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Abstract

State-of-the-art neural implicit surface representations
have achieved impressive results in indoor scene recon-
struction by incorporating monocular geometric priors as
additional supervision. However, we have observed that
multi-view inconsistency between such priors poses a chal-
lenge for high-quality reconstructions. In response, we
present NC-SDF, a neural signed distance field (SDF)
3D reconstruction framework with view-dependent nor-
mal compensation (NC). Specifically, we integrate view-
dependent biases in monocular normal priors into the neu-
ral implicit representation of the scene. By adaptively learn-
ing and correcting the biases, our NC-SDF effectively mit-
igates the adverse impact of inconsistent supervision, en-
hancing both the global consistency and local details in the
reconstructions. To further refine the details, we introduce
an informative pixel sampling strategy to pay more atten-
tion to intricate geometry with higher information content.
Additionally, we design a hybrid geometry modeling ap-
proach to improve the neural implicit representation. Ex-
periments on synthetic and real-world datasets demonstrate
that NC-SDF outperforms existing approaches in terms of
reconstruction quality.

1. Introduction
3D scene reconstruction from multi-view images is a long-
term challenge in computer vision, with applications across
various domains such as virtual reality, robotics, and au-
tonomous driving. Multi-view stereo (MVS) techniques
[4, 6, 19, 23, 36, 48] recover depth maps for each view
by matching features between adjacent views, subsequently
fusing the depth maps to reconstruct 3D geometry. Their re-
constructions tend to be noisy, especially in texture-less ar-
eas. Some data-driven methods [7, 13, 28, 39, 41] alleviate
this limitation by directly predicting a truncated signed dis-
tance field (TSDF) from multi-view images. However, they
necessitate expensive 3D supervision and produce over-
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Figure 1. Comparison between baseline and NC-SDF. State-
of-the-art neural implicit surface representations produce subopti-
mal reconstructions with noisy or missing surfaces, primarily due
to multi-view inconsistency between monocular geometric priors.
Our NC-SDF introduces a view-dependent normal compensation
model to adaptively learn and correct biases in normal priors. This
approach enables the recovery of intricate geometric details while
ensuring smoothness in texture-less areas within reconstructions.

smooth results.
Recently, impressive progress has been made in neu-

ral implicit surface reconstruction combined with volume
rendering techniques. They utilize multi-layer percep-
trons (MLPs) to parameterize implicit shape representa-
tions, such as occupancy [29] or signed distance fields
(SDFs) [45, 50]. Though these methods excel in capturing
continuous and smooth surfaces, they face challenges when
dealing with indoor scenes containing large texture-less re-
gions. The primary reason is that multi-view photometric
consistency fails to provide sufficient constraints in such re-
gions, such as walls and floors.

Recent advancements have mitigated this problem by in-
corporating additional priors for supervision, including sen-
sor depths [3, 30, 35, 43, 54, 56], semantic priors [16],
depth priors from MVS methods [22, 34, 47] and monoc-
ular geometric priors [11, 44, 52, 55]. Among these works,
[44, 52] have produced state-of-the-art results by utilizing
geometric cues from monocular geometry estimation net-
works [12, 32, 33, 46, 51]. However, their performance is
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heavily dependent on the quality of the geometric predic-
tions. Notably, the estimation networks inevitably introduce
biases between the predictions and the ground truths (GTs).
Moreover, these biases are related to the viewing direction,
since the networks receive input from a single view rather
than multiple views. Therefore, such geometric predictions
always struggle to satisfy multi-view consistency.

In this work, we present NC-SDF, a neural SDF 3D re-
construction framework with view-dependent normal com-
pensation. The framework is designed to enhance in-
door scene reconstruction by addressing multi-view incon-
sistency between monocular normal priors. To achieve
this, We model not only the scene’s radiance field and
SDF but also the view-dependent biases in normal pri-
ors. Through adaptive compensation for the biases at cor-
responding viewing directions, our NC-SDF enables more
consistent supervision and eventually leads to better per-
formance. For more detailed reconstruction, we design an
informative pixel sampling strategy to pay more attention
to intricate geometry, by prioritizing sampling pixels with
higher information content. Recognizing the limited repre-
sentation power of MLPs, we introduce a hybrid geometry
modeling approach based on feature fusion. This approach
utilizes the inductive smoothness bias of MLPs to ensure
smooth surfaces, and harnesses the high-frequency encod-
ings provided by voxel grids to capture intricate geometry.

