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Figure 1. Morphable diffusion. We introduce a morphable diffusion model to enable consistent controllable novel view synthesis of
humans from a single image. Given a single input image (a) and a morphable mesh model with a target facial expression (b) our method
directly generates 3D consistent and photo-realistic images from novel viewpoints (c). Using the generated multi-view consistent images,
we can reconstruct a coarse 3D model (d) using off-the-shelf neural surface reconstruction methods such as [80].

Abstract

Recent advances in generative diffusion models have en-
abled the previously unfeasible capability of generating 3D
assets from a single input image or a text prompt. In this
work, we aim to enhance the quality and functionality of
these models for the task of creating controllable, photo-
realistic human avatars. We achieve this by integrating a
3D morphable model into the state-of-the-art multi-view-
consistent diffusion approach. We demonstrate that accu-
rate conditioning of a generative pipeline on the articulated
3D model enhances the baseline model performance on the
task of novel view synthesis from a single image. More im-
portantly, this integration facilitates a seamless and accu-
rate incorporation of facial expression and body pose con-
trol into the generation process. To the best of our knowl-
edge, our proposed framework is the first diffusion model to
enable the creation of fully 3D-consistent, animatable, and
photorealistic human avatars from a single image of an un-
seen subject; extensive quantitative and qualitative evalua-
tions demonstrate the advantages of our approach over ex-
isting state-of-the-art avatar creation models on both novel
view and novel expression synthesis tasks. The code for our
project is publicly available.

1. Introduction

The field of photorealistic controllable human avatar gener-
ation has been subject to several technological leaps in the
recent decade. The introduction of large 3D scan collec-
tions has facilitated the construction of expressive, articu-
lated models of 3D human bodies [47, 55], faces [5, 39, 56],
and hands [65]. From the outset, one of the primary appli-
cations of these models was to reconstruct a 3D avatar from
highly under-constrained setups, such as monocular video
or a single image [5, 18, 37, 55].

While allowing for rich semantic information to be in-
ferred, these 3D morphable models were limited in the level
of photorealism due to their focus on minimally clothed
bodies and face regions, as well as their reliance on the stan-
dard mesh-based computer graphics pipelines for rendering.

Recently, the task of generating photorealistic avatars
[57] gained significant attention from the research commu-
nity due to its potential to revolutionize our ways of digital
communication. Here, combining novel neural rendering
techniques [50, 86] with articulated human models allowed
for a new level of generated image quality. However, the
best-performing models here still require a significant vi-
sual input, such as calibrated multi-view images [21, 78] or
monocular video sequences of the subject [61, 82, 95, 99].
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Concurrently, the field of generative modeling emerged
with its ability to create highly photorealistic assets by
learning a complex distribution of real-world image data
[33, 64]. Here, a substantial body of research has been ded-
icated to better controlling the generative process of such
models in the case of human-related imagery [17, 29, 93].
This is regularly done by conditioning the pipelines on 2D
keypoints [8], 3D deformable models [73], or text [48]. An-
other emerging topic is building geometry-aware generative
models that allow view-consistent image synthesis and 3D
asset extraction [9, 45, 59].

The method proposed in this work can be considered the
next logical step in the evolution and unification of the three
aforementioned branches of research on photorealistic con-
trollable virtual humans. We begin with investigating the
performance of a state-of-the-art view-consistent diffusion
model [44, 45] on the task of novel view synthesis of hu-
man heads and full bodies. However, we show that a simple
finetuning of the baseline on a limited dataset (e.g. [90, 92])
leads to sub-optimal results, with the model failing to pre-
serve the identity or the facial expression / body pose.

We follow in the footsteps of the view-consistent diffu-
sion model and propose a novel finetuning strategy and ar-
chitecture that enhances the reconstruction quality and al-
lows animation. Our key idea is to leverage a well-studied
statistical model of human shapes [39, 47] to introduce hu-
man prior and guide the reconstruction process. More im-
portantly, a controllable 3D model also allows us to per-
form a more challenging task of photorealistic animation of
a human head from a single image under novel expression
(Figure 1).

A similar type of diffusion process guidance has been
investigated by several prior works [16, 93]. However, as
we will show later, the models conditioned purely on 2D
rasterizations of meshes or projected keypoints struggle to
achieve truly 3D-consistent novel view and expression syn-
thesis results.

