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Abstract

Due to the resource-intensive nature of training vision-
language models on expansive video data, a majority
of studies have centered on adapting pre-trained image-
language models to the video domain. Dominant pipelines
propose to tackle the visual discrepancies with additional
temporal learners while overlooking the substantial dis-
crepancy for web-scaled descriptive narratives and con-
cise action category names, leading to less distinct semantic
space and potential performance limitations. In this work,
we prioritize the refinement of text knowledge to facilitate
generalizable video recognition. To address the limitations
of the less distinct semantic space of category names, we
prompt a large language model (LLM) to augment action
class names into Spatio-Temporal Descriptors thus bridg-
ing the textual discrepancy and serving as a knowledge base
for general recognition. Moreover, to assign the best de-
scriptors with different video instances, we propose Optimal
Descriptor Solver, forming the video recognition problem as
solving the optimal matching flow across frame-level repre-
sentations and descriptors. Comprehensive evaluations in
zero-shot, few-shot, and fully supervised video recognition
highlight the effectiveness of our approach. Our best model
achieves a state-of-the-art zero-shot accuracy of 75.1% on
Kinetics-600.

1. Introduction
Large-scale contrastive language-image pre-training [25,
46, 65] have shown remarkable performance in various
computer vision tasks. The visual-semantic joint space
not only serves powerful visual representation but also en-
ables few/zero-shot transferring to downstream tasks with
the reference of natural language. However, training a sim-
ilar model for video recognition can be costly since large-
scale video-language datasets are exponentially more mas-
sive [57] due to the extra temporal dimension. Hence,
a feasible solution is to adapt the pre-trained image-text
models for the task of video recognition. As depicted in
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Figure 1. Motivation of our method. Dominant pipelines propose
to tackle the visual discrepancies with additional temporal learn-
ers while overlooking the textual discrepancy between descriptive
narratives and concise category names. This oversight results in a
less separable latent space, which may hinder video recognition.

Fig. 1, current methods devise a range of temporal learn-
ers to address the visual discrepancy while preserving text-
domain knowledge in the semantic space of action cat-
egory names, often by merging the category name with
CLIP-style hard-prompts (e.g., “a video of a person {ski
jumping}”) [41, 45, 53, 56, 60]. Despite providing essen-
tial inter-class correlations that can benefit general recog-
nition, we speculate this paradigm overlooks the textual
discrepancy between web-scaled descriptive narratives in
CLIP pre-training and concise category names in down-
stream video recognition. Given that category names of
video datasets generally consist of verbs and nouns, the
nouns exhibit variability while the verbs tend to remain con-
sistent. For instance, playing cello, playing organ & play-
ing violin are distinct actions related to playing instruments.
The sole differentiation between these category names lies
in the noun itself, resulting in low discriminative text em-
beddings. This may lead to a less separable semantic space,
potentially introducing ambiguity in recognition tasks [5].
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To validate our hypothesis, we perform a sanity check
on the semantic distribution of category embeddings
across ImageNet [17], Kinetics-400 [7], and Something-
Something v2 [20]. Initially, we employ a CLIP-B/16
text encoder to extract semantic embeddings of category
names and leverage t-SNE visualization [54] to illustrate
embedding clusters across the three datasets. As depicted in
Fig. 2 (Left), features from K400 and Sthv2 datasets exhibit
denser clustering compared to those from ImageNet, qual-
itatively indicating the low semantic distinction of video
category names. To quantify this distinction and provide
further support for our hypothesis, we compute pair-wise
cosine similarity within each dataset and determine the
average similarity, serving as a measure of semantic den-
sity. A higher similarity implies a denser distribution of
category embeddings and less separable semantics in the
latent space. Fig. 2 (Right) visually demonstrates consis-
tently higher mean cosine similarity of category names on
video datasets compared to image datasets. This observa-
tion suggests that the intrinsic semantic space associated
with video category names is less distinct. Since the cat-
egory embedding serves as a decision plane [60] in cross-
modal matching (i.e. compute the cosine similarity between
category embeddings and visual features), such reduced dis-
tinctiveness may potentially diminish its efficacy in recog-
nition tasks.