In summary, our NC-SDF significantly enhances the re-
construction quality. The combination of our three de-
signs ensures consistent and smooth surfaces while enabling
sharp details in the reconstructions. Our contributions can
be summarized as follows:
• The view-dependent normal compensation model results

in globally consistent and locally detailed reconstructions
through adaptive compensation for the view-dependent
normal biases.

• The informative pixel sampling strategy and hybrid ge-
ometry model further enhance the reconstruction of geo-
metric details.

• Comprehensive experiments on both synthetic and real-
world datasets demonstrate that our NC-SDF achieves
state-of-the-art indoor scene reconstruction.

2. Related work

2.1. Multi-view surface reconstruction

Traditional MVS methods [4, 6, 23, 36, 37] take multi-view
images as inputs, and utilize feature matching and triangu-
lation methods to estimate depth maps for each view. While
excelling in reconstructing textured regions, they face diffi-
culties when dealing with texture-less regions. With the de-
velopment of deep neural networks, several learning-based
MVS works [19, 20, 25, 48, 49] utilize convolutional neu-
ral networks (CNNs) to learn the mapping from multi-view

images to depth maps. However, the depth maps suffer
from scale ambiguity and multi-view inconsistency. Alter-
natively, other learning-based methods [7, 13, 28, 39, 41]
directly predict the TSDF and then extract the mesh from
the TSDF volume. These methods produce more consistent
reconstructions, but they demand a large amount of ground
truth 3D data for training, and the results often lack details
due to the limitation of the TSDF resolution.

2.2. Neural implicit surface reconstruction

Neural implicit functions have attracted increasing atten-
tion, owing to their advantages of compactness and low
memory consumption. DeepSDF [31] proposes to model
the SDF of target objects with an MLP, achieving the re-
construction of complex shapes. Neural radiance fields
(NeRF) [26] and its variations [5, 14, 27, 40] utilize
MLPs to implicitly encode the volume density and view-
dependent emitted radiance field of the scene, enabling
novel view synthesis. They optimize networks with only
color images as constraints, by employing volume render-
ing techniques. Although iso-surfaces based on volume
density can be extracted to recover the 3D geometry of the
scene, the resulting mesh often exhibits noticeable noise due
to the limited constraints on level sets.

To reconstruct smoother surfaces, several methods [45,
50] suggest using SDF as the output of neural implicit func-
tions and reparameterizing SDF as volume density. This im-
provement results in superior surface reconstruction while
preserving the capacity for novel view synthesis. However,
due to the inductive smoothness bias of MLPs, using MLPs
alone for scene modeling may result in over-smooth sur-
faces with limited details. Recent works [27, 43, 52, 56]
combine voxel grids with a shallow MLP decoder to im-
prove the representation power of the model. Despite im-
proving the reconstruction of details, this approach intro-
duces noise into the results because of under-constrained
voxel grids.

2.3. Prior-guided neural implicit surface recon-
struction for indoor scenes

Constraints provided by color images are often insuffi-
cient for generating high-quality reconstructions when em-
ploying neural implicit representations in indoor scenes.
This limitation primarily arises from the presence of large
texture-less regions. Recent studies have introduced differ-
ent kinds of priors as additional supervision to overcome the
limitation. GO-Surf [43] incorporates range measurements
from depth cameras. Nerfingmvs [47] uses sparse depth in-
formation from Structure from Motion (SfM) to mitigate
shape blurriness. ManhattanSDF [16] assumes that the nor-
mals of walls and floors adhere to the Manhattan-world as-
sumption. HelixSurf [22] utilizes MVS results to improve
reconstruction quality and optimization time. NeuRIS [44]
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Figure 2. Pipeline of NC-SDF. We model the geometry field (SDF), view-dependent radiance field, and view-dependent normal biases
with neural implicit functions. Besides, we propose an informative pixel sampling strategy and a hybrid geometry model to further improve
the reconstruction of thin geometry.