To alleviate this problem, we introduce the condition-
ing of the diffusion process on a 3D morphable model that
performs an uplifting of the noisy image features and as-
sociates them with the corresponding mesh vertices in 3D
space (Figure 2A). We also introduce a shuffled training
scheme for the diffusion model: during training, the model
is trained to predict a view-consistent image set of novel
facial expressions, given a single head image with a differ-
ent expression as a reference and an articulated 3D model
as a driving signal. The resulting combination of a power-
ful diffusion network and 3D model conditioning allows for
the first-time building of a highly photorealistic animatable
head model of an unseen subject from a single input image
with an unseen facial expression as driving signal.

To summarize, our contributions are as follows: (a) We
analyze the applicability of state-of-the-art multi-view con-

sistent diffusion models for the task of human avatar cre-
ation and propose a superior pipeline that consistently im-
proves the quality of generated images across most metrics,
thanks to the efficient conditioning of the generative pro-
cess on a deformable 3D model; (b) We further propose a
more efficient training scheme to enable the generation of
new facial expressions for an unseen subject from a single
image.

2. Related work

3D morphable models: Traditional methods for construct-
ing shapes have been predominantly centered around pa-
rameterized 3D mesh representations, particularly in the
context of human faces [5, 39, 56], bodies [47, 55, 89],
and hands [41, 65]. These data-driven models are typically
created from high-quality 3D scans obtained in expensive
studio environments and they have laid the foundation for
reconstructing humans in the wild from as few as a sin-
gle input image [18, 31, 37]. However, these mesh-based
representations are limited in quality for representing thin
geometric details (e.g. hair) and are not suitable for truly
photo-realistic novel view synthesis.

Photorealistic avatars: Neural radiance fields (NeRFs)
[50] have recently enabled rapid development of model-
ing and reconstructing photorealistic scenes. Several recent
works have successfully combined neural rendering with ar-
ticulated human models [46, 57, 86] to enable high-quality
photorealistic avatar reconstruction. However, they still re-
quire a substantial visual input such as a monocular video
[30, 61, 82, 95, 99] or several calibrated multi-view images
or videos [11, 21, 32, 49, 78].

Avatars from a single image: Single-image human avatar
creation has been an active research area in the past few
years. The seminal work PIFu [67] has proposed to directly
model the human body shape as an implicit representation
conditioned on pixel-aligned features. Several follow-ups
[1, 22, 23, 28, 68, 87, 88] have focused on improving ro-
bustness and reconstruction quality; others have focused on
reconstructing human faces [6, 12, 35, 63, 74]. However,
these methods lack controllability and cannot be directly an-
imated or used to synthesize novel views for diverse novel
expressions or poses of an unseen subject.

Controllable face avatars: Controllable face avatars allow
rigging of appearance, identity, pose, or expression from a
single image [26, 40, 97]. However, these methods only
demonstrate the manipulation ability under frontal views
and produce incomplete or blurry renderings under extreme
head poses, as we will demonstrate in the following sec-
tions. Several other works achieve the rigging from multiple
views or monocular videos of the input subject [95, 96, 99].
Closer to our work is DiffusionRig [16] that leverages the
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Figure 2. Morphable diffusion step. This figure gives an overview of a single denoising step of the proposed 3D morphable diffusion
pipeline. Our morphable denoiser takes as input a single image y and the underlying human model M and generates N novel views from
pre-defined viewpoints. Given the noisy images of N fixed views x(1:N)

t obtained from the previous iteration, camera projection matrices
P (1:N) = (K(1:N), R(1:N), T (1:N)), and the target articulated 3D mesh model, we construct A) a morphable noise volume by attaching
the 2D noise features onto mesh vertices that are processed by a SparseConvNet fθ to output a 3DMM-aware feature volume FV , which is
further interpolated to the frustum F(i) of a target view (i) that we wish to synthesize. B) The noisy target image x

(i)
t , the input image y,

and the target feature frustum are then processed by a pre-trained 2D UNet akin to [45] to predict the denoised image in the next iteration
x
(i)
t−1.

photorealism of the diffusion models [64] with the explicit
controllability achieved via conditioning of the denoising
process on 2D rasterizations of a morphable model. How-
ever, this work struggles to achieve a multi-view consistent
novel view synthesis, as we will demonstrate in the experi-
ment section later.

