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Abstract

We explore the boundaries of scaling up a multilingual
vision and language model, both in terms of size of the com-
ponents and the breadth of its training task mixture. Our
model achieves new levels of performance on a wide-range
of varied and complex tasks, including multiple image-based
captioning and question-answering tasks, image-based doc-
ument understanding and few-shot (in-context) learning, as
well as object detection, video question answering, and video
captioning. Our model advances the state-of-the-art on most
vision-and-language benchmarks considered (20+ of them).
Finally, we observe emerging capabilities, such as complex
counting and multilingual object detection, tasks that are
not explicitly in the training mix.

1. Introduction

The success of scaling language models [ 1—4] makes it ap-
pealing to similarly scale Vision-Language (V&L) models,
and investigate the improvements, capabilities, and emergent
properties of such models. Inspired by the work in [5], we
present PaLLI-X, a multilingual vision and language model
with reusable scaled-up components, consisting of a pre-
trained large-capacity visual encoder (using [6] as the start-
ing point) and a pretrained language-only encoder-decoder
(using [7] as the starting point), further trained at-scale on
a vision-and-language data mixture using a combination of
self-supervision and full-supervision signals.

One clear pattern that emerges from the combination
of results from PaLl [5] and the work we present in this
paper is that scaling both V&L components together brings
increases in performance across a wide range of tasks. We
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show this by comparing against the same benchmarks used
for PaLI (Fig. 1, Left), and also against new benchmarks
for which the new capabilities of PaLI-X are evaluated (e.g.,
ChartQA, AI2D, DocVQA, InfographicVQA, as well as
video understanding tasks). We observe that scaling leads
to large improvements over the results of the PaLLI model,
and also over specialized large-scale models that are trained
specifically to solve certain tasks, often with the help of
(often much larger) text-only LLMs [8]. In particular, we
find that increasing both the effective capacity of the vision
component (which [9] does more unilaterally) and of the
language component (which [10] also does unilaterally) is
beneficial; the new PalLI-X model provides more balanced
parameter allocation than any other prior work (roughly
40%-60% split of the total capacity).

Aside from demonstrating the consistent impact of scale,
the original contribution of PaLLI-X consists in leveraging
the mixture-of-objectives proposed in [7] for vision-and-
language modeling, and showing that it results in a model
that improves both state-of-the-art results and the Pareto
frontier for fine-tuning and few-shot (Fig. 1, Right).

We also observe emergent properties based on PaLI-X’s
results compared to previous models with similar architec-
ture but smaller sizes. For instance, we report drastically im-
proved performance on the counting ability (See Table | and
Appendix B), both for the plain variety (count all instances
of a class) and the complex variety (count instances based
on a natural language description), that are not attributable
to training design'. Additionally, we present qualitative in-
sights into the model’s performance (Appendix A), with an

!Plain counting is usually achievable via good object detection, while
complex counting requires a fine-grained understanding of the alignment
between language-based specifications and visually-based occurrences.
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emphasis on multilingual transfer learning such as the ability

to detect objects using non-English labels (Fig. 2), and the

ability to switch between the language of text present in
the image (e.g., English) and the language of the generated
image caption (e.g., Romanian).

Our technical contributions include the following:

1. We scale a Vision-Language model to achieve outstand-
ing performance on a wide variety of benchmarks. We
observe that scaling both the Vision & Language compo-
nents is advantageous and report that performance con-
tinues to consistently benefit from scale beyond 50B.

2. While larger scales are clearly beneficial, we show that,
how to train the model is equally important . Specifically
it is key to use a mixture of objectives that combines
prefix-completion and masked-token completion, which
improves the Pareto frontier for fine-tuning vs few-shot
performance at this scale.

3. We show that continuing co-training a high-capacity vi-
sion encoder (ViT-22B) with image classification and
OCR label classification” can gain significant improve-
ments on V&L tasks for which the understanding of text-
within-image is crucial.

4. Overall, our PaLI-X model improves SoTA results on 20+
benchmarks, and we show that it is the first of its kind
to simultaneously adapt via multitask fine-tuning to a di-
verse set of benchmarks without significant performance
degradation. This, along with our observation of the mul-
timodal emergent property around counting and object
detection, demonstrates the generalizability of PaLI-X.

