
PeLK: Parameter-efficient Large Kernel ConvNets with Peripheral Convolution

Honghao Chen1,2* Xiangxiang Chu3 Yongjian Ren1,2 Xin Zhao1,2 Kaiqi Huang1,2,4†

1Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3 Meituan 4 CAS Center for Excellence in Brain Science and Intelligence Technology

Abstract

Recently, some large kernel convnets strike back with

appealing performance and efficiency. However, given

the square complexity of convolution, scaling up kernels

can bring about an enormous amount of parameters and

the proliferated parameters can induce severe optimization

problem. Due to these issues, current CNNs compromise

to scale up to 51 × 51 in the form of stripe convolution

(i.e., 51 × 5 + 5 × 51) and start to saturate as the ker-

nel size continues growing. In this paper, we delve into

addressing these vital issues and explore whether we can

continue scaling up kernels for more performance gains.

Inspired by human vision, we propose a human-like periph-

eral convolution that efficiently reduces over 90% parame-

ter count of dense grid convolution through parameter shar-

ing, and manage to scale up kernel size to extremely large.

Our peripheral convolution behaves highly similar to hu-

man, reducing the complexity of convolution from O(K2) to

O(logK) without backfiring performance. Built on this, we

propose Parameter-efficient Large Kernel Network (PeLK).

Our PeLK outperforms modern vision Transformers and

ConvNet architectures like Swin, ConvNeXt, RepLKNet and

SLaK on various vision tasks including ImageNet classifica-

tion, semantic segmentation on ADE20K and object detec-

tion on MS COCO. For the first time, we successfully scale

up the kernel size of CNNs to an unprecedented 101 × 101
and demonstrate consistent improvements.

1. Introduction

Convolutional Neural Networks (CNNs) have played a piv-

otal role in machine learning for decades [16, 19, 20, 35].

However, their dominance has been greatly challenged by

Vision Transformers (ViTs) [6, 12, 24, 42, 47] over re-

cent years. Some works [32, 44] attribute the powerful

performance of ViTs to their large receptive fields: Facil-

*Work done during internship at Meituan Inc.
†Corresponding author.

itated by self-attention mechanism, ViTs can capture con-

text information from a large spatial scope and model long-

range dependencies. Inspired by this, recent advances in

CNNs [11, 23, 25] have revealed that when equipped with

large kernel size (e.g., 31× 31), pure CNN architecture can

perform on par with or even better than state-of-the-art ViTs

on various vision tasks.

Although large kernel convnets exhibit strong perfor-

mance and appealing efficiency, a fatal problem exists: the

square complexity O(K2) with respect to kernel size K.

Due to this problem, directly scaling up kernels will bring

about a huge amount of parameters. For instance, the pa-

rameter of a 31 × 31 kernel is more than 100× larger than

that of a typical 3× 3 counterpart in ResNet [16] and about

20× as many as that of the 7 × 7 kernel used in Con-

vNeXt [25]. The proliferated parameters subsequently in-

duce severe optimization problem, making it useless or even

harmful to directly scale up kernel size [11, 23, 25]. To

solve, RepLKNet [11] re-parameterize a 5×5 kernel par-

allel to the large one to make up the optimization issue,

SLaK [23] compromise to use stripe convolution to reduce

the complexity to linear and scales up to 51 × 51 (i.e.,

51 × 5 + 5 × 51). However, this is still a limited inter-

action range for the resolution of downstream tasks (e.g.,

2048× 512 on ADE20K) and more importantly, stripe con-

volution lacks the range perception of dense convolution,

thus we conjecture it may undermine the model’s spatial

perception capacity.