Generative models: As reconstruction from a single view
is inherently a challenging ill-posed task, many works have
attempted to formulate the problem as a generative task in-
stead. A rich set of related methods leverage generative ad-
versarial networks [33] or powerful diffusion models [64] to
learn complex data distributions from real-world imagery
and to directly synthesize novel images without modeling
an underlying 3D model. In the context of human avatars
[17, 29, 93], prior works explore different input conditions
to control the generative process such as keypoints [8], de-
formable models [73], or just textual queries [7, 38, 48].
However, achieving a high degree of photorealism in these
models comes at the expense of 3D consistency.

3D-consistent generative models: Several attempts have
been made towards constructing a 3D consistent generative
model [2, 4, 9, 20, 42, 51–53, 69, 70, 72, 79, 83, 84]. On
the other side, the recent work Zero-1-to-3 [44] learns to
control the camera perspective in large-scale diffusion mod-
els and enable consistent generation of novel views. Sync-
Dreamer [45] further improves the multi-view consistency
through a 3D-aware feature attention module. However, the
novel view synthesis from a single image of this model can-
not be explicitly controlled, e.g. by a human expression or
pose, which is essential for avatar creation. In this work,
we build on the state-of-the-art multi-view consistent diffu-
sion framework [45] and enhance the reconstruction quality
while enabling additional control for generating animatable
photorealistic avatars.

Finetuning diffusion models: The main limitation of dif-
fusion models is the long and expensive training. Therefore,
many recent works [15, 27, 43, 45] focus instead on finetun-
ing large pre-trained models. Here, a popular approach [93]
is to inject the control parameters as an additional signal
when finetuning. However, adjusting this framework oper-
ating in 2D space to finetune multi-view consistent diffusion
models [45] which contains a 3D conditioning module is
not straightforward. In the following, we will examine how
to effectively control the diffusion models for photorealistic
avatar creation.

3. Morphable diffusion model
Given an input image y of a human, our goal is to synthesize
N multi-view consistent novel views from predefined view-
ing angles and allow for their animation via a morphable
model M. Our method builds on the recent multi-view
consistent diffusion model [45] while further improving the
reconstruction quality and allowing for explicit manipula-
tion of the synthesized images. We start by reviewing the
3D-consistent diffusion model (Sec. 3.1) and later detail our
morphable diffusion model (Sec. 3.2).

3.1. Preliminaries: multi-view diffusion

Multi-view diffusion [45] consistently learns the joint dis-
tribution of novel views at N fixed viewpoints {x(i)

0 }Ni=1

given an input condition y: pθ(x1
0, . . . ,x

N
0 , |y); y is omit-

ted for brevity in the following. Analogously to the diffu-
sion model [71], it defines the forward process

q(x
(1:N)
1:T |x(1:N)

0 ) =

T∏
t=1

N∏
n=1

q(x
(n)
t |x(n)

t−1), (1)

q(x
(n)
t |x(n)

t−1) = N (x
(n)
t ;

√
1− βtx

(n)
t−1, βtI), (2)
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and the reverse process

pθ(x
(1:N)
0:T ) = p(x

(1:N)
T )

T∏
t=1

N∏
n=1

pθ(x
(n)
t−1|x

(1:N)
t ), (3)

pθ(x
(n)
t−1|x

(1:N)
t ) = N (x

(n)
t−1;µ

(n)
θ (x

(1:N)
t , t), σ2

t I), (4)

where µ
(n)
θ is trainable, while βt and σt are fixed time-

dependent coefficients.
To learn the joint distribution by minimizing the neg-

ative log-likelihood, multi-view diffusion [45] follows the
DDPM’s [25] parameterization:

µ
(n)
θ (x

(1:N)
t , t) =

1√
αt

(
x
(n)
t − βt√

1− ᾱt
ϵ
(n)
θ (x

(1:N)
t , t)

)
,

(5)
where ϵθ is a trainable noise predictor (in practice, param-
eterized by a UNet [66]) and other constants (αt, αt) are
derived from βt. Then, the training is performed by mini-
mizing the loss

ℓ = E
t,x

(1:N)
0 ,n,ϵ(1:N)

[
∥ϵ(n) − ϵ

(n)
θ (x

(1:N)
t , t)∥2

]
, (6)

where ϵ(1:N) ∼ N (0, I) is the sampled Gaussian noise.

3.2. Morphable multi-view diffusion model

To increase the reconstruction fidelity and extend the base-
line model to animatable avatar, we introduce a morphable
diffusion model for animatable high-fidelity multi-view
consistent novel view synthesis of humans from a single in-
put image.

