs (including VC,
LVC, and HVC). Here, VC represents the entire visual cor-
tex, LVC comprises voxels from V1-V3, while voxels from
FFA, PPA, and LOC form the HVC. Tab. 4 Top shows the
results. We discover that decoding from the HVC resulted
in the highest performance in semantic perception metrics.
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Figure 5. Qualitative comparison on text reconstruction. For each group, the left is the stimulus. Red denotes obvious semantic deviations.

GM Model Visual Perception ↑ Semantic Perception ↑
SSIM CLIPScore CLIPT@10 CLIPT@50

✓
MindArt-S 0.232±0.12 0.601±0.13 39.9%±4.0% 18.0%
MindArt-B 0.233±0.14 0.619±0.11 40.1%±3.8% 20.0%
MindArt-L 0.242±0.13 0.631±0.13 43.6%±3.9% 24.0%

×
MindArt-S 0.193±0.14 0.581±0.15 30.2%±4.3% 10.0%
MindArt-B 0.199±0.13 0.589±0.15 31.1%±4.2% 12.0%
MindArt-L 0.198±0.13 0.591±0.14 32.0%±4.2% 12.0%

Table 3. Quantitative Results with different variants of our Min-
dArt. GM indicates the graph matching-guided fMRI encoder.

Conversely, using the LVC tends to improve the similarity
in low-level visual perception (e.g. SSIM) between the re-
constructed images and the raw stimuli. The results support
a well-accepted theory in neuroscience, the hierarchical na-
ture of visual information propagation [32, 70].

Figure 6. The impact of Xz in visual reconstruction.

Analyzing the Impact of Latent Representations. Us-
ing only high-level semantic information might be inade-
quate to govern the layout details (e.g., position and orien-
tation) of reconstructed images. Our key idea is incorpo-
rating low-level visual information into the reconstruction
results by the predicted latent representation Xz . To ver-
ify whether that strategy working, we conduct quantitative
experiments to evaluate the importance of Xz in our Min-
dArt, as reported in Tab. 4 Bottom. From the results, it can
be observed that Xz can bring a 22.8% performance gain
in the SSIM metrics. Fig. 6 provides examples to visually
demonstrate the impact of latent representations on the re-
constructed images. In the first example, we observe that
Xz not only conveys positional information of the bat but
also nullifies the language semantics related to the phrase
“on a table”, which might be due to the absence of the out-

line features representing a table in the latent representa-
tion. In the second case, despite the inability to capture
fine-grained semantic information, the reconstructed image
is still faithful to the stimulus in terms of shape and layout.

Model Input
Visual Perception ↑ Semantic Perception ↑
SSIM CLIPScore CLIPT@10 CLIPT@50

MindArt-L
LVC 0.239±0.14 0.597±0.15 39.9%±4.0% 14.0%
HVC 0.220±0.15 0.628±0.13 44.9%±3.9% 26.0%
VC 0.242±0.13 0.631±0.13 43.6%±3.9% 24.0%

MindArt-L
w/o Xz 0.197±0.15 0.629±0.14 43.7%±3.9% 24.0%
with Xz 0.242±0.13 0.631±0.13 43.6%±3.9% 24.0%

Table 4. Top: Results of visual reconstruction on different brain
areas. Bottom: Results of ablation experiments on Xz . The best
and worst are highlighted in Bold and red, respectively.

5. Conclusion
This paper proposes a novel double-stream neural decod-
ing architecture, termed MindArt, for multi-modal recon-
struction. For the first time, we cast traditional visual neu-
ral decoding into an OT-based graph matching problem by
representing entities in both fMRI and image domains as
multiplex graphs. In contrast to previous works, this prac-
tice explicitly encourages models to capture potential de-
pendencies between neural patterns, thereby resulting in a
natural and meaningful self-supervisory task. Furthermore,
our method elegantly handles the coupling problem of vi-
sual and linguistic semantics within a unified two-stream
model. This “1+N” decoding paradigm allows us to ful-
fill style transfer (with no optimization required) through
prompt-based linguistic semantic editing. By integrating
multi-modal information flows into appropriate models, the
MindArt can reconstruct not only images, but even videos,
3D models, etc. We leave it to the future work.
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