2. Related Work

Similar to large language models such as GPT4 [12] and
PalLM [1], the benefit of scale has also been observed in re-
cent vision and vision-language models. Flamingo [10] used
a frozen language component and demonstrated the benefit
of scaling up this part up to 70B parameters on the few-shot
multimodal capabilities, while the vision encoder is fixed
with 435M parameters. GIT [9], on the other hand, explored
scaling of the vision component up to 4.8B parameter, with a
300M parameter language decoder. PaLI [5] explored jointly
scaling the vision and language component, to 4B and 17B,
respectively, and showed that scaling both components bene-
fits a wide range of vision-language tasks. All these models
took advantage of vision and language unimodal pretrained
models as backbones to start multimodal training. Recently,
on the vision model side, a vision transformer with 22B pa-
rameter has been introduced [6]. In this work, we make use
of a ViT-22B model specifically tuned for OCR capability
to explore scaling Vision-Language models to even larger
parameter regime.

2We use OCR tokens produced by the GCP Vision API over the training
images as targets.

As first shown in [13], large language models are some-
times able to solve new unseen tasks at inference as long as a
few examples —or shots— are provided as inputs. This is usu-
ally referred to as in-context learning [ 14]. Follow-up work
proposed improved ways to split and prompt the shots, such
as Chain of Thought [15] or Least-to-Most prompting [16].
So far, the vast majority of this work has been done in the
context of language inputs [17]. In this work, we explore
multimodal in-context learning with pairs of images and
captions. Our work is aligned in spirit to Flamingo [10] that
uses interleaved image text pairs in the same web page and
in-context tuning [18] during pre-training. We first group
the image-text pairs by url and split each group to a “shots”
set and a “target” set. Then we use the few examples in the
“shots” set as input features to predict the examples in the
target set.

Besides solving vision-language tasks in multiple do-
mains, recent VLMs also attempted solving these tasks at
once instead of fine-tuning on each individual benchmark.
Unified-IO [19] performed multitask fine-tuning and re-
ported solid results across 16 benchmarks. Spotlight [20]
reported that inside the UI domain, multitask fine-tuning can
achieve a performance close to task-specific fine-tuning. In
this work, we show that Pal.I-X can be simultaneously fine-
tuned with a diverse set of benchmarks in multiple domains
without performance degradation.

3. Model
3.1. Architecture

The PaLLI-X model architecture follows the encoder-decoder
architecture: image(s) are processed by a ViT encoder, with
the resulting visual embeddings fed to an encoder-decoder
backbone, along with embeddings from additional text input
(e.g., question / prefix / prompt). More details are provided
in Appendix A.

Visual component Our visual backbone is scaled to
22B parameters, as introduced by [6], the largest dense ViT
model to date. To equip the model with a variety of com-
plex vision-language tasks, we specifically focus on its OCR
capabilities. To that end, we incorporate an OCR-based
pretraining as follows: images from the WebLlI dataset [5]
are annotated with OCR-text detected by GCP Vision API,
the encoder is then further pre-trained with a mixture of the
original JFT-based classification task and a new OCR-based
classification task (whether or not a given token occurred
in the image according to OCR results). See Appendix A
for additional details on the visual component. PaLI-X is
designed to take n >= 1 images as inputs (for few-shot and
video understanding), with tasks involving a single image
as the n = 1 case. For n > 1, each image is independently
processed by the ViT module, and the patch-level embed-
dings coming out of ViT are flattened and concatenated to
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Figure 1. [Left] Comparing PalLI-X against Pal.I on image-captioning and VQA benchmarks. [Right] The Pareto frontier between few-shot
and fine-tuned performance, comparing PaLLI-X with PaLI [5], Flamingo [10], and Kosmos-1 [11].

form the visual input (See Appendix A). Note that similar
to the single-image case, there is no pooling over the spatial
dimension before visual embeddings are aggregated over
the temporal dimension. That is, for an n-frame input with
k-patches per frame, the resulting visual input has n * k
tokens.