and MonoSDF [52] explore monocular geometric cues from
pretrained networks [12, 32, 33, 46, 51]. While they achieve
state-of-the-art reconstruction results, their performance no-
tably degrades in areas with inconsistent and noisy geomet-
ric priors. NeuRIS [44] filters out unreliable normal pri-
ors by checking multi-view photometric consistency during
training, but the handcrafted strategy is vulnerable to noise
in real-world datasets.

3. Method
Given multi-view images with known poses, our goal is to
produce high-quality 3D reconstructions. We begin with
an introduction to our core framework and volume render-
ing technique (Sec. 3.1). We then delve into our view-
dependent normal compensation model (Sec. 3.2), informa-
tive pixel sampling strategy (Sec. 3.3), and hybrid geom-
etry model (Sec. 3.4). Finally, we provide details of loss
functions (Sec. 3.5). Fig. 2 illustrates the pipeline of our
NC-SDF.

3.1. Preliminary

Our neural implicit representations consist of three com-
ponents: the geometry model fg , the color model fc, and
the normal compensation model fn. In brief, the geometry
model fg encodes the SDF, the color model fc encodes the
view-dependent radiance field, and the normal compensa-
tion model fn encodes the view-dependent biases in monoc-
ular normal priors. We employ MLPs for the color and nor-
mal compensation modeling. And we utilize our proposed
hybrid geometry model for the geometry modeling.

We adopt the differentiable volume rendering technique,
following NeuS [45]. A ray emitting from the camera center
o can be expressed as r = o + tv, where v represents the
viewing direction of the ray. Along the ray, we sample N

points. For each 3D point xi, the geometry model fg maps
it to a signed distance si and geometry feature Fg:

si,Fg = fg(xi). (1)

The color model fc outputs the radiance ci observed
from the viewing direction v:

ci = fc(xi,v,n
SDF
i ,Fg), (2)

where the normal nSDF
i is the gradient of the signed dis-

tance si. In order to avoid confusion with other normals in
subsequent discussions, we refer to this normal as the SDF
normal. Then the color is accumulated along the ray:

Ĉ =

N∑
i=1

Tiαici, (3)

where Ti =
∏i−1

j=1 (1− αj) and αi is the opaque density
which can be further expressed as follows:

αi = max

(
Φτ (si)− Φτ (si+1)

Φτ (si)
, 0

)
, Φτ (x) = (1+e−τx)−1.

The normal compensation model fn predicts compensa-
tion rotation angles γ, β, θ about the x, y, z axes from the
viewing direction v:

γ, β, θ = fn(xi,v,n
SDF
i ,Fg). (4)

By applying the compensation rotation to the SDF nor-
mal nSDF

i , we obtain the compensated normal ncomp
i . Fur-

ther details are elaborated in Sec. 3.2. We apply the same
volume rendering technique to generate the rendered com-
pensated normal map:

Ncomp =

N∑
i=1

Tiαin
comp
i . (5)
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We optimize the neural networks by minimizing the dif-
ference between the rendered outputs and reference inputs.
The surface can be extracted as the zero level-set of the SDF
using the Marching Cubes algorithm [24].

3.2. View-dependent normal compensation model

As mentioned before, multi-view inconsistent priors can
significantly impact reconstruction quality. [34] utilizes
per-view uncertainty maps from the prediction network to
alleviate this problem, but these maps also fall short of sat-
isfying multi-view consistency. Though NeuRIS [44] em-
ploys a geometric consistency checking strategy to filter out
unreliable priors, the strategy requires manual threshold set-
ting and lacks robustness. Inspired by volume rendering
techniques [26], we propose integrating view-dependent bi-
ases in monocular normal priors into the implicit represen-
tation of the scene. Unlike previous methods, our approach
compensates for the view-dependent biases in an adaptive
way, without any additional manual operation.