In this paper, we first conduct a comprehensive dissec-

tion of convolution forms under a unified modern frame-

work (i.e., SLaK [23]). We empirically verify our conjec-

ture that dense grid convolution outperforms stripe convo-

lution with consistent improvements across multiple kernel

sizes. This phenomenon holds not only for classification

task, but even more pronounced for downstream tasks, in-

dicating the essential advantage of dense convolution over

stripe form. Nevertheless, as mentioned above, the square

complexity of large dense convolution leads to the prolif-

erated parameters, causing rapidly increasing model size,

greater optimization difficulty and thus preventing it from

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5557

further scaling. This non-trivial problem naturally leads to

a question: Is there a way to preserve the form of dense grid

convolution while reducing the parameters required? And if

so, can we further scale up dense grid convolution for more

performance gains?

Unlike the dense computation of convolution or self-

attention, human vision possesses a more efficient vi-

sual processing mechanism termed peripheral vision [21].

Specifically, human vision partitions the entire visual field

into central region and peripheral region conditioned on the

distance to the center of the gaze, and the number of pho-

toreceptor cells (cones and rods) in the central region is

more than 100 times that in the peripheral region [36]. Such

a physiological structure gives human vision the character-

istic of blur perception: we have strong perception and see

clearly in the central region, recognizing shapes and colors;

whereas in the peripheral region, the visual field is blurred

and the resolution decreases so we can only recognize ab-

stract visual features such as motion and high-level con-

texts. This mechanism enables us to perceive important de-

tails within a small portion of the visual field (< 5%) while

minimizing unnecessary information in the remaining por-

tion (> 95%), thereby facilitating efficient visual process-

ing in the human brain [2, 9, 10, 26, 33, 34, 48, 50].

Inspired by human vision and to answer the question

above, we propose a novel peripheral convolution to reduce

the parameter complexity of convolutions from O(K2) to

O(logK) while maintaining the dense computational form.

Our peripheral convolution consists of three designs: i) Fo-

cus and blur mechanism. We keep fine-grained parame-

ters in the central region of the convolution kernel and use

wide-range parameter sharing in the peripheral regions; ii)

Exponentially-increasing sharing granularity. Our sharing

grid grows in an exponentially-increasing way, which is

more effective than fixed granularity; iii) Kernel-wise posi-

tional embedding. We introduce kernel-wise positional em-

bedding to solve the problem of detail blurring caused by

wide-range peripheral sharing in an elegant and cheap way.

Since our peripheral convolution dramatically reduces the

parameters for large kernels (over 90%), we are able to de-

sign large dense kernel convnets with strong performance.

Built upon the peripheral convolution above, we pro-

pose Parameter-efficient Large Kernel Network (PeLK), a

new pure CNN architecture with Effective Receptive Field

(ERF) growing exponentially with parameters. Facilitated

by the elaborately designed parameter sharing mechanism,

PeLK scales up kernel size at a remarkably minor pa-

rameter cost, realizing extremely large dense kernel (e.g.,

51 × 51, 101 × 101) with consistent improvements. Our

PeLK achieves state-of-the-art performance across a variety

of vision tasks, exhibiting the potential of pure CNN archi-

tecture when equipped with extremely large kernel size.

PeLK is shown to be able to cover a much larger ERF

region than prior large kernel paradigms, which we be-

lieve leads to its strong performance. More interestingly,

our analysis and ablations demonstrate that the optimal de-

sign principles of peripheral convolution share striking sim-

ilarities with human vision, suggesting that biologically in-

spired mechanisms can be promising candidates for design-

ing strong modern networks.

2. Related Work

2.1. Large Kernel Convolutional Networks

Large kernel convolutional networks can date back to a

few old fashion models from the early days of deep learn-

ing [19, 38, 39]. After VGG-Net [35], it becomes a common

practice to use a stack of small kernels (e.g., 1× 1 or 3× 3)

to obtain a large receptive field over the past decade. Global

Convolutional Network (GCNs) [30] enlarges the kernel

size to 15 by employing a combination of stripe convolu-

tions (1×M + M×1) to improve the semantic segmentation

task. However, the proposed method is reported to harm the

performance on ImageNet. Recently, large kernel convnets

strike back with appealing performance [11, 23, 25, 43].