Overall model The encoder-decoder backbone is ini-
tialized from a variant of the UL2 [7] encoder-decoder model
that uses 32B parameters. The architecture of this variant
has 50 layers in both encoder and decoder (up from 32 layers
in [7]), and is pretrained on a mixture of text data similar
to [7]. The visual embeddings, after going through a projec-
tion layer, are concatenated with the token embeddings of the
text input, and fed to the encoder-decoder backbone. Most
of the pretraining tasks (with the exception of the masked
image token task) predict text-only output from this multi-
modal input. The text input to the model typically consists
of a prompt that marks what type of task it is (e.g., "Gen-
erate caption in (lang)" for captioning tasks) and encode
necessary textual input for the task (e.g., "Answer in (lang):
{question}" for VQA tasks). For tasks that need OCR ca-
pabilities, we experiment with either relying solely on the
text-encoding capabilities of the vision encoder, or option-
ally including tokens extracted by an upstream OCR system
fed as additional text inputs.

Few-shot formulation In the few-shot setting, for a
given target example the model receives a number of “la-
beled” examples (in the form of additional (image, text)
pairs) that we refer to as shots/exemplars. The hypothesis
is that information contained in these exemplars provides
the model with useful context to generate predictions for
the target example. Formally, the input with N shots is a
sequence (t1,...,tN,tr,01,-..,4N,iT), Wwhere t1 : ¢y and
11 : 1y are texts and images for the N shots, and ¢7 and i
are the text (prompt) and image for the target example. PaL.I-
X processes this input as follows: all images, including the
target one, are first independently processed by the visual en-

coder, and the resulting patch-level embeddings are flattened
and concatenated to form the visual input sequence. After
going through a projection layer, they are concatenated with
the text embeddings to form the multimodal input sequence
used by the encoder. We implement additional optimizations
including distributing the exemplars between the encoder
and the decoder, and an attention re-weighting mechanism
(see Appendix B).

3.2. Pretraining Data and Mixture

The main pretraining data for our model is based on We-
bLI [5], consisting of roughly one billion images with alt-
texts from the web and OCR annotations (using the GCP
Vision API), covering over 100 languages. In addition to We-
bLI (image, text) pairs, we introduce here Episodic WebLI
data, where each episode corresponds to a set of such pairs.
We aim to have each episode contain loosely related images
(i.e., they are clustered according to their URL field), so
as to encourage attention among examples in an “episode”.
In training, we sample 5 images and the alt_text from each
episodic example; the first 4 images are used as context, and
the alt_text of the 5th image as the target. We find this new
dataset (with 75M episodes and around 400M images in
total) important for developing the few-shot capabilities of
the model.

The pretraining mixture consists of the following data and
objectives: (i) span corruption on text-only data (15% of to-
kens); (ii) split-captioning on WebLl alt-text data [5, 21]; (iii)
captioning on CC3M [22] on native and translated alt-text
data (over the same 35 languages covered by XM3600 [23]);
(iv) split-ocr [24] on WebLI OCR annotations; (v) visual-
question-answering objective over (image, question, answer)
pairs generated using the VQ?A method [25] over the CoCo-
Captions training data, over native and translated text (same
35 language pairs); (vi) visual-question-generation objec-
tive, using the same pairs as above; (vii) visual-question-
answering objective over (image, question, answer) pairs
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using the Object-Aware method [26] (English only); (viii)
captioning on Episodic WebLI examples (target alt-text
predicted from the remaining alt-text and images); (ix)
visual-question-answering on 4-pair examples (resembling
Episodic WebLlI and using VQ?A-CC3M pairs), with the
answer target conditioned on the other pairs of (image, ques-
tion, answer) data. (x) pix2struct objective, introduced
in [27], targeting page layout and structure using screen-
shot images paired with DOM-tree representations of html
pages. (xi) split-captioning on short video data, using the
VTP data [10] (using four frames per video). (xii) object-
detection objective on WebLlI data, whereby an OWL-ViT
model [28] (L/14) is used to annotate WebLI images, re-
sulting in hundreds of pseudo object labels and bounding
boxes per image. (xiii) image-token prediction objective,
whereby we tokenize WebLI images (256 X256 resolution)
using a ViT-VQGAN [29] model with patch size 16x16
(256 tokens per image); this objective is framed as a 2D
masked-token task (i.e., fill-in the missing grid pieces, with
the corresponding image pixels also masked). Note that
the image-token prediction objective is added mainly as a
condition to check whether it adversarially impacts the per-
formance on language-output tasks; our ablation experiments
show that is does not. When assembling the mixture, our
rule of thumb was to avoid training on a huge chunk of data
for two times. Thus, for the larger datasets, we mix them
together with weight proportional to the number of examples
in the corresponding dataset. For the smaller datasets, we
mix them in with up to two epochs based on empirical evi-
dence or heuristics. We note here that other mixing ratios are
also possible in order to achieve similar performance. We
performed similarity-based deduplications to remove image
from the pretraining mix that are identical or similar to those
in the evaluation benchmarks combined, following [5].