To mitigate this issue, one could manually craft textual
narratives, but this process is labor-intensive. Alternatively,
Large Language Models (LLMs) serve as a viable solution,
acting as expansive knowledge bases that can generate de-
tailed descriptors efficiently. As shown in Fig. 1, we can
substantially refine our comprehension of ski jumping by
integrating external contextual information such as the for-
est, the snow slope, and different action steps performed by
the ski jumper. Hence, we propose to prompt LLMs with
category names into what we define as Spatio-Temporal De-
scriptors to enrich the semantic space with external knowl-
edge. Where Spatio Descriptors should possess the capa-
bility to capture static appearances, for instance, the envi-
ronment and distinct objects included, while Temporal De-
scriptors should focus on describing the temporal evolu-
tion of actions. This allows for the disentanglement of the
category name into two complementary semantic spaces,
thereby enhancing the semantic distinction and providing
external knowledge for general recognition.

Based on the obtained descriptors, an intuitive solution
is to aggregate these descriptors as a global category em-
bedding via pooling, and match the embedding with corre-
sponding visual features [28, 38]. However, this utilization
might be suboptimal due to the following reasons: 1) Since
the descriptors for one action class may not be contained in
every video instance in this action category, directly match-
ing the pooled descriptor-level representations with each
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Figure 2. Sanity check on category names. We investigate the
semantic distribution of video category names (Left) and quan-
tify the semantic density of category names (Right). We ob-
serve a higher semantic similarity of category names on K400 and
Sthv2 compared to ImageNet. Our proposed Spatio-Temporal De-
scriptor can greatly reduce the semantic similarity in latent space.
Please refer to Sec. 3.2 for comprehensive details.

video is potentially ineffective. 2) The propensity of LLMs
to exhibit hallucinations [69] may bring noises to descrip-
tors. To address this, we need to consider the adaptability
of descriptors to individual video instances. In this vein,
we propose Optimal Descriptor Solver to obtain an optimal
transport plan that adaptively aligns features across frame-
level tokens and descriptors.

In light of the above explorations, we propose Optimal
Spatio-Temporal Descriptor (OST), a general pipeline for
video recognition. Our OST comprises two compo-
nents: We first disentangle the category name into Spatio-
Temporal Descriptors, which not only bridges the semantic
gap between narratives and category names but also serves
as a knowledge base for general recognition. Then, we
propose Optimal Descriptor Solver that adaptively aligns
frame-level representations with Spatio-Temporal Descrip-
tors to enhance video recognition. To demonstrate the ef-
fectiveness of our OST, we conduct comprehensive ex-
periments on six benchmarks, including Kinetics-400 [7]
& 600 [8], UCF-101 [50], HMDB-51 [31], Something-
Something V2 [20], and ActivityNet [6]. The results indi-
cate that our method achieves state-of-the-art performance
in open-vocabulary tasks, e.g. zero-shot, few-shot, and
also consistently improves the performance when combined
with existing pipelines in fully-supervised settings. The
main contributions of this work are as follows:
• We provide new insights that prior pipelines for adapting

vision-language pre-trained models to video recognition
are constrained by the semantic space of category names.

• We propose Spatio-Temporal Descriptors derived from
LLMs to enhance the distinction of semantic space and
provide external knowledge for general recognition.

• We introduce Optimal Descriptor Solver that forms
the video recognition problem as solving the optimal
matching flow across frame-level representations and
descriptors to fully refine the semantic knowledge.

• Our OST presents a new way to utilize external knowl-
edge to adapt pre-trained visual-language models for gen-
eral video recognition. Experimental results in zero-shot,
few-shot, and fully-supervised settings demonstrate the
superior performance and generalizability of our method.
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Figure 3. An overview of our pipeline for video recognition. We query the Large Language Model to augment category names to generate
corresponding Category Descriptors. The descriptors disentangled category names into Spatio-Temporal Descriptors for static visual cues
and temporal evolution, respectively. To fully refine the textual knowledge, we propose Optimal Descriptor Solver that adaptively aligns
descriptors with video frames. An optimal matching flow is calculated through the iterative solving of the entropy-regularized OT problem
to assign optimal descriptors for each video instance. Please zoom in for comprehensive details.