ConvMixer [43] use 9× 9 depthwise convolution to replace

the spatial mixer of ViT [12] and MLP-Mixer [40] (i.e., self-

attention block and fully-connection block respectively).

ConvNeXt [25] aligns with Swin’s [24] design philosophy

to explore a strong modern CNN architecture equipped with

7× 7 depthwise convolution. RepLKNet [11] impressively

scales up the kernel size to 31 × 31 by re-parameterizing

a small kernel (e.g., 5 × 5) parallel to it and performs on

par with Swin Transformer [24]. Our work is also inspired

by LargeKernel3D [5], which introduces large kernel de-

sign into 3D networks and scales up to 17 × 17 × 17. In

contrast, we explore the extremety of 2D universal convolu-

tion, scaling up to a much larger 101× 101 in a human-like

pattern. SLaK [23] combines decomposed convolution with

dynamic sparsity to scale up kernels to 51×51 in the form of

stripe convolution (e.g., 51× 5 + 5× 51). However, it starts

to saturate as the kernel size continuous growing. Different

from those prior arts, we investigate which kind of convo-

lution form is more effective in large kernel designs. More

importantly, we explore the design of extremely large dense

kernel and test whether it can bring further gains.

2.2. Peripheral Vision for Machine Learning

Human vision has a special visual processing system termed

peripheral vision [21]. It partitions the entire visual field

into multiple contour regions depending on the distances

to the fovea, each characterized by a distinct resolution

granularity for recognition. The work of Rosenholtz [33]

discusses in depth important findings and existing myths

about peripheral vision, suggesting that peripheral vision

is more crucial to human perception on a range of differ-

5558

(a) Parameter Sharing.

peripheral vision

(b) Peripheral Convolution.

Figure 1. (a) Illustration of parameter sharing. Using a 3×3 convolution to parameterize a 5×5 convolution, the positions with the

same color share the same parameter. The corresponding sharing grid is [2, 1, 2]. (b) Illustration of peripheral convolution. Our sharing

grid contains two designs: i) focus and blur mechanism; ii) exponentially-increasing sharing grid.

ent tasks than previously thought. Following this, many

studies [2, 9, 10, 26, 34, 50] have been devoted to uncov-

ering the underlying principles and deep implications of pe-

ripheral vision mechanisms. Since peripheral vision plays

such a vital role in human vision, a number of pioneering

works [10, 13–15, 27, 46] dig into the linkage between pe-

ripheral vision and machine vision (e.g., CNNs). [45] in-

troduces a biologically-inspired mechanism to improve the

robustness of neural networks to small adversarial pertur-

bations. FoveaTer [18] uses radial-polar pooling regions to

dynamically allocate more fixation/computational resources

to more challenging images. PerViT [29] proposes to incor-

porate peripheral position encoding to the multi-head self-

attention layers to partition the visual field into diverse pe-

ripheral regions, showing that the network learns to perceive

visual data similarly to the way that human vision does.

Continuing previous study, this paper explores to blending

human peripheral vision with large kernel convnets, and in-

troduces a novel peripheral convolution to efficiently reduce

dense convolution’s parameters.

3. Dense Outperforms Stripe Consistently

We first investigate whether dense grid convolutions are

better than stripe convolutions. We take a unified modern

framework SLaK [23] to conduct this study. According

to RepLKNet [11], large kernel convolution boosts down-

stream tasks much more than ImageNet classification. So

we not only evaluate on ImageNet-1K but also on ADE20K

as our benchmark. We adopt the efficient large-kernel im-

plementation developed by MegEngine [1] in this paper.

Following SLaK [23], we train all models for a 120-

epoch schedule on ImageNet. The data augmentations,

regularization and hyper-parameters are all set the same.

We then use the pretrained models as the backbones on

ADE20K. Specifically, we use the UperNet [52] imple-

mented by MMSegmentation [7] with the 80K-iteration

training schedule. We do not use any advanced techniques

nor custom algorithms since we seek to evaluate the back-

bone only.