3.3. Training Stages

Our model is trained in two stages. In stage 1, the visual
encoder (after mixed-objective training) is kept frozen, while
the rest of the parameters are trained on a total of 2.2B ex-
amples at the base resolution 224 x 224 (native to ViT-22B),
using the entire mixture. In stage 2, it continues training us-
ing only the OCR-related objectives (pix2struct and split-ocr)
plus the object detection objective; this is done in several sub-
stages, during which image resolution is gradually increased
to 448448, 672x 672 and finally 756 x756.

4. Experiments

4.1. Image Captioning and VQA

Our results demonstrate that the larger capacity in PaLI-X
scales well in both its vision and language components, and
it is particularly beneficial for more challenging scene-text
and document understanding tasks. Our model outperforms

the SOTA on diverse vision-language tasks, with signifi-
cant margins in some cases. The Image Captioning and
VQA benchmarks used for evaluation are summarized in Ap-
pendix B, including 6 Image Captioning benchmarks (COCO
(Karpathy split [30]), NoCaps [31], TextCaps [32], VizWiz-
Cap [33], Screen2Words [34], Widget-Cap [35]) and 13
VQA benchmarks. These tasks span a wide range of visual
domains, from natural images, illustrations to documents and
user interfaces (Uls). We also include results of multilingual
captioning on XM3600 in Appendix B.

4.1.1 Per-task fine-tuning results

Experimental setup We fine-tune Pal.I-X with frozen
ViT-22B; the learning rate follows a linear decay from initial
value le-4 for all fine-tuning experiments. See Appendix B
for more details.

First, we present benchmarks results for the condition
where external OCR systems are not used (Table 1, see
Appendix B for an extended table.). The trend is that PaLI-
X matches or improves SoTA results on these benchmarks,
with a particularly significant improvement on the TallyQA
benchmark over MoVie [49] (specialized counting model),
at +11.1 for simple counting questions (e.g., “how many
giraffes”) and +18.8 for complex counting questions (e.g.,
“how many giraffes are drinking water”); there are significant
improvements over PaLl [5] as well, indicating that scale
plays an important role in the ability of such models to
perform counting tasks. We additionally note the state-of-
the-art result on VQAv2 at 86.1 accuracy, achieved with an
open-vocabulary generative approach, and the performance
on OKVQA at 66.1 accuracy, matching the much-larger
PalLM-E [37] model performance.

Next, we examine text-heavy V&L benchmarks, for
which upstream OCR systems can be used to improve per-
formance. As shown in Table 2, PaLLI-X improves SoTA
for all Captioning and VQA benchmarks across the board,
either without or with additional OCR input (using GCP
Vision API). For instance, a significant jump of +42.9 points
is observed on AI2D?, a multiple-choice benchmark where
choices are provided along with each question. Being able
to have the text choices as input benefits PaLLI-X compared
with the previous SoTA Pix2Struct [27] which has to ren-
der the text on the image, but this does not explain all the
improvements. In a question-only configuration (no answer
choice present), PaL.I-X achieves 46.3 on AI2D, more than
4 points higher than Pix2Struct’s result.

In general, having access to OCR texts extracted by an
external OCR pipeline boosts performance. Still, for several
benchmarks (e.g., AI2D, ChartQA, OCRVQA and Widget-

3 As with all the other benchmarks, our training examples are carefully
deduped to exclude images occurring in these benchmarks, including AI2D.
Such results, therefore, are not attributable to train-test data leakage.
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COCO NoCaps VQAv2 OKVQA TallyQA
Model Karp.-test val test test-dev  test-std val simple complex
GIT2 [9] (5.1B) 145.0 1269 124.8 81.74 81.92 - - -
Flamingo [10] (80B) 138.1 - - 82.0 82.1 57.8* - -
BEIiT-3 [36] (1.9B) 147.6 - - 84.2 84.0 - - -
PalLM-E [37] (562B) 138.7 - - 80.0 - 66.1 - -
MoVie - - - 69.26 - - 74.9 56.8
PaLI [5](17B) 149.1 127.0 1244 84.3 84.3 64.5 81.7 70.9
PaLI-X (55B) 149.2 1263 1243 86.0 86.1 66.1 86.0 75.6