Our model takes as input a single image y and an under-
lying morphable model M (e.g. SMPL [47], FLAME [39],
or bilinear [90] model) that maps a low-dimension identity
β ∈ RI and expression Θ ∈ RE parameters to a mesh con-
taining nv vertices:

M : β,Θ 7→ Rnv×3. (7)

Given the image y and mesh M, we synthesize N im-
ages x(1:N)

0 of the same resolution through an iterative dif-
fusion process. These novel views are generated from fixed
viewpoints with the relative camera translations T (1:N) ∈
R3, rotations R(1:N) ∈ R3×3 and their respective calibra-
tion parameters K(1:N) ∈ R3×3. An overview of a single
diffusion step is illustrated in Fig. 2.

We leverage the mesh of the underlying morphable
model to unproject and interpolate the d-dimensional tar-
get image noise features x

(1:N)
0 onto nv mesh vertices in

the world space. These pixel-aligned noise features for all
target views are then fused via channel-wise mean pooling
to make the vertex features invariant of the order of target

views. The output vertex features VF ∈ Rnv×d are then
processed via a sparse 3D ConvNet [19, 57] fθ and trilin-
early interpolated to create a 3D morphable-model-aware
feature volume:

FV = fθ(VF ) ∈ Rx×y×z×fV , (8)

where x, y, z, and fV denote the dimensionality and number
of channels of the interpolated 3DMM-aware feature vol-
ume FV .

Given a target view i, we uniformly sample dF points
on every ray inside the view frustum defined by fixed
near and far planes. This formulates a 3D grid F(i) ∈
RdF×hF×wF×fV inside the view frustum. We then assign
the trilinearly interpolated features from FV to each point in
F(i), which is then processed via a convolutional network to
extract a feature volume F

(i)
j at each layer j of the L-layer

denoising UNet. This interpolation and the neural network
operation are jointly denoted as gθ and output a view frus-
tum volume with L grids:

F
(i)
1:L = gθ(F

(i)) = gθ(FV |R(i), T (i),K(i)). (9)

Lastly, the target x(i)
t and the CLIP encoding [62] of the

input image y are propagated through a pre-trained UNet
that is conditioned on F

(i)
1:L through depth-wise attentions as

in SyncDreamer. Specifically, a cross-attention [75] layer is
applied on every intermediate feature map fj of the current
view i in the UNet:

Attention(Qj ,Kj , Vj) = softmax(
QjK

T
j√

d
) · Vj , (10)

with Qj = WQ,j ·φj ,Kj = WK,j ·F(i)
j , Vj = WV,j ·F(i)

j ,

where φj ∈ RN×dj
ϵ×hj×wj is the intermediate representa-

tion of fj cross-attentioned with the CLIP feature of the in-
put image, F(i)

j ∈ RN×dr×dj×hj×wj is the feature volume
downsampled from F(i) corresponding to the j-th layer of
the UNet. WQ,j ∈ Rd×dj

ϵ ,WK,j ∈ Rd×dr ,WV,j ∈ Rd×dr

are learnable projection matrices [64]. The attention com-
putation and feature aggregation is only performed along
the depth dimension dj .

4. Experiments
We demonstrate the effectiveness of our method on the
novel view synthesis (Sec. 4.1) and the animation from a
single image (Sec. 4.2). For ablation studies on design
choices and training regimes, and discussion about the ef-
fect of the topology and expressiveness of the input meshes,
please refer to the supplementary material.

Training: To train our model, we exploit diffusion mod-
els Zero-1-to-3 [44] and SyncDreamer [45] that have been
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Figure 3. Single-view reconstruction of human faces. In addition to the single input view, our method also takes as input a mesh of the
facial expression corresponding to the input image. Our method produces more plausible and realistic novel views compared to state-of-
the-art methods. While providing multi-view consistency, PixelNeRF [91] and SSDNeRF [10] produce overly blurry results. Zero-1-to-3
[44] generates images of good quality which however fail to preserve multi-view consistency and do not align with the ground truth
target views. SyncDreamer [45] produces multi-view consistent images with relatively accurate facial expressions that however lose the
resemblance. For more details and discussion, please see section 4.1.

trained on a large dataset such as Objaverse [14] (800k ob-
jects). To further allow better generalization to any user-
input images, we remove the input view parameter embed-
dings by setting all the corresponding values to zeros. Addi-
tionally, we drop the assumption that the input and the first
target image have the same azimuth.