Normal compensation. The compensation process is as
follows: we concatenate the spatial position of the point
x, its viewing direction v, the SDF normal nSDF, and the
geometry feature Fg . This concatenated feature is then
fed into our normal compensation model fn, which outputs
compensation rotation angles γ, β, and θ corresponding to
the x, y, and z axes, as described in Eq. (4). Following
Eq. (6), we rotate the SDF normal nSDF first by an angle
γ around the x-axis, then by an angle β around the y-axis,
and finally by an angle θ around the z-axis to obtain the
compensated normal ncomp.

ncomp = RZYXn
SDF = RZ(θ)RY(β)RX(γ)n

SDF, (6)

where R represents the corresponding rotation matrix, and
the calculation is described in the supplementary material.
We use the rendered compensated normal maps Ncomp to
align with the noisy normal priors, instead of directly su-
pervising the rendered SDF normal maps NSDF.

Two-stage training. To stabilize the training, we design
a two-stage training strategy. In the first stage, we optimize
the color and geometry models to obtain a well-initialized
radiance field and SDF. Previous studies [2, 53] have indi-
cated that neural networks tend to memorize clean and easy
patterns in the early stages of training. Therefore, our im-
plicit functions can easily learn the distribution of regions
with consistent supervision in the first stage. If training
continues with inconsistent supervision, the neural network
may eventually overfit on the noisy normals, leading to sub-
optimal reconstructions. To resolve this issue, we introduce
the normal compensation model in the second stage and op-
timize it concurrently with the color and geometry models.
By explicitly modeling the biases, our NC-SDF achieves
more robust training under noisy supervision signals.

(a) Without our normal compensation model.

(b) With our normal compensation model. C represents the normal
compensation process.

Figure 3. Visualization of rendered results, comparing (a) with-
out and (b) with our normal compensation model.

Fig. 3b visually explains the working principle of the
normal compensation (NC) model. The NC model’s opti-
mization direction is constrained by both RGB images and
normal priors, rather than being arbitrary. Despite the noise
in the normal priors, RGB images provide reliable supervi-
sion. In regions where normal priors exhibit multi-view in-
consistency, color constraints play an essential role in facil-
itating the optimization of the geometry field. In summary,
the coupled optimization relationship between the radiance
field and the geometry field enables the NC model to disen-
tangle normal priors reasonably.

3.3. Informative pixel sampling strategy

In images of indoor scenes, texture-less regions usually
occupy a significant portion of pixels, while geometric
details are limited to a small portion. As previous re-
search [18, 21, 42] has pointed out, neural models exhibit
biases towards the majority classes when trained on imbal-
anced datasets. Consequently, these models perform poorly
on the minority classes. As is evident in neural implicit
scene reconstruction, recovering intricate geometry proves
to be more challenging than reconstructing plane surfaces.
To address this issue, we propose an informative pixel sam-
pling strategy as an alternative to the random pixel sampling
method used in previous works [44, 45, 50, 52].

Texture extraction. Image regions containing fine geom-
etry often possess high information content, characterized
by strong contrast and rich textures. We utilize the Canny
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Figure 4. Visualization of texture intensity maps at different
intensity thresholds. The Canny operator exhibits a more robust
performance than the Sobel operator.

edge detection operator [8, 10] to capture these high-texture
regions. The Canny operator is well-known for its robust-
ness in extracting structural and textural information from
visual objects. Compared to other gradient-based opera-
tors such as Sobel and Prewitt [1, 38], the Canny operator
provides superior texture localization, noise reduction, and
adaptability. In practice, we extract texture intensity maps
from each image. The comparison in Fig. 4 demonstrates
that the Canny operator outperforms the Sobel operator in
terms of robust texture extraction.