Table 1. Results on COCO Captions (Karpathy split), NoCaps, VQAV2 [38], OKVQA [39], and TallyQA [40] with end-to-end modeling
without OCR pipeline input (“simple” and “complex” are test subsplits).

Text VizWiz Text VizWiz ST OCR Info Doc
Cap VQA VQA VQA VQA VQA VQA

Model  Caps

Chart Screen2 Widget Info

QA  Words OVEN

Al2D Cap Seek

with OCR pipeline input

160.4 124.7 73.67 73.3
SoTA
© [51 [51  [#11  [5] 51 [42]
PaLI-X 163.7 125.7 80.78 74.6

799 675 474 878 385 455 - -
(431 (44 [45]
84.5 77.3 548 868 814 723 - -

[M46] - - - -

without OCR pipeline input

145.0 120.8 67.27 70.7
SoTA [9] (91 [9] [5] o1 1271
PaLl-X 147.0 122.7 71.44 70.9

75.8 71.3 40.0 76.6 42.1 70.5
[271 271 [27]1 [8] [27] [20] [47]  [48]
799 75.0 49.2 80.0 81.2 70.9 1279 153.0 383 10.8

109.4 141.8 316 8.2

Table 2. Results on benchmarks more focused on text understanding capabilities. For OVEN [47] & InfoSeek [48], we employ the 224 x 224

resolution setup for fair comparison (on human split).

Cap), PaLI-X’s end-to-end performance when using its in-
trinsic OCR capability is close to that leveraging additional
OCR input. A common feature for these benchmarks is
that they have well-oriented text — diagrams, charts, book
covers or user interfaces, with reasonably large font size at
756 <756 resolution. For tasks involving scene text in natural
images (TextCaps, TextVQA, STVQA) or very high density
of small texts (DocVQA, InfoVQA), results still highlight
clear benefits when utilizing an external OCR model.

4.1.2 Multitask Fine-tuning

We simultaneously fine-tune and evaluate the pretrained
checkpoints on multiple benchmarks belonging to the same
category. We deduplicated every training set over the test
sets of every task in the mixture to prevent the leakage of any
test-set examples into the mixed training set. This is useful
as it leads to a single fine-tuned model that performs all the
tasks, rather than having to fine-tune each task separately.
We performed such multitask fine-tuning on all Image Cap-
tioning benchmarks and all VQA benchmarks, respectively.

Table 3 shows the multitask fine-tuning result for caption-
ing tasks. The performance on COCO is slightly decreased
in the multitask setting, which is likely a result of this task
needing longer training to converge. For Screen2Words,
having the smallest train and dev/test sets could be responsi-
ble for the performance fluctuation. Notably, VizWiz-Cap
and Widget-Cap shows improved performance from mul-

titask fine-tuning. Overall, the average performance de-
creases by 1.4 points (0.2 excluding Screen2Words) with
multitask fine-tuning, while offering the clear advantage of
having a single checkpoint to perform all these tasks. Ap-
pendix B shows similar results for VQA tasks. We consider
this outcome a positive result that establishes the on-par
performance between multitask fine-tuning and single-task
fine-tuning for diverse benchmarks, in contrast with previous
work which argued a gap between single-task and multitask
fine-tuning [19], or demonstrated little gap over benchmarks
from the same domain [20].

4.1.3 Few-shot Evaluation

We fine-tuned the PalLI-X model on a mixture of few-shot
tasks. The few-shot mixture contains Episodic mixtures,
(Non-Episodic) Webli and (Non-Episodic) CC3M data. Note
that all of these datasets were already used in previous stages
of training, but with lower mixture proportions. During pre-
training, we only use up to 4 shots, with both encoder and
decoder shots (see Appendix B). For fine-tuning, we use up
to 8 encoder shots and do not use decoder shots.