Figure 4. Single-view reconstruction of human bodies. Our
method is the only one that reconstructs the correct body poses.
The relatively low resolution of all methods, however, limits the
amount of details in the generated images.

Experimental setup: To evaluate our model, we use a
dataset of human faces (FaceScape [90]) and bodies (THu-
man 2.0 [92]). For the novel view synthesis task of the hu-
man faces, we train our model on 323 subjects, each having
20 unique facial expressions, and evaluate its performance
on the remaining 36 subjects, including the 4 subjects who
agree to be shown in publications. The results of these 4
subjects are displayed in our qualitative evaluation figures.
Since the capture devices are visible from the back views,
we only include views that have azimuth in the range of

[-90, 90] degrees for our training and evaluation. During
testing, we use input images that have absolute azimuth and
elevation both less than 15 degrees, since using more ex-
treme facial poses does not provide a sufficient amount of
information for any meaningful reconstruction. We follow
DINER [60] and apply cropping, rescaling, and color cal-
ibration. FaceScape provides coarse meshes of the fitted
bilinear model for each frame, which we use to build the
voxel grids for SparseConvNet (Sec. 3.2).

For the novel view synthesis of full bodies, we evaluate
our method on the THuman 2.0 dataset [92], which is a syn-
thetic dataset that consists of 526 meshes with ground truth
SMPL-X [55] fittings. We follow [45] and render 16 input
and 16 target views (with the same azimuth) for each mesh
in a spherical camera path with an elevation of 30 degrees.
The SMPL-X vertices for each mesh are used to build voxel
grids and query the SparseConvNet. We use the first 473
meshes for training and the last 53 meshes for testing.

Metrics: We compare SSIM [81], LPIPS [94], Frechet
Inception Distance (FID) [24], Percentage of correct Key-
points (PCK) [3], and face re-identification accuracy (Re-
ID) [58] on the generated images of our method and the
baselines. We use an off-the-shelf facial keypoints regressor
[13] with HRNetV2 backbone [76] to predict 68 facial key-
points and normalize them using the intercanthal distance
between two eyes. Due to the slightly inaccurate facial ex-
pressions in the ground truth bilinear meshes, we also run
the keypoint regressor on ground truth images and use the
predicted keypoints as pseudo ground truth, instead of us-
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Figure 5. Novel facial expression synthesis. Qualitative comparison with DECA[18], MoFaNeRF [97], and DiffusionRig [16] on novel
facial expression synthesis. DiffusionRig is denoted with ∗ since it requires per-subject finetuning with additional images. Our morphable
diffusion model is the only one that successfully synthesizes novel views for a novel facial expression while retaining high fidelity. For
more details and discussion, please see section 4.2.

ing the projected 3D keypoints from the bilinear meshes.
We then label the keypoints predicted from the generated
face images that are within 0.2 pixels away from the pseudo
ground truth as correct ones. Note that we only evaluate
PCK for camera poses that have both absolute azimuth less
than 30 degrees and absolute elevation less than 15 degrees,
in order to avoid potential failure cases of the keypoint re-
gressor on larger angles where some keypoints are invisi-
ble. We also follow [16] to report face re-identification ac-
curacy, where we extract 128-dimensional face descriptor
vectors from the face images using the dlib library [36]. If
two vectors between ground truth and the generated image
have an Euclidean distance of less than 0.6, we classify the
generated image to be re-identified as the same person. In
addition, we reconstruct meshes by training NeuS2 [80] on
the generated images. We show more results on mesh re-
construction in the supplementary.

4.1. Novel view synthesis

Baselines: We adopt pixelNeRF [91], Zero-1-to-3 [44],
SyncDreamer [45], and SSD-NeRF [10] as baselines for the
novel view synthesis task. For fair comparisons, we fine-
tune the baselines or train them from scratch on our training
data. Note that although SyncDreamer proposes not to fine-
tune the UNet along with its conditioning module, we find it
beneficial to do so when we transfer the domain of the Sync-
Dreamer model pretrained on general objects to human face
/ bodies. Therefore, the UNet is also finetuned in the base-
line SyncDreamer models that we report in this paper. We

Method LPIPS ↓ SSIM ↑ FID ↓ PCK@0.2 ↑ Re-ID ↑
pixelNeRF [91] 0.2200 0.7898 92.61 72.34 97.46
Zero-1-to-3 [44] 0.4248 0.5656 10.97 4.69 96.77
SSD-NeRF [10] 0.2225 0.7225 34.88 92.65 98.74

SyncDreamer [45] 0.1854 0.7732 6.05 94.07 99.60
Ours 0.1653 0.8064 6.73 95.80 99.86

Table 1. Novel view synthesis of human faces. Quantitative
comparison on the FaceScape [90] dataset demonstrates that our
method produces more realistic face images with more accurate
facial expressions and better resemblance.