2. Related Work
Video Recognition. As a fundamental component of com-
puter vision, mainstream pipelines have typically explored
traditional 2D, 3D CNNs [7, 23, 33, 52, 55, 63] and
Transformer-based methods [3, 12, 18, 35, 37, 41, 53, 64].
Additionally, methods modeling action phases [2, 51, 68,
70] have shown promise in video recognition, especially
for long-form videos. Recently, cross-modal video recog-
nition [26, 41, 45, 53, 56, 60–62] has benefited a lot from
the powerful visual-text joint semantic space of CLIP. This
cross-modal paradigm not only fosters strong representa-
tions with rich semantics but also achieves great open-
vocabulary capacities. However, dominant pipelines [45,
53, 56, 60] focus on the temporal discrepancies between im-
ages and videos while maintaining text-domain knowledge
constantly. In contrast, our method prioritizes the refine-
ment of text knowledge.
Language for Visual Recognition. Differing from vi-
sual signals, natural language contains dense semantic in-
formation. Thus, language can serve as a rich source
to provide inter-class correlations to benefit visual recog-
nition. CuPL [43] and pipeline proposed by Menon et
al. [38] utilizes category descriptions from GPT-3 as global
category embedding for improved zero-shot image clas-
sification. Kaul et al. [28] propose to utilize LLM de-
scriptions and visual prototypes to construct a multi-modal
classifier for enhanced open-vocabulary object detection.
MAXI [34] proposes to construct text bags generated via
multiple sources (e.g., captions and descriptions) to perform
unsupervised finetuning for robust zero-shot action recog-
nition. ASU [13] utilizes semantic units manually derived
from WordNet and Wikipedia for video recognition. In this
work, we aim to refine text knowledge by finding the op-
timal Spatio-Temporal Descriptors automatically generated
by LLMs to bridge the semantic discrepancy and provide
external knowledge to benefit general video recognition.

Optimal Transport. Optimal Transport (OT), also known
as Monge Problem [40], is an essential mathematical frame-
work that facilitates the establishment of correspondences
between two distinct distributions. Its great character-
istics for distribution matching have benefited a variety
of machine learning tasks [29], including domain adapta-
tion [14, 16], generative models [1, 21, 48], graph match-
ing [10, 42], image matching [36, 66], and prompt learn-
ing [9, 30], etc. In this work, we propose to utilize OT
distance to solve the cross-modal matching problem. To
the best of our knowledge, this is the first work to form the
video-text matching problem as solving the OT problem be-
tween frame-level representations and textual embeddings.

3. Method
In this section, we first review the preliminaries of op-
timal transport in Sec. 3.1, then discuss our proposed
Spatio-Temporal Descriptor and Optimal Descriptor Solver
scheme in Sec. 3.2 and Sec. 3.3, respectively. Finally, we
introduce the training objectives in Sec. 3.4.

3.1. Preliminaries
Optimal transport aims to seek the minimal-cost transport
plan between two distributions. In this work, we only con-
sider the discrete distribution which is closely related to our
framework. Assuming we have two sets of discrete empiri-
cal distributions:

µ =

M∑
i=1

piδxi , ν =

N∑
j=1

qjδyj , (1)

where pi and qj are the probability distribution summing to
1, M and N are number of samples in each empirical dis-
tribution, δ denotes the Dirac function. Since each certain
distribution is discrete, the optimal transport plan P match-
ing the two distributions is also discrete. In this setting, we
can adapt Kantorovich OT formulation [27] and form the
optimal transport problem as:
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P ∗ = argmin
P∈RM×N

M∑
i=1

N∑
j=1

P ijCij

s.t. Pe = µ, P⊤e = ν.

(2)

C ∈ RM×N is the cost matrix that represents the dis-
tance between the support points xi and yj such as Cij =
1 − sim(xi, yj). P ∗ is the optimal transport plan between
two empirical distributions to minimize the total distance
and e is the vector of ones. Considering the computational
and statistical limitations of this original OT formulation,
we adopt the Sinkhorn-Knopp [15] algorithm to solve the
entropy-regularized OT problem. The regularized OT prob-
lem is defined as:

P ∗ = argmin
P∈RM×N

M∑
i=1

N∑
j=1

P ijCij − λH(P )

s.t. Pe = µ, P⊤e = ν,

(3)

where H(·) is the regularization operator and λ is a reg-
ularization coefficient. Eq. 3 is a convex problem and
thus can be solved using the Sinkhorn algorithm. With
K = exp(−C/λ), the regularized optimal transport can
be computed by:

P ∗ = diag(a)Kdiag(b), (4)

where a and b are marginal constraints:

a← µ/Kb, b← ν/K⊤a. (5)

3.2. Spatio-Temporal Descriptor

In addressing the low semantic distinction of video cate-
gories, our objective is to disentangle category names into
Spatio-Temporal Descriptors. We posit that each type of
descriptor yields information that is complementary to the
other. Spatio Descriptors are intended to capture static
visual elements that can be discerned from a single im-
age—such as settings and common objects. For Temporal
Descriptors, we aim to decompose the action classes in a
step-by-step manner to describe the temporal evolution of
an action. We use OpenAI’s API for GPT-3.5 [4] with a
temperature of 0.7 to generate corresponding descriptors.