Pixel sampling strategy. Our informative pixel sampling
strategy evolves during training, adhering to a coarse-to-fine
manner. We sample Nsample pixels per batch. The pixel
sampling is divided into two parts: a proportion r is allo-
cated to informative pixel sampling, while the remaining
1 − r is allocated to random sampling. We set an intensity
threshold li for the extracted texture maps. From the set
{l | l ≥ li}, we randomly sample r ∗Nsample pixels to create
a high-information pixel set Pcanny. At the same time, we
randomly sample (1−r)∗Nsample pixels from all the pixels,
forming the set Prandom. Finally, the pixel set for each batch
is expressed as Pall = Pcanny ∪ Prandom.

The proportion r and intensity threshold li evolve during
training. Initially, we randomly sample pixels to establish a
reliable initialization for the entire scene. As training pro-
gresses, our sampling strategy gradually transitions towards
informative sampling, placing greater emphasis on intricate
geometry. This coarse-to-fine approach enables more de-
tailed reconstructions.

3.4. Hybrid geometry model

Using MLPs alone for scene modeling is limited in cap-
turing intricate details. Voxel grids provide improved ex-
pressive power, but their high dimensionality can introduce
noise into reconstructions. To resolve this, we propose a
hybrid geometry model based on feature fusion that com-
bines the strengths of both MLPs and voxel grids mod-
els. The hybrid model comprises two feature branches: the
MLP branch provides a smooth feature Fsmooth, encoding
low-frequency structures, while the voxel grids branch of-
fers a grid feature Fgrid, encoding high-frequency structures.
We then concatenate Fsmooth and Fgrid to obtain a feature

that encodes both low-frequency and high-frequency struc-
tures. The combined feature is subsequently decoded us-
ing a shallow MLP to obtain a geometry feature Fg and
signed distance si. Our hybrid geometry model overcomes
the limitations of using MLPs alone or voxel grids alone for
scene modeling, striking a balance in modeling both intri-
cate structures and planar regions.

3.5. Loss functions

We use color images and normal priors for supervision. Fur-
thermore, the gradients of the SDF satisfy the Eikonal equa-
tion [15]. We represent a set of camera rays passing through
pixels as R, color images as C, and normal priors as N. Our
overall loss function is defined as follows:

L = Lc + λnLn + λeLe, (7)

where
Lc =

∑
r∈R

∥Ĉ(r)−C(r)∥1, (8)

Ln =
∑
r∈R

∥Ncomp(r)−N(r)∥1+
∥∥1−Ncomp(r)TN(r)

∥∥
1
,

(9)

Le =
1

N

∑
r∈R

N∑
i=1

(∥∇si∥2 − 1)
2
. (10)

4. Experiments
4.1. Experiment Setup

Datasets. We choose two different indoor scene
datasets for experiments, including ScanNet [9] and
ICL-NUIM [17]. These two datasets provide RGB-D
images with camera poses. ScanNet is a real-world dataset
and ICL-NUIM is a synthetic dataset. For comparison
experiments, We select four scenes from each of the two
datasets. For ablation studies, We use the four scenes from
ScanNet.

Baselines. We compare our method with the following
baselines: (1) Traditional MVS method COLMAP [36];
(2) Neural implicit representation methods without addi-
tional supervision, including VolSDF [50] and NeuS [45];
(3) Neural implicit representation methods with additional
supervision, including ManhattanSDF [16], HelixSurf [22],
NeuRIS [44], and MonoSDF (both MLP and voxel grids
version) [52].

Evaluation metrics. Following [28], we evaluate the re-
construction results using accuracy, completeness, preci-
sion, recall, and F-score. The F-score is generally consid-
ered the most comprehensive indicator.

Implementation. All the experiments are conducted on
one NVIDIA RTX 3090 GPU. We employ the OmniData
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Figure 5. Qualitative results on ScanNet [9].

Table 1. Quantitative results on ScanNet [9].