Method LPIPS ↓ SSIM ↑ FID ↓
pixelNeRF [91] 0.1432 0.8759 104.42
Zero-1-to-3 [44] 0.1163 0.8764 49.94

SyncDreamer [45] 0.0960 0.8826 41.33
Ours 0.0625 0.9181 30.25

Table 2. Novel view synthesis of full human bodies. Quantitative
comparison for full-body novel view synthesis on the THuman 2.0
[92] dataset. Our method demonstrates a considerable improve-
ment over all the baselines across all metrics.

refer to the supplementary for the advantages of finetuning
the UNet and further details on training the baseline meth-
ods, as well as an additional qualitative evaluation of novel
view synthesis of faces with EG3D [9].

Novel view synthesis of faces: Fig. 3 and Tab. 1 show
the qualitative and quantitative results of our method versus
the baselines for novel view synthesis on the FaceScape test
subjects. PixelNeRF and SSD-NeRF both preserve the re-
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semblance, however, produce blurry results. SyncDreamer
generates views with good multi-view consistency and re-
constructs relatively accurate facial expressions, but some-
times fails to preserve the resemblance. Zero-1-to-3 pre-
serves resemblance to some extent, but the generated re-
sults are slightly distorted and are misaligned with the tar-
get views, which causes inferior results on the structural and
keypoint metrics. This is caused by the fact that the method
assumes a uniform camera intrinsic matrix for all data; this
way, the varying intrinsic camera information in the con-
sidered dataset is never taken into account by the model.
Our method produces the best scores on most of the metrics
while preserving good resemblance, which is attributed to
the effective conditioning on the morphable model.

Novel view synthesis of full bodies: Fig. 4 and Tab. 2
demonstrates more significant improvement of full body re-
constructions using our method compared to the facial data,
indicating the necessity of a human prior in a diffusion
pipeline. However, the generated full body images for all
methods lack details due to the relatively low resolutions.

4.2. Novel facial expression synthesis

We further evaluate our method for multi-view consis-
tent novel facial expression synthesis. We hold out the
“jaw right” expression in the FaceScape dataset from train-
ing and train our model on the remaining 19 expressions.

Baselines: Using the same metrics as for novel view syn-
thesis, we compare our method with DiffusionRig [16],
DECA [18], and MoFaNeRF [97]. Note that Diffusion-
Rig requires per-subject finetuning with additional images
and is thus denoted with the ∗ symbol. For this baseline,
we randomly choose 20 views from the 20 expressions and
finetune the second stage for 5k steps for each subject.
For a fair comparison to DECA, we fit FLAME [39] pa-
rameters to the ground truth meshes of the test expression
in FaceScape’s bilinear topology, instead of using the pre-
dicted ones. We then simply render the predicted albedo
maps onto the ground truth meshes and use them to render
albedo and lambertian images for 2D conditioning in Diffu-
sionRig, Although the pre-trained model of MoFaNeRF has
already been trained on all 20 facial expressions and some
of our test subjects in the FaceScape dataset, we still treat
the input image in a random facial expression as a novel
subject and finetune the pre-trained model for 2k steps (as
suggested by the authors).

Disentanglement of reconstruction and animation: We
propose an efficient training scheme that disentangles the
reconstruction (guided by the input image) and the anima-
tion (guided by the underlying morphable model). At every
training step, given an input image of a subject, we ran-
domly sample a novel facial expression from the dataset
that does not align with the expression of the input im-

LPIPS ↓ SSIM ↑ FID ↓ PCK@0.2 ↑ Re-ID ↑
DiffusionRig* [16] 0.2534 0.7438 42.93 89.74 97.67
DECA [18] 0.3393 0.6904 182.25 91.06 25.23
MoFaNeRF [97] 0.2877 0.6956 32.92 79.81 88.97
Ours 0.1693 0.8026 14.34 95.46 99.89

Table 3. Novel expression synthesis. Quantitative evaluation for
novel expression synthesis on the held-out “jaw right” expression.
When evaluating against ground truth images with a white back-
ground, we convert the background pixels to white for all baselines
using the ground truth masks. Our method outperforms the base-
lines on all metrics.

age. This cross-expression training, besides allowing ex-
plicit control of generated images, further improves the
training efficiency as it serves as a data augmentation proce-
dure and reduces potential overfitting on small datasets. At
inference time, we could either use the expression that cor-
responds to the input image to enable novel view synthesis
or use a novel expression to animate the reconstruction. We
refer the readers to the ablation studies section in the sup-
plementary for more discussion about the effectiveness of
this proposed training regime.