To generate Spatio Descriptors, inspired by [19], we
use the following prompt Ps(·) with category name cls to
query LLM: “Please give me a long list of descriptors for
action: {cls}, Ns descriptors in total.”1. This prompt en-
ables the LLM to always return a list with Ns descriptors.
This process can be formulated as:

Dess = LLM [(Ps(cls))], (6)

1For a detailed demonstration of prompts we used, please refer to Sup-
plementary Material.

For Temporal Descriptors, we utilize the temporal
prompt Pt(·) as “Please give me a long list of decompo-
sitions of steps for action: {cls}, Nt steps in total” and
obtain Nt descriptors:

Dest = LLM [(Pt(cls))]. (7)

Nonetheless, our empirical study (please refer to Sec.4.2)
indicates that the direct application of temporal descriptors
Dest, yields only marginal enhancements. As discussed
in [22, 34, 39], image-text pre-trained models are less sen-
sitive to verbs. The initial semantic space of the temporal
descriptors generated by CLIP might be limited. Thus, we
adopt a hard prompt: “A video of {cls} usually includes
{Dest}” to condition temporal descriptors on the category
names. We find this operation brings consistent improve-
ments in recognition tasks.

Through this approach, we can disentangle the category
name into two complementary semantic spaces. This dis-
entanglement significantly mitigates the semantic similarity
among class names and also serves sufficient knowledge for
general recognition.

3.3. Optimal Descriptor Solver

A considerable number of transformer-based video recogni-
tion pipelines obtain video-level representation via pooling
over image-level [CLS] tokens and then classify the video
into a category by calculating the matching score using co-
sine similarity with category embeddings [47, 53, 56, 60],
this pipeline can be formulated as:

Sk = cos(V ,Catk), (8)

where cos(·, ·) is the cosine similarity, V ∈ RT×d is a set
of local representations with T frames in total, Catk ∈ Rd

is category embedding for each class. As discussed before,
only relying on the understanding of category names may
lead to a less distinctive semantic space. After obtaining
Spatio-Temporal Descriptors introduced in Sec. 3.2, an in-
tuitive operation is to form a global-level descriptor embed-
ding to benefit visual recognition:

Ss
kpool

= cos(V ,Ds
k), St

kpool
= cos(V ,Dt

k), (9)

where Dk ∈ RN×d is the embedding of Spatio-Temporal
Descriptors. By pooling along the N dimension, we can ob-
tain the discriminative global descriptor embedding. How-
ever, we find this formation can lead to sub-optimal per-
formances: 1) By averaging the descriptor-level represen-
tations, the model treats all of the attributes equally. Since
the descriptors are generated by an autoregressive language
model without instance-level knowledge, these descriptors
may not be contained in every video. 2) The hallucination
problem of LLMs may bring noises to the descriptor.
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Table 1. Comparisons with state-of-the-art methods for zero-shot video recognition on HMDB51, UCF101 and Kinetics-600. We report
Top-1 and Top-5 accuracy using single-view inference.

Method Venue Encoder Frames HMDB-51 UCF-101 K600 (Top-1) K600 (Top-5)
Uni-modal zero-shot video recognition models
ER-ZSAR [11] ICCV’21 TSM 16 35.3 ± 4.6 51.8 ± 2.9 42.1 ± 1.4 73.1 ± 0.3
JigsawNet [44] ECCV’22 R(2+1)D 16 38.7 ± 3.7 56.0 ± 3.1 - -
Adapting pre-trained CLIP
Vanilla CLIP [46] ICML’21 ViT-B/16 32 40.8 ± 0.3 63.2 ± 0.2 59.8 ± 0.3 83.5 ± 0.2
ActionCLIP [56] arXiv’21 ViT-B/16 32 40.8 ± 5.4 58.3 ± 3.4 66.7 ± 1.1 91.6 ± 0.3
Vita-CLIP [58] CVPR’23 ViT-B/16 8 / 32 48.6 ± 0.6 75.0 ± 0.6 67.4 ± 0.5 -
A5 [26] ECCV’22 ViT-B/16 32 44.3 ± 2.2 69.3 ± 4.2 55.8 ± 0.7 81.4 ± 0.3
XCLIP [41] ECCV’22 ViT-B/16 32 44.6 ± 5.2 72.0 ± 2.3 65.2 ± 0.4 86.1 ± 0.8
DiST [45] ICCV’23 ViT-B/16 32 55.4 ± 1.2 72.3 ± 0.6 - -
Tuning pre-trained CLIP
ViFi-CLIP [47] CVPR’23 ViT-B/16 32 51.3 ± 0.7 76.8 ± 0.8 71.2 ± 1.0 92.2 ± 0.3
MAXI [34] ICCV’23 ViT-B/16 16 / 32 52.3 ± 0.6 78.2 ± 0.7 71.5 ± 0.8 92.5 ± 0.4