Method Acc↓ Comp↓ Prec↑ Recall↑ F-score↑
COLMAP [36] 0.041 0.231 0.755 0.438 0.548
VolSDF [50] 0.086 0.129 0.470 0.399 0.430
NeuS [45] 0.143 0.208 0.380 0.277 0.320

ManhattanSDF [16] 0.044 0.055 0.749 0.668 0.706
HelixSurf [22] 0.036 0.042 0.791 0.725 0.756
NeuRIS [44] 0.051 0.050 0.709 0.662 0.684

MonoSDF(MLP) [52] 0.036 0.045 0.795 0.708 0.748
MonoSDF(Grid) [52] 0.048 0.050 0.727 0.663 0.693

Ours 0.033 0.039 0.811 0.754 0.781

Figure 6. Qualitative results on ICL-NUIM [17].

model [12] to predict monocular normal priors, using im-
ages with a resolution of 384 × 384. The smooth feature
branch of the geometry model uses an MLP with 4 hidden
layers, while the grid feature branch utilizes 8-layers voxel

Table 2. Quantitative results on ICL-NUIM [17].

Method Acc↓ Comp↓ Prec↑ Recall↑ F-score↑
NeuRIS 0.043 0.155 0.734 0.556 0.626

MonoSDF(MLP) 0.043 0.143 0.741 0.589 0.650
Ours 0.021 0.105 0.955 0.780 0.852

grids, with each layer storing 4-channel features. The grids’
resolution is adjusted according to the scene’s complexity.
The decoder of the geometry model, the color model, and
the normal compensation model each is represented by an
MLP with 4 hidden layers. We sample 1024 pixels per
batch. The loss weights are set to λn = λe = 0.1. We use
the Adam optimizer with an initial learning rate of 1×10−3.
The first training stage requires around 20,000 iterations.
And the second training stage usually requires 60,000 to
80,000 iterations.

4.2. Comparisons

Results in real-world dataset. We visualize the recon-
struction results of different methods in Fig. 5 and present
the quantitative results in Tab. 1. Both qualitative and
quantitative results demonstrate that our method achieves
the best reconstruction performance among all methods.
COLMAP [36] and neural implicit representation meth-
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Figure 7. Visualization of normal compensation.
ods without additional supervision including VolSDF [50]
and NeuS [45] produce unsatisfactory results in regions
with weak textures. The methods with additional priors,
such as ManhattanSDF [16], HelixSurf [22], and MonoSDF
(MLP) [52] do improve the reconstruction quality; however,
their reconstructions exhibit noisy or missing surfaces due
to the limitations in the quality of priors and the expres-
siveness of the model. NeuRIS [44] designs a multi-view
consistency checking strategy to filter unreliable normal pri-
ors. Despite contributing to more detailed reconstructions,
the handcrafted strategy lacks robustness in handling real-
world noise and finally leads to non-smooth surfaces. While
MonoSDF (Grid) improves the reconstruction of fine ge-
ometry by enhancing the expressiveness of the geometry
model, it generates noisy surfaces due to the lack of spa-
tial consistency constraints for voxel grids. In contrast, our
NC-SDF excels in capturing intricate geometry while pro-
ducing smooth surfaces in texture-less regions.

Results in synthetic dataset. Both the qualitative results
in Fig. 6 and the quantitative results in Tab. 2 validate that
our NC-SDF significantly outperforms existing methods.

Additionally, we visualize the rendered outputs related
to the normal compensation in Fig. 7. The normal bias in
the Fig. 7 is computed as follows:

Nbias =

3∑
j=1

|NSDF
j −Ncomp

j |, (11)

where NSDF
j and Ncomp

j represent the rendered SDF nor-
mal map and the rendered compensated normal map, re-
spectively, in the j-th channel. The visualization of the bias
map proves that our NC model is capable of learning the bi-
ases in normal priors. Furthermore, we present the rendered
results at different training stages in Fig. 8. The results indi-
cate that the NC model gradually learns the normal biases,
thereby resulting in a gradual enhancement in the quality of
both view synthesis and geometric reconstruction.
4.3. Ablation studies

For each of our three designs, we conduct the corresponding
ablation studies. The quantitative results are shown in Tab. 3

Figure 8. Rendered results at different training stages.

and the qualitative results are shown in Fig. 10. The results
indicate the effectiveness of each design, and the combina-
tion of these three designs yields the best performance.