We evaluate the few-shot performance on COCO caption
(Karpathy test split [30]), and XM3600 [23] datasets. For
each task, we first create a “shots pool” with 256 examples
that are randomly selected from the task’s training set. As the
XM3600 benchmark does not come with a training set, we
use Google Translate API to enhance the COCO Karpathy
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Text VizWiz Screen2 Widget Avg.

COCO NoCaps Caps Cap Words Cap

Method

Split Karp.-test  val val test-dev  test test -
SOTA (Single-task FT) 149.1 127.0 148.6 1194 1094 136.7

PalI-X Single-task FT 149.2 126.3 150.8 123.1 1279 1532 -
PaLI-X Multitask FT 147.3 125.6 154.6 1242 120.6 153.7 -
Multitask (+/-) -1.9 0.7 +3.8  +1.1 -7.3* +0.5 -1.4 (-0.2 w/o “*7)

Table 3. Scores from multitask fine-tuning compared with those from single-task fine-tuning for Image Captioning. Validation or test-dev set

numbers are reported for some tasks.

training set with captions in the 35 languages represented
in XM3600. Then, for each test data point, we randomly
pick N shots from the pool as the actual few-shot examples.
Following [10], we also evaluate on 2 text-only shots settings
where only the textual part of 2 randomly sampled few-shot
examples are used.

Table 4 reports the few-shot captioning performance on
English and multilingual captioning, as well as few-shot
VQA performance on VQAv2. PaLI-X achieves SOTA few-
shot results on COCO with both 4 shots and 32 shots; it
outperforms previous SOTA by +4.4 CIDEr points for 4-shot,
suggesting a strong ability to efficiently gather hints from few
examples. We also report few-shot CIDEr scores averaged
over 35 languages using XM3600, demonstrating PaLLI-X’s
multilingual capabilities. Meanwhile, although PalLI-X also
performs decently on VQAv2, the gap behind the SoTA
Flamingo model [10] (which freezes the language backbone)
may be the result of losing some of the few-shot text-only
QA capability by fine-tuning the language backbone, which
supports the hypothesis regarding the tension between few-
shot and fine-tuning abilities.

4.2. Video Captioning and Question Answering

We fine-tune and evaluate the PaLLI-X model on 4 video
captioning (MSR-VTT [50], VATEX [51], ActivityNet Cap-
tions [52], Spoken Moments in Time [53]) and 3 video ques-
tion answering benchmarks (NExT-QA [54], MSR-VTT-
QA [55], ActivityNet-QA [56]). A brief description of each
benchmark and clarifications on their usage are provided in
Appendix C.

Experimental setup We fine-tune our model (with
base resolution 224 x224) for each task separately, use the
validation split for early stopping, and report performance on
the test split. We use a learning rate of 10~* for all tasks, and
do not adapt any hyperparameters for specific tasks. Frames
are sampled using a fixed temporal stride for each dataset
(determined based on the video length distribution in that
dataset such that the product of the number of frames and
stride is larger than the total number of frames for half of
the videos), and we experimented with including up to 8 or
16 frames per video. We did not include pooling over the

spatial dimension; embeddings for 16 16 patches per frame
are provided as visual input to the multimodal encoder.
Results We report CIDEr score for the video captioning
tasks. Video QA tasks are treated as open-ended generation
tasks; we report full-string accuracy (for MSR-VTT-QA
and ActivityNet-QA) and WUPS metrics (NEXT-QA) in [54,
61]. As shown in Table 5, the 16-frames version has an
edge over the 8-frame version, sometimes with a significant
margin (e.g., close to a 6 point increase in CIDEr score
for ActivityNet-Captions). More importantly, while PaLI-X
pretraining was dominated by image-text tasks, we were
able to achieve new SOTA performance for 4 tasks®, and
performed close to SOTA on MSR-VTT Captions and QA.

4.3. Image classification

To test image classification capabilities we fine-tuned PaLlI-
X and models from [5] on ImageNet [62] and evaluated
the resulting model on ImageNet-REAL [63] and out-of-
distribution datasets: ImageNet-R [64], ImageNet-A [65],
ImageNet-Sketch [66], ImageNet-v2 [67]. We used the
model from the first training stage (at resolution 224) and
the one from the last training stage (at resolution 756). We
used the same training hyperparameters for all of runs (se-
lected without any hyperparameter tuning; mode details in
Appendix D).