OST CVPR’24 ViT-B/16 8 54.9 ± 1.1 77.9 ± 1.3 73.9 ± 0.8 94.1 ± 0.3
32 55.9 ± 1.2 79.7 ± 1.1 75.1 ± 0.6 94.6 ± 0.2

Hence, a natural question arises: how can we assign
optimal descriptors for each video instance? In this regard,
we introduce Optimal Descriptor Solver (OD Solver), by
adapting optimal transport theory, we formulate the video-
text matching problem as an optimal matching flow. Af-
ter obtain a set of frame-level features V ∈ RT×d and
descriptor-level embedding for each class Ds

k ∈ RNs×d,
Dt

k ∈ RNt×d. The cost matrix for each class can be de-
fined as:

Cs
k = 1− cos(V ,Ds

k), Ct
k = 1− cos(V ,Dt

k). (10)

According to Eq. 3, the entropy-regularized OT problem
can be defined as:

P ∗ = argmin
P∈RT×N

T∑
i=1

N∑
j=1

P ijCij − λH(P )

s.t. Pe = µ, P⊤e = ν.

(11)

We can obtain the optimal transport plan P s
k
∗ and P t

k
∗

for Spatio-Temporal Descriptors respectively by solving the
convex problem in Eq. 11 via the Sinkhorn algorithm as
defined in Eq. 4. Here Pk

∗ ∈ RT×N denotes the opti-
mal matching flow between the video and descriptors. The
matching score based on the optimal matching flow can be
obtained via Frobenius inner product:

Ss
kOT

=

T∑
i=1

N∑
j=1

P s
k
∗
ij
cos(V i,D

s
kj
),

St
kOT

=

T∑
i=1

N∑
j=1

P t
k

∗
ij
cos(V i,D

t
kj
).

(12)

By fusing the overall matching score in the Euclidean
space and Wasserstein space described in Eq. 9 and Eq. 12
respectively, the overall logits can be expressed as:

SkOD =
1

4
(Ss

kpool
+ St

kpool
+ Ss

kOT
+ St

kOT
). (13)

Please refer to Supplementary Material for pseudo-codes.

3.4. Training Objectives

Considering the overall logits calculated by OD Solver in
Eq. 13 can be described as video-to-text logits Sv2t

k OD =

OD(V ,Ds,t
k ). A symmetric text-to-video logits can be ob-

tained via a similar way St2v
k OD = OD(Ds,t

k ,V ). Then,
the softmax-normalized similarity scores can be expressed
as:

pv2t
i OD =

1

K

K∑
k=1

exp(Sv2t
ki OD/τ)∑B

j=1 exp(S
v2t
kj OD

/τ)
,

pt2v
i OD =

1

K

K∑
k=1

exp(St2v
ki OD/τ)∑B

j=1 exp(S
t2v
kj OD

/τ)
,

(14)

where τ refers to the temperature hyperparameter for scal-
ing, B is the number of samples in the current mini-batch,
and K is the number of classes. Let qv2t, qt2v denotes the
ground-truth similarity scores, we can define the Kullback-
Leibler (KL) divergence [32] as the overall contrastive loss
to optimize the model as:

LOD =
1

2
[KL(pv2t

OD, q
v2t)+KL(pt2v

OD, q
t2v)]. (15)

4. Experiments
Datasets. We conduct experiments across 6 video bench-
marks: Kinetics-400 [7] & 600 [8], UCF-101 [50],
HMDB-51 [31], Something-Something V2 [20], and Ac-
tivityNet [6]. Our investigation encompasses various set-
tings, including zero-shot, few-shot, and fully-supervised
video recognition. See Supplementary Material for details.
Implementation Details. We employ a CLIP ViT-B/16
to conduct both zero-shot and few-shot experiments. We
generate Ns,t = 4 descriptors for each category. Follow-
ing [24, 34, 59], we perform a linear weight-space ensem-
bling between the original CLIP and the finetuned model
with a ratio of 0.2. See Supplementary Material for details.
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Table 2. Comparisons with state-of-the-art methods for few-shot video recognition on HMDB51, UCF101 and Something-Something V2.
We scaled up the task to categorize all categories in the dataset with only a few samples per category for training. Here K denotes training
samples for each class. We report Top-1 accuracy using single-view inference.