SLaK introduce a two-step recipe for scaling up kernel to

51× 51: 1) Decomposing a large kernel into two rectangu-

lar, parallel kernels; 2) Using dynamic sparsity and expand-

ing more width. In order to thoroughly analyze the effect of

convolution form, we conduct experiments both w/ and w/o

sparsity. By default, we re-parameterize a 5×5 convolution

to ease the optimization problem as taken by SLaK and Re-

pLKNet. The results of Table 1 show that dense grid con-

volution exceeds stripe convolution regardless of dynamic

sparsity.

We further explore convolution forms (i.e., K×K v.s.

K×N) under different kernel sizes. Specifically, we fix the

shorter edge of SLaK’s stripe conv to be 5 as the default

setting (N=5), and then gradually decrease K from 51 to

7. We do not use dynamic sparsity to give a sheer ablation

on convolutional forms. As shown in Fig. 2, dense grid con-

volution outperforms stripe convolution consistently among

multiple kernel sizes and the gains increase with the kernel

size, demonstrating the essential advantage of dense grid

large kernel convolution.

Nevertheless, as discussed in Section 1, the square com-

plexity of dense grid convolution can bring about prolifer-

ated parameters. For instance, as shown in Fig. 2, scaling

up kernel from 7 to 51 only bring about 7.3× params for

stripe conv while that for dense conv is 53.1×. Given that

the human’s peripheral vision has only a minimal number

of photoreceptor cells in the peripheral regions, we argue

that dense parameters are not necessary for peripheral in-

teractions. Motivated by this, we seek to reduce parameter

complexity by introducing the peripheral vision mechanism

while preserving the dense computation to keep dense con-

Table 1. Comparison w/ and w/o dynamic sparsity. Dense con-

volution outperforms stripe convolution both on ImageNet and

ADE20K.

Method Kernel Spasity Acc mIoU

SLaK-51 51×5 + 5×51 w/ 81.6 46.5

RepLK-51 51×51 w/ 81.7 46.9 (+0.4)

SLaK-51 51×5 + 5×51 w/o 81.3 46.1

RepLK-51 51×51 w/o 81.6 46.6 (+0.5)

5559

7 13 31 51
Kernel Size

45.6

45.9

46.2

46.5

46.8

A
D

E2
0K

 m
Io

U
 (%

)

0.7×

2.4×

13.7×

37.2×

1.0×

1.9×

4.4×
7.3×

+0.2%

+0.3%

+0.3%

+0.5%

Dense Conv
Stripe Conv

Figure 2. Comparison under different kernel sizes. We depict

the mIoU gains on ADE20K and the multiple of convolutional pa-

rameters. Dense grid convolution exceeds stripe convolution con-

sistently but brings rapidly-increasing parameters.

volution’s strong performance.

4. Parameter-efficient Large Kernel Network

4.1. Peripheral Convolution

Formally, a standard 2D convolution kernel consists of a 4-

D vector: w ∈ R
cin×cout×k×k, where cin stands for input

channels, cout is output channels, and k means the spatial

kernel dimension. We seek to parameterize w by a smaller

kernel wθ ∈ R
cin×cout×k′×k′

through spatial-wise parame-

ter sharing, where 0 < k′ ≤ k.

Firstly, we define the sharing grid S = [s0, s1, ..., sk′−1],

where
∑k′−1

i=0 si = k. According to S, we partition the k×k
positions into k′ × k′ regions:

for a, b = 0, 1, ..., k′ − 1,

Za,b =







(x, y)

∣

∣

∣

∣

∣

a−1
∑

i=0

si ≤ x <

a
∑

i=0

si,

b−1
∑

j=0

sj ≤ y <

b
∑

j=0

sj







(1)

For brevity, we stipulate that
∑−1

i=0 si = 0 in Eq. 1. Then

for any position (x, y) ∈ Za,b, we set w(x, y) = wθ(a, b).
In this way, we can utilize a small kernel to parameterize a

much larger kernel, achieving spatial-wise parameter shar-

ing. Fig. 1a depicts the illustration of this design.