The results can be seen in Table 25. We compare the
results to generative model with open vocab — GIT2 [9]
(using 384 image resolution), which is the current SOTA
for full fine-tuning on ImageNet. PalLI-X achieves SOTA
results for generative models on Imagenet, and other datasets.
We also performed zero-shot evaluation for PaLLI-X and the
results can be found in Appendix D.

4.4. Object Detection

Object detection can be easily formulated in our model as
shown in pix2seq [70], The dataset mix used for pre-training

4As noted in Table 5, current SOTA on NExT-QA for the open-ended
QA task was achieved by Flamingo 32-shot, which had outperformed prior
fine-tuning SOTA. To the best of our knowledge, PaLI-X performance on
this task does outperform existing published fine-tuning performances, with
the caveat that we do not have information on what Flamingo fine-tuning
would have achieved on this task.
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COCO Captions XM3600 Cap. (35-lang avg.) VQAv2

Method 4 shots 32 shots 4 shots 32 shots 4 shots 32 shots
Prev. SoTA [10]  103.2 113.8 N/A (53.6 w/ fine-tune [5]) 63.1 67.6
PalLI-X 107.6 114.5 45.1 47.1 56.9 57.1

Table 4. Few-shot performance of the PaLLI-X model (multilingual captioning for XM3600).

MSR-VTT Activity-Net VATEX SMIT NExT-QA
Method Cap. [50] QA [55] Cap.[52] QA[56] Cap.[51] Cap.[53] QA [54]
Prior SOTA 80.3 48.0 52.5 44.7 940t 28.1% 33.58
mPLUG2[57] mPLUG2[57]  PDVC[58]  VINDLU [59] GIT2[9] MV-GPT [60]  Flamingo 32shot [10]
PaLI-X (8fr) 74.6 46.9 49.0 48.4 66.0 42.5 37.0
PaLI-X (16fr) 76.8 47.1 54.9 49.4 69.3 43.5 38.3

Table 5. Results for Video Captioning and Video-QA using 8 frames (8fr) or 16 frames (16fr). GIT2 uses Self-Critical Sequence Training
to directly optimize the CIDEr metric for VATEX. {SMIT has not been used for video captioning before, we apply MV-GPT [60] and report
results on the test set. §Numbers were obtained using 32-shot; since Flamingo 32-shot outperforms fine-tuning SOTA on this open-ended
QA task, they did not conduct further fine-tuning experiments for this task.

Model (resolution)  INet [62] REAL [63] INet-R [64] INet-A [65] INet-Sketch [66] INet-v2 [67]

GIT2 [9] (384) 89.22 - - - - -

PaLI-17B [5] (224) 86.13 88.84 78.21 50.00 71.21 78.91
PalI-X (224) 88.22 90.36 77.66 55.97 72.56 81.42
PalI-X (756) 89.19 90.98 80.06 72.57 73.37 83.66

Table 6. Classification accuracy (top-1) fine-tuned on Imagenet [62].

is presented in Sec. 3; detection data was included up to and
including the stage using resolution 672, after which a sep-
arate detection-specific model was fine-tuned on detection
' data. Before detection-specific tuning, LVIS [71] & COCO
w labels were removed from all detection training datasets,

allowing zero-shot evaluation on LVIS.

Credits: Watermelon/Cat; Sarah Pflug (burst), Bowls; ariesandrea (flickr),
Wall; Matthew Henry (burst)

Figure 2. Examples demonstrating multilingual, OCR and other

capabilities transferred to detection. Bounding box mean AP on LVIS is shown in Table 7,
including zero-shot performance; the detection-tuned model