Method HMDB-51 UCF-101 SSv2

K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16
Directly tuning on CLIP
Vanilla CLIP [46] 41.9 41.9 41.9 41.9 63.6 63.6 63.6 63.6 2.7 2.7 2.7 2.7
ActionCLIP [56] 47.5 57.9 57.3 59.1 70.6 71.5 73.0 91.4 4.1 5.8 8.4 11.1
XCLIP [41] 53.0 57.3 62.8 64.0 48.5 75.6 83.7 91.4 3.9 4.5 6.8 10.0
A5 [26] 39.7 50.7 56.0 62.4 71.4 79.9 85.7 89.9 4.4 5.1 6.1 9.7
ViFi-CLIP [47] 57.2 62.7 64.5 66.8 80.7 85.1 90.0 92.7 6.2 7.4 8.5 12.4
OST 59.1+1.9 62.9+0.2 64.9+0.4 68.2+1.4 82.5+1.8 87.5+2.4 91.7+1.7 93.9+1.2 7.0 +0.8 7.7 +0.3 8.9 +0.4 12.2

Fine-tuned on K400
ViFi-CLIP [47] 55.8 60.5 64.3 65.4 84.0 86.5 90.3 92.8 6.6 6.8 8.6 11.0
MAXI [34] 58.0 60.1 65.0 66.5 86.8 89.3 92.4 93.5 7.1 8.4 9.3 12.4
OST 64.8+6.8 66.7+6.2 69.2+4.2 71.6+5.1 90.3+3.5 92.6+3.3 94.4+2.0 96.2+2.7 8.0 +0.9 8.9 +0.5 10.5+1.2 12.6+0.2

Table 3. Fully-supervised video recognition on Kinetics-400,
Something-Something V2 and ActivityNet. We report Top-1 ac-
curacy using single-view inference.

Method Encoder - Frames

B/32 - 8 B/32 - 16 B/16 - 8 B/16 - 16
Kinetics-400
Text4Vis [60] 78.5 79.3 81.4 82.6
OST 78.7(+0.2) 79.8(+0.5) 82.0(+0.6) 83.2(+0.6)
Something-Something V2
Text4Vis [60] 54.3 56.1 57.9 59.9
OST 54.4(+0.1) 56.4(+0.3) 58.4(+0.5) 60.3(+0.4)
ActivityNet
Text4Vis [60] 83.4 85.0 86.4 88.4
OST 84.0(+0.6) 85.8(+0.8) 87.1(+0.7) 88.7(+0.3)

4.1. Main Results

Zero-shot video recognition. We present our zero-shot
video recognition results and compare our approach with
SOTAs in Table 1. The model is first fine-tuned on the
Kinetics400 dataset and evaluated directly on downstream
datasets to ascertain its generalization capacity with respect
to unseen classes. Our approach outperforms regular uni-
modal zero-shot video recognition pipelines by a large mar-
gin as shown in the upper table. Moreover, we draw com-
parisons with methods that use K400 to adapt CLIP mod-
els for zero-shot recognition. Noteworthy among these are
methods that integrate additional temporal learners [26, 41,
45] or employ VL prompting techniques [26, 58]. Contrary
to these approaches, our pipeline leverages refined textual
knowledge to boost video recognition without altering the
underlying architecture. We observe consistent improve-
ments in all datasets with respect to these methods.

We further compare our method with other fully finetun-
ing paradigms [34, 47]. Serving as a baseline to our method,
ViFi-CLIP [47] relies on the direct utilization of category
names to fine-tune the CLIP model. Notably, utilizing only
8 frames for training and validation, our method demon-

strates competitive performance, surpassing our baseline
by a large margin. Upon scaling up the input frames to
32, our method consistently exhibits improvements across
all datasets in comparison to prior SOTAs. Even against
MAXI [34] which leverages more diverse textual knowl-
edge, such as frame-level captions, our approach showcases
superior accuracy with a 3.6% improvement on HMDB,
1.5% on UCF, and 3.6% on K600.
Few-shot video recognition. We demonstrate our method’s
learning capacity and generalizability under the challeng-
ing all-way few-shot regime. The Top-1 accuracy on three
datasets is reported in Table 2. We conduct experi-
ments in two different aspects. We first conduct an ex-
periment that directly tunes CLIP for few-shot recognition.
Our method shows consistent improvement over our base-
line [47] on HMDB-51, UCF101, and even temporal-heavy
dataset SSv2.