Next, we elaborate on the key designs of our pe-

ripheral convolution. We denote the kernel radius of

wθ as r. For easier comprehension, here we reformu-

late the sharing grid into an axisymmetric form: S =
[s̄−r, s̄−r+1, ..., s̄−1, s̄0, s̄1, ..., s̄r−1, s̄r], where r = k′−1

2 .

Akin to human’s peripheral vision, the sharing grid of

our peripheral convolution mainly consists of two core de-

signs: i) Focus and blur mechanism. As shown in Fig. 1b,

Kernel Weight Positional Embedding Actual Kernel Weight

Figure 3. Illustration of kernel-wise positional embedding. The

position embedding enables the kernel to distinguish specific posi-

tions in the sharing region, making up the detail-capturing ability

of large kernels.

We keep fine-grained parameters in the central region of

the convolution kernel, where the sharing grid is set to 1

(i.e., not sharing). For the peripheral region, we utilize

large-range parameter sharing to exploit the spatial redun-

dancy of peripheral vision. We demonstrate in Section 5.4

that the fine granularity in the central region is of vital im-

portance, while the peripheral region can withstand a wide

range of parameter sharing without backfiring performance;

ii) Exponentially-increasing sharing granularity. Hu-

man vision declines in a quasi-exponential mode [31]. In-

spired by this, we design our sharing grid to grow in an

exponentially-increasing way. This design can elegantly re-

duce the parameter complexity of convolution from O(K2)
to O(logK), making it possible to further enlarge dense

convolution’s kernel size. Specifically, the sharing grid S is

constructed by:

s̄i =

{

1, if |i| ≤ rc
m(|i|−rc), if rc < |i| ≤ r

(2)

where rc is the radius of the central fine-grained region, m
is the base of the exponential growth and m is set to 2 by

default.

4.2. Kernel­wise Positional Embedding

Despite that the proposed peripheral convolution effectively

reduces the parameters for dense convolution, the large

range of parameter sharing may bring another issue: local

detail blurring in peripheral regions. Especially when the

kernel size is scaled up to more than 50 or even 100 in the

form of peripheral convolution, this phenomenon will be

further amplified when a single parameter needs to process

8× 8 or even 16× 16 peripheral regions.

To solve, we propose the kernel-wise positional embed-

ding. Formally, given a set of input features X , We pro-

cess these features by a convolution with kernel weights

w ∈ R
cin×cout×k×k. We initialize the position embedding

h ∈ R
cin×k×k with trunc normal [49] initialization. The

convolution process at the output position (x, y) can be rep-

resented as:

5560

Y (x, y) =

rw
∑

i=−rw

rw
∑

j=−rw

w(i, j) ·
(

X(x+ i, y+ j)+h(i, j)
)

(3)

where Y is the output. rw is the radius of the kernel w
and we have rw = k−1

2 .

As illustrated in Fig. 3, by introducing kernel-wise po-

sitional embedding for kernel, we can distinguish specific

locations in shared areas, so as to make up for the problem

of vague local details caused by sharing. Actually, this can

be viewed as adding bias with relative position information

to the input features. It is worth noting that all the kernels in

a stage share the same positional embedding h, thus the ad-

ditional parameters brought by h are negligible. This design

solves the position insensitivity problem caused by sharing

weights in a cheap and elegant way, especially for extremely

large kernels, e.g., 51× 51 and 101× 101.