LVIS AP LVIS APy reaches an AP of 31 in general, and 31.4 on rare classes, and

VILD [68]1 293 26.3 about 12 for l?oth in zero-shot. Performance on rare (?lasses
Region-CLIP [69]} 323 2.0 was on par with performance on common classes, a difficult
OWLVIiT-L/16 [28]% 34.7 25.6 feat traditionally accomplished by complicated sampling
OWLViT-L/16 [28]% 34.6 312 schedules and augmentations. In our set up, it is directly
PaLI-X (Zeroshot) 12.36 12.16 enabled by PaLLI-X’s diverse training mix. This could likely
PaLI-X (Detection-tuned)  30.64 31.42 be further improved with investment in fine-tuning e.g. using

noise-augmentation methods from pix2seq [70], or a further
stage of high-resolution, LVIS only training. Qualitatively,
common classes. Other related approaches are shown for context, we observe em.er.gence. of many mtefestmg phenomena en-
but are not directly comparable. {: tuned on non-rare LVIS. abled by co-training with non-detection tasks; for example,
training set further includes Object365 and Visual Genome multilingual detection, OCR bounding boxes and longer de-
scriptions, none of which are included in detection training,
are often handled well by PaLI-X. Additional results and
information can be found in Appendix E.3.

Table 7. PaLI-X object detection results on LVIS. The diverse pre-
training mix enables parity performance between LVIS rare and
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Gender Ethnicity Age
Lowest  Highest ‘ Lowest Median  Highest ‘ Lowest Median  Highest ‘ Overall
Toxicity 0.14% 0.19% 0.00% 0.13% 0.39% 0.00% 0.17% 0.31% 0.01%
Profanity | 0.00% 0.02% 0.00% 0.00% 0.05% 0.00% 0.00% 0.03% 0.00%

Table 8. Average toxicity/profanity in the captions generated by PaL.I-X on FairFace dataset.

Ethnicity = White  Hispanic  Southeast Asian  East Asian  Indian  Middle Eastern  Black
Precision  0.956 0.827 0.907 0.943 0.952 0.957 0.859
Recall 0.836 0.786 0.753 0.827 0.909 0.943 0.792
Age 0-19 20-29 30-39 40-49 50-59 60-69 >70
Precision - 0.887 0.940 0.938 1.000 1.000 1.000
Recall - 0.880 0.840 0.792 0.868 0.761 1.000

Table 9. Precision and recall of PaLI-X on the task of predicting the gender presentation attribute for the FairFace dataset. Results are

disaggregated by ethnicity and age (gender of minors not included).

5. Model Fairness, Biases, and Other Potential
Issues

Large models, if left unchecked, have the potential to in-
flict harm on society — such as amplifying biases [72-75],
causing disparities [74, 76, 77], or encoding narrow cultural
perspectives [78, 79]. Hence, evaluating PaLI-X for such
potential issues is important.

Toxicity/profanity. We estimate the level of toxicity
and profanity in the generated captions, including when
disaggregated across subgroups. We use the FairFace
dataset [80] that comprises of images of people with ground-
truth attributes: gender presentation, age and ethnicity. We
generate captions and use the Perspective API [81] (threshold
> 0.8) to measure toxicity and profanity. Table 8§ summa-
rizes the results; we observe a low level of toxicity/profanity
across all slices. Appendix F provides a more detailed break-
down.

Bias. We estimate the level of demographic parity (DP)
[82] in PaLI-X with respect to gender and occupation. Over-
all, PaLI-X tends to assign a higher log-perplexity score
to women than men across most occupations; i.e. men are
predicted to be more likely to hold such occupations. Sec-
ond, PaLLI-X assigns a higher likelihood for a woman to be
(‘secretary’ & ‘actor’) and a higher likelihood for a man to
be (‘guard’ & ‘plumber’) at the 95% confidence level. See
Appendix F for a visualization and further details.

Performance Disparity. We compare how well PaLI-
X performs across different subgroups in a VQA task. Since
an analysis of this sort requires ground-truth annotations of
protected attributes, we use FairFace dataset where the task
is to predict the gender presentation attribute provided in the
dataset given the image. Table 9 reports the disaggregated
precision & recall. We observe a lower performance for
Hispanics and Blacks compared to others, possibly because

they are under-represented in the data.
Limitations. See Appendix F for a discussion about
some of the limitations of this analysis.

6. Conclusions

In this work we draw more insights from further scaling vi-
sion and language models. We show that the scaling and the
improved training recipe results in a model that substantially
outperforms previous state-of-the-art models, leads to emer-
gent behaviors and identifies further margins for improve-
ments. In particular, we report that the model achieves sig-
nificant improvements at document, chart, and infographic
understanding, captioning, visual question answering, count-
ing, and performs well on few-shot (in-context) captioning,
video captioning and question-answering, and object detec-
tion.
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