Following [34], we adopt our best model in zero-shot set-
tings to further verify our method’s generalization capacity.
As a comparison, ViFi-CLIP shows degraded performance
in this fashion (e.g. K = 4 on UCF, K = 16 on SSv2).
In this regime, our method outperforms the unsupervised
contrastive training framework MAXI [34] in different shot
settings by an average of ∼5% on HMDB, ∼3% on UCF,
and ∼1% on SSv2. This indicates the generalizability of
our pipeline in the extremely low-shot settings.
Fully-supervised video recognition. We also conduct
fully-supervised experiments on three large-scale video
benchmarks Kinetics-400, Something-Something V2, and
ActivityNet to validate the effectiveness of our method in
supervised settings. Serving as a standard pipeline to adapt
pre-trained vision-language models for supervised video
recognition, we choose Text4Vis [60] as our baseline and
vary different encoders ViT-B/32, and ViT-B/16 with 8, and
16 frames, respectively. As shown in Table 3, we find our
method improves upon our corresponding baseline for all
different architectures on all datasets. We can see that the
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Table 4. Ablation studies. We utilize ViT-B/16 as the backbone and use 8 frames for training/validation unless otherwise specified. All of
the performances are top-1 accuracy (%) in the zero-shot setting using single-view inference and spatial size of 224× 224.

Method HMDB UCF K600

Category Name [47] 50.9 75.5 70.8
Descriptors* 53.3 (+2.4) 76.6 (+1.1) 69.3
OD Solver 54.5 (+3.6) 77.9 (+2.4) 72.3 (+1.5)

(a) Study on cross-modal matching mechanisms. Here we apply the number of
descriptors Ns,t = 4. * denotes pooling descriptors along with category names.

Spatio Temporal HMDB UCF K600

✓ ✗ 46.7 65.3 56.3
✗ ✓ 53.1 77.5 71.6
✓ ✓ 54.5 77.9 72.3

(b) The impact of different descriptors. Here ✓ means apply-
ing corresponding Spatio/Temporal descriptors.

N HMDB UCF K600

2 53.8 77.3 72.1
4 54.5 77.9 72.3
8 53.0 77.5 72.6

(c) Comparisons between different
number of descriptors N .

Spatio Temporal HMDB UCF K600

✗ ✗ 49.8 74.1 64.2
✓ ✗ 53.5 79.0 71.8
✓ ✓ 53.5 78.9 72.1
✗ ✓ 54.5 77.9 72.3

(d) Study on category conditioning operation. ✓ means
conditioning corresponding descriptors on category names.

Ensemble HMDB UCF K600

✗ 55.4 80.1 72.9
✓ 55.9 79.7 75.1

(e) The effects of weight-space ensembling.
✓ means perform ensemble with a ratio of 0.2.
32 frames are used during training/validation.

Table 5. Additional cost analysis of our method, we report step
latency during training, and throughput (TP) during inference. We
refer to Top-1 as zero-shot accuracy on Kinetics-600.

Method Top-1 (%) Latency (s) TP (video/s)
ViFi-CLIP [47] 71.2 0.40 (1.0×) 40.9 (1.00×)
OST 75.1 0.44 (1.1×) 40.0 (0.98×)

performance on K400 and SSv2 is about 0.5% higher than
Text4Vis [60]. For ActivityNet, the accuracy is even 0.8%
higher than our counterparts.

4.2. Ablation Studies

We conduct ablation studies on zero-shot settings in Table 4
to investigate our OST’s learning capacity and generaliz-
ability in different instantiations.
Different cross-modal matching mechanisms. Table 4a
shows the effects of different cross-modal matching mech-
anisms. For a fair comparison, we start with a baseline
that uses the category name during matching as [47]. By
simply aggregating the Descriptors along with the category
name via mean pooling, the accuracy on HMDB and UCF
improved by 2.4% and 1.1%, respectively. However, on
the K600 dataset, we observe a 1.5% performance drop.
This validates our hypothesis that the enhanced distinc-
tion brought by pooling operation can benefit downstream
recognition, but might not be optimal. We then introduce
our OD Solver to solve the optimal matching flow, we
find that our approach can further boost the performance
on HMDB and UCF, and achieve a remarkable improve-
ment of 1.5% on the large-scale dataset K600. Notably,
the categories in the K600 validation set are more com-
plicated compared to HMDB and UCF. This validates our
OD Solver’s effectiveness, especially in complicated open-
vocabulary settings.
The impact of different descriptors. We investigate the
impact of Spatio-Temporal Descriptors on the performance