Fig. 5 and Tab. 3 show the qualitative and quantitative
results of our method versus the baselines on the novel
expression synthesis task. DiffusionRig is unable to con-
trol eye poses since DECA that it depends on for mesh re-
construction during the first stage training does not model
eye poses. It also generates slightly distorted faces in ex-
treme head poses. DECA renders meshes with the predicted
albedo maps, which is unable to produce photorealistic fa-
cial details. Expression rigging with MoFaNeRF loses re-
semblance and produces artifacts when the input facial ex-
pressions are not neutral. Our method, on the other hand, is
able to generate realistic facial images under novel expres-
sions from various views while retaining high visual quality,
with input image in any facial expression.

5. Limitations and future work

While our morphable model exhibits promising capabili-
ties, it is essential to acknowledge its inherent limitations
that could impact its widespread applicability. As shown
in Fig. 6, one significant constraint arises from the current
inability to generalize effectively across various ethnicities
and hair types, primarily stemming from the constraints of
the FaceScape dataset, which predominantly features Asian
subjects wearing a distinctive red cap. This limited diversity
poses a challenge in training the model to handle the rich
variability present in real-world scenarios, where individu-
als showcase diverse ethnicities and hair textures, lengths,
and styles. We believe that this limitation can be allevi-
ated with the advent of more diverse head datasets, such as
RenderMe-360 [54].

Additionally, we find that our pipeline does not gener-
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Figure 6. Generalization abilities. We show the results of our novel facial expression synthesis model on two Asian subjects generated
by StyleGAN2 [34] and one subject from the Multiface dataset [85]. Our model is capable of maintaining 3D consistency of the generated
imagery and preserving target facial expression. However, it struggles with the hairstyle reconstruction and out-of-distribution ethnicities
due to the strong bias of the training data towards hair caps and Asian subjects. We use MICA [98] to optimize for the shape and expression
parameters of the FLAME model from the input and target expression images, respectively. All results in this figure are generated using
the model trained with FLAME fittings. For more details about models trained with bilinear / FLAME topologies, please refer to the
supplementary. The target expression image in the first row is courtesy of © Deagreez / iStock.

alize well to out-of-distribution camera parameters that are
significantly different from the ones used during training.
Therefore, our current implementation relies on an external
NeRF-based method, such as [77, 80], for comprehensive
3D facial reconstruction and free-path novel view synthesis.
While this approach has been proven effective, it introduces
a dependency on an external system, potentially impacting
the model’s standalone usability and flexibility. Improving
the generalizability to any camera views and exploring ways
to integrate a more self-contained 3D reconstruction process
within our model could be a valuable avenue for future re-
search.

Finally, the resolution of our model is limited at
256×256 as we inherit this limitation from the compo-
nents proposed in the previous works [44, 45]. Rendering
full bodies under such a low resolution provides a limited
amount of details. Future works could involve training a
full-body specific model from scratch at a higher resolution
or integrating a super-resolution module into the pipeline.

6. Conclusion
Our work presents a method for avatar creation through
the introduction of a novel morphable diffusion model. By
seamlessly integrating a 3D morphable model into a multi-

view consistent diffusion framework, we have successfully
incorporated a powerful human prior. This serves a dual
purpose: firstly, it enhances the finetuning process for gen-
erative diffusion models, allowing for effective adaptation
from extensive datasets to more limited, human-specific
datasets. Secondly, it empowers the direct manipulation of
synthesized novel views, offering a level of control and re-
alism that surpasses current methodologies. Our qualita-
tive and quantitative evaluation demonstrates the superior
quality achieved by our model in comparison to state-of-
the-art methods. We hope that our method will positively
contribute to accelerating the field of photorealistic digitiza-
tion of humans and promote follow-up research to address
the current limitations.
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