4.3. Partial Peripheral Convolution

Large kernel convnets have been shown to have high chan-

nel redundancy [53] and suit well with sparsity [23]. Since

our peripheral convolution enables us to design larger dense

convolution with stronger spatial perception ability, we

hope to further exploit the channel redundancy of large con-

volution. We introduce an Inception-style design where

only partial channels of the feature map will be processed

by convolution. We follow a simple philosophy: more iden-

tity mapping to exploit the channel redundancy. Specif-

ically, for input X , we split it into two groups along the

channel dimension,

Xconv, Xid = Split(X)

= X:,:,:g, X:,:,g:

(4)

where g is the channel numbers of convolution branches and

set to 3
8Cin by default. Then the split inputs are fed into

peripheral convolution and identity mapping respectively,

X
′

conv = Peripheral Conv(Xconv)

X
′

id = Xid

(5)

Finally, the outputs from two branches are concatenated to

restore the original shape,

X
′

= Concat(X
′

conv, X
′

id). (6)

This design can be seen as a special case of Inception-

style structure, such as Inception [37], Shufflenet [28, 55]

and InceptionNeXt [53]. They utilize different operators in

parallel branches while we take a much simpler philosophy:

only peripheral convolution and identity mapping. We em-

pirically find that this design suits well for peripheral convo-

lutions with extremely large kernels, significantly reducing

FLOPs without backfiring performance.

4.4. Architecture Specification

Built on the above designs and observations, we now elabo-

rate the architectures of our Parameter-efficient Large Ker-

nel Network (PeLK). We mainly follow ConvNeXt and

SLaK to construct models with several sizes. Specifically,

PeLK also adopts a 4-stage framework. We build the stem

with a convolution layer with 4 × 4 kernels and 4 stride.

The block numbers of stages are [3, 3, 9, 3] for tiny size and

[3, 3, 27, 3] for small/base size. The kernel sizes for PeLK’s

different stages are [51, 49, 47, 13] by default. For PeLK-

101, the kernel sizes are scaled up to [101, 69, 67, 13].
By default, we keep the central 5 × 5 region to be fine-

grained. For PeLK-101, we enlarge the central region to

7 × 7 to adjust the increased kernel. Following SLaK, we

also use dynamic sparsity to enhance model capacity. All

the hyperparameters are set the same (1.3× width, 40%

sparsity). We give thorough ablations for kernel configu-

rations in section 5.4.

5. Experiments

In this section, we first conduct experiments on various es-

sential vision tasks to evaluate PeLK with state-of-the-art

baselines. Then in section 5.4 we comprehensively ablate

on the design principles of our peripheral convolution.

5.1. Semantic Segmentation

For semantic segmentation, we evaluate PeLK backbones

on the ADE20K benchmark [56], which consists of 25K

images and 150 semantic categories. We use the Uper-

Net [51] task layer for semantic segmentation. Following

Swin and ConvNeXt, We train Upernet for 160K iterations

with single-scale inference. The results are reported in Ta-

ble 2 with mean Intersection of Union (mIoU) as the eval-

uation metric. Our proposed PeLK exceeds previous state-

of-the-art models with remarkable improvements, demon-

strating the effectiveness of our framework.

5.2. Object Detection

For object detection/segmentation, we conduct experiments

with Cascade Mask R-CNN [3, 17] on MS-COCO [22].

Following ConvNeXt, we use the multi-scale setting and

default configurations in MMDetection [4]. The Cascade

Mask R-CNN model is trained with the 3x (36-epoch) train-

ing schedule. As shown in Table 3, PeLK achieves higher

mAP than state-of-the-art methods, samely validating our

superiority.

5.3. ImageNet Classification

The ImageNet-1K [8] dataset consists of 1000 object

classes with 1.28M training images and 50,000 validation

images. We extend the aforementioned training schedule

in Section 3 to 300 epochs for a fair comparison. we

5561

Table 2. Semantic segmentation comparison on ADE20K of dif-

ferent methods. We report the single-scale mIoU following Con-

vNeXt and SLaK. FLOPs are based on input sizes of (2048, 512).