of our proposed method. The results shown in Table 4b
demonstrate that each descriptor is complementary to oth-
ers. Indicating that both Spatio and Temporal Descriptors
provide crucial information for recognition tasks. We also
observe that the effect of temporal descriptors is more con-
vincing compared to Spatio Descriptors.
Numbers of descriptors. We investigate the influences of
varying the number of descriptors N in Table 4c. We con-
ducted experiments with 2, 4, and 8 Spatio-Temporal De-
scriptors. We can observe that the performance reaches its
peak at Ns,t = 4. We’ve further checked the quality2 of
descriptors when varying N . We find that 2 descriptors
can not afford enough information to supply cross-modal
matching. When the number of descriptors reaches 8, the
hallucination problem of LLM becomes more severe, re-
sulting in a significant amount of noisy descriptors. In this
case, we set N as 4 in our basic settings.
The impact of conditioning descriptors on category
names. We study the effect of conditioning descriptors on
category names on the final zero-shot accuracy. Table 4d
shows that conditioning temporal descriptors on category
names can achieve the best performances while condition-
ing both descriptors may lead to performance degradation.
This further indicates the points framed in [22, 34, 39]
that visual-language pre-trained models are less sensitive
to verbs. As a result, the category conditioning technique
can ensure the semantic distribution of the Temporal De-
scriptors clustered well, making the optimization process
smoother.
The effects of weight-space ensembling. We investigate
the effects of the linear weight-space ensembling technique.
As shown in Table 4e, the ensembling technique greatly
mitigates the catastrophic forgetting problem, especially on
the large-scale Kinetics-600 dataset, where the zero-shot ac-
curacy is improved by 2.2%.

2Please refer to Supplementary Material for examples of descriptors.
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Descriptors: Horse, Polo stick, Polo ball, Polo field Receive the soccer ball from a teammate. Control the ball with your feet.
Look for an open teammate. Pass the ball to the teammate using your feet.
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Figure 4. Attention map on K600 validation set. We demonstrate Spatio Descriptors and Temporal Descriptors on the left and right,
respectively. (Left): For videos that can be recognized via static frames, our OST attends to the certain object more while ViFi-CLIP [47]
is often distracted by the backgrounds. (Right): For classes that require more temporal clues, ViFi-CLIP [47] attends to appearance (e.g.
soccer ball and soccer field) more, while our OST shows consistent attention to the body’s temporal salient parts such as the player’s feet.
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Astronaut playing O.S.T. on the moon Rabbit skiing

Descriptors: Astronaut, Moon landscape, O.S.T. record, Turntable Rabbit in skiing gear, Rabbit at the top of the slope,
 Rabbit starting to slide down, Maintaining balance throughout the ride

Figure 5. Generalization on extreme outliers. We utilize the text-to-video diffusion model Show-1 [67] to generate synthetic videos with a
semantic distribution distinct from the fine-tuning data in Kinetics-400 to further demonstrate the generalizability of our method. Attention
map for Spatio Descriptors and Temporal Descriptors are visualized on the left and right, respectively.

4.3. Cost Analysis

We analyze the additional cost of our method during train-
ing and inference in Table 5. Latency is measured in our
basic training setting and throughput is measured using the
largest possible batch size before running out of memory
with a single NVIDIA 4090-24G. Notably, the original im-
plementation of ViFi-CLIP [47] utilizes cross-entropy loss
and maintains the logits for all categories in every mini-
batch during training, leading to a larger latency. For a
fair comparison, we re-implement ViFi-CLIP with local
infoNCE-styled loss [56] to analyze the training cost. Our
pipeline only requires an extra 0.1× training time and re-
duces the throughput by about 2%, which is acceptable
given the improvement in performance.

4.4. Visualizations

We conduct a qualitative study on the attention map of our
OST in the zero-shot setting. As depicted in Fig. 4, com-
pared to our baseline ViFi-CLIP [47] our method can not
only focus on varied spatial cues but also consistently at-
tend to temporal salient elements (e.g. the player’s feet) for
videos that include more scene dynamics. Additionally, we
investigate the attention map of our method on extreme out-
lier samples in Fig. 5. Our empirical findings indicate that
out OST upholds robust generalization capabilities, even in

extreme out-of-distribution examples. Please refer to Sup-
plementary Material for more qualitative results.

5. Conclusion
In this work, we introduce a novel general video recogni-
tion pipeline OST. We prompt an LLM to augment category
names into Spatio-Temporal Descriptors and refine the se-
mantic knowledge via Optimal Descriptor Solver. Compre-
hensive evaluations in six datasets and three different tasks
demonstrate the effectiveness of our approach.
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