We conduct experiments with six configurations: (1)
MLP(baseline): MLPs are utilized to model the SDF and
radiance field. Random sampling is employed, and super-
vision is provided by normal priors and color images. (2)
Grid(baseline): A modification of (1) where voxel grids
are used to model the SDF. (3) Hybrid: A modification of
(1) where our hybrid geometry model is used to model the
SDF. (4) MLP+IPS: A variation of (1) that integrates our
informative pixel sampling (IPS). (5) Hybrid+IPS: This
combines the hybrid geometry model with informative pixel
sampling. (6) Ours: A combination of our three designs,
including the informative pixel sampling, the hybrid geom-
etry model, and the normal compensation model.

Effectiveness of the hybrid geometry model. The com-
parison between MLP(baseline), Grid(baseline), and Hy-
brid illustrates that our hybrid geometry model enhances
the reconstruction quality. MLP(baseline) tends to produce
over-smooth surfaces while Grid(baseline) generates noisy
surfaces. In contrast, Hybrid strikes a balance between the
smoothness of surfaces and the sharpness of details.

Figure 9. Comparison of rendered results from three ablation ex-
periments.
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Figure 10. Visualization of ablation studies on ScanNet.

Table 3. Ablation studies on ScanNet.

Method MLP Grid
Informative

pixel sampling
Normal

compensation Acc↓ Comp↓ Prec↑ Recall↑ F-score↑

MLP(baseline) ✓ 0.040 0.042 0.750 0.718 0.733
Grid(baseline) ✓ 0.048 0.046 0.716 0.686 0.700

Hybrid ✓ ✓ 0.039 0.041 0.766 0.727 0.745
MLP+IPS ✓ ✓ 0.039 0.042 0.764 0.724 0.742

Hybrid+IPS ✓ ✓ ✓ 0.038 0.041 0.771 0.729 0.749
Ours ✓ ✓ ✓ ✓ 0.033 0.039 0.811 0.754 0.781

Effectiveness of the informative pixel sampling. Com-
parison between MLP(baseline) and MLP+IPS, as well as
Hybrid and Hybrid+IPS, indicates that our sampling strat-
egy results in a modest improvement in reconstruction qual-
ity. And it effectively enhances the reconstruction of geo-
metric details, such as chair legs and doorknobs.

Effectiveness of the normal compensation model. The
comparison between Hybrid+IPS and Ours verifies that
our normal compensation model alleviates the problems
caused by multi-view inconsistency between monocular
normal priors, including the non-smoothness of surfaces
and the loss of details. Hybrid+IPS improves the recon-
struction quality with a 2.18% increase in F-score. The
introduction of the normal compensation model further in-
creases the F-score by 4.37%. Furthermore, we visual-
ize the rendered color images and the rendered SDF nor-
mal maps from three ablation experiments in Fig. 9. The
comparison showcases that the normal compensation model

yields a more accurate radiance field and geometry field.

5. Conclusion
We present NC-SDF, a neural SDF 3D reconstruction
framework with view-dependent normal compensation.
The framework focuses on enhancing indoor scene recon-
struction by addressing multi-view inconsistency between
monocular normal priors. Specifically, we integrate view-
dependent biases in normal priors into the neural implicit
representation of the scene. In addition, we propose an
informative pixel sampling strategy and a hybrid geome-
try modeling approach to further enhance reconstruction
details. Experiments on real-world and synthetic datasets
demonstrate that NC-SDF achieves state-of-the-art perfor-
mance in indoor scene reconstruction.
Acknowledgement. This work was supported by STI
2030-Major Projects 2022ZD0208802, in part by NSFC
62088101 Autonomous Intelligent Unmanned Systems.
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