Method
Kernel Params FLOPs mIoU

size (M) (G) (%)

Swin-T [24] N/A 60 945 44.5

ConvNeXt-T [25] 7-7-7-7 60 939 46.0

SLaK-T [23] 51-49-47-13 64 957 47.6

PeLK-T 51-49-47-13 62 970 48.1

Swin-S [24] N/A 81 1038 47.6

ConvNeXt-S [25] 7-7-7-7 82 1027 48.7

SLaK-S [23] 51-49-47-13 89 1057 49.4

PeLK-S 51-49-47-13 84 1077 49.7

Swin-B [24] N/A 121 1188 48.1

ConvNeXt-B [25] 7-7-7-7 122 1170 49.1

RepLKNet-B [11] 31-29-27-13 112 1170 49.9

SLaK-B [23] 51-49-47-13 131 1210 50.2

PeLK-B 51-49-47-13 126 1237 50.4

PeLK-B-101 101-69-67-13 126 1339 50.6

Table 3. Object detection comparison on COCO of different meth-

ods. FLOPs are based on input sizes of (1280, 800).

Method
Params FLOPs

APbox APmask

(M) (G)

Swin-T [24] 86 745 50.5 43.7

ConvNeXt-T [25] 86 741 50.4 43.7

PeLK-T 86 770 51.4 44.6

Swin-S [24] 107 838 51.8 44.7

ConvNeXt-S [25] 108 827 51.9 45.0

PeLK-S 108 874 52.2 45.3

Swin-B [24] 145 982 51.9 45.0

RepLKNet-B [11] 137 965 52.2 45.2

SLaK-B [23] 152 1001 52.5 45.5

ConvNeXt-B [25] 146 964 52.7 45.6

PeLK-B 147 1028 52.9 45.9

PeLK-B-101 147 1127 53.1 46.1

conduct experiments for PeLK-T/S/B with input resolution

224 × 224. For PeLK-B and PeLK-B-101, we further ex-

periment with input resolution of 384 × 384. More details

of the training configurations can be found in Appendix A.

We compare PeLK with other state-of-the-art architec-

tures under similar model size and FLOPs. As shown in Ta-

ble 4, our model outperforms powerful modern CNNs and

transformers like ConvNeXt [25] and Swin [24] by large

margins. Notably, further scaling up the kernel size to ex-

tremely large (e.g., PeLK-101) can achieve consistent im-

provements. It is important to note that very large dense

kernels are not intended for ImageNet classification, but our

PeLK still exhibits a promising performance.

Table 4. Image classification accuracy (%) comparison on

ImageNet-1K. We report the top-1 accuracy. Although very large

dense kernels are not intended for ImageNet classification, our

PeLK still exhibits a promising performance.

Method
Input Params FLOPs Top-1

size (M) (G) acc

Swin-T [24] 2242 28 4.5 81.3

T2T-ViTt-14 [54] 2242 22 6.1 81.7

PerViT-S [29] 2242 21 4.4 82.1

ConvNeXt-T [25] 2242 29 4.5 82.1

PeLK-T 2242 29 5.6 82.6

PVT-Large [47] 2242 61 9.8 81.7

T2T-ViTt-19 [54] 2242 39 9.8 82.4

PerViT-M [29] 2242 44 9.0 82.9

Swin-S [24] 2242 50 8.7 83.0

ConvNeXt-S [25] 2242 50 8.7 83.1

PeLK-S 2242 50 10.7 83.9

DeiT-B/16 [41] 2242 87 17.6 81.8

RepLKNet-31B [11] 2242 79 15.3 83.5

Swin-B [24] 2242 88 15.4 83.5

ConvNeXt-B [25] 2242 89 15.4 83.8

SLaK-B [23] 2242 95 17.1 84.0

PeLK-B 2242 89 18.3 84.2

ViT-B/16 [12] 3842 87 55.5 77.9

DeiT-B/16 [41] 3842 87 55.4 83.1

Swin-B [24] 3842 88 47.1 84.5

RepLKNet-31B [11] 3842 79 45.1 84.8

ConvNeXt-B [25] 3842 89 45.0 85.1

SLaK-B [23] 3842 95 50.3 85.5

PeLK-B 3842 89 54.0 85.6

PeLK-B-101 3842 90 68.3 85.8

5.4. Ablation Studies

Ablation on the sharing grid. We dive into what kind

of sharing and granularity benefits most. For ease of un-

derstanding, we firstly give two instances to clearly indi-

cate the sharing grid. For example, in Fig. 1a, we pa-

rameterize a 5 × 5 convolution using a 3 × 3 convolution,

where the corresponding sharing grid is [2, 1, 2]. Each num-

ber represents the grid size parameterized by a single pa-

rameter. For Fig. 1b, we parameterize 31 × 31 convolu-

tion with a 11 × 11 convolution, the corresponding gird is

[7, 4, 2, 1, 1, 1, 1, 1, 2, 4, 7]. Since the grid is symmetric at

the center 1 (which is the central point in the kernel), we

denote only half grid in Table 5 for simplicity.

We conduct experiments with the same 120-epoch

schedule on ImageNet as in Section 3. We use PeLK-T

without dynamic sparsity to give a sheer ablation on the

sharing grid. For the baseline, we make the sharing grid

to be all one (i.e., [1, 1, ..., 1]), in this way, it is equal to a

33×33 dense convolution as taken in RepLKNet. Results in

Table 5 demonstrate that: 1) the central fine granularity is of

vital importance, while the peripheral regions can withstand

5562

Table 5. Ablation study on sharing grid. No kernel-wise positional

embedding is used.

Sharing Grid Param Top-1 Acc

1 [1, 1, ..., 1, 1] 1.00× 81.4

2 [2, 2, 2, 2, 2, 2, 2, 2, 1] 0.27× 81.0

3 [2, 2, 2, 2, 2, 2, 2, 1, 1, 1] 0.33× 81.4

4 [4, 4, 4, 2, 1, 1, 1] 0.16× 81.3

5 [8, 4, 2, 1, 1, 1] 0.11× 81.4

6 [1, 1, 2, 4, 8, 1] 0.11× 80.5

Table 6. Ablation on the central fine-grained kernel size. Kernel-

wise positional embedding is used.

Sharing Grid Central Kernel Ratio Top-1 Acc

[11, 8, 4, 2, 1] 1× 1 0.04% 80.8

[10, 8, 4, 2, 1, 1] 3× 3 0.35% 81.1

[9, 8, 4, 2, 1, 1, 1] 5× 5 0.96% 81.6

[8, 8, 4, 2, 1, 1, 1, 1] 7× 7 1.88% 81.6

wide range of sharing. # 2, 3 show that keeping the central

5 × 5 region unshared is the key to keep performance; # 3,

4, 5 exhibit that sharing in peripheral regions will not back-

fire performance evidently. We term this characteristic as

focus-and-blur mechanism; 2) an exponentially-increasing

grid works best. Comparing # 4 with # 5, exponential gird

not only reduces the parameters needed but also boosts the

accuracy. From the above analysis, it can be seen that our

design enjoys both the least amount of parameters and the

highest performance.

Ablation on the central fine-grained area ratio. Ta-

ble 6 ablates the effect of varying central fine-grained kernel

size (i.e., the focus region). We also report the proportion of

the central region to the total kernel size. The results show

that the central region only takes about 1% proportion to

maintain the model’s high performance. However, the cen-

tral region can not be too small, which will lead to severe

performance degradation. Further increasing the central re-

gion does not bring additional benefits, but it brings addi-

tional parameters. In our main experiments, we keep the

central 5×5 region of PeLK as fine-grained, and for PeLK-

101, we enlarge the central region to 7 × 7 to maintain a

similar central ratio.

Ablation on the kernel configuration. Table 7 ablates

the configuration of kernel size in a 120 epoch schedule as

in Section 3. For the input resolution of 2242, enlarging

kernel size to 101 × 101 will not bring additional benefits;

while for input resolution of 3842, PeLK-101 obtains a clear

advantage over PeLK. Increasing kernel size to 152 × 152
leads to performance degradation, especially for input res-

olution of 2242. These phenomena are reasonable consid-

ering the input resolution. For a typical convnet like Con-

vNeXt or our PeLK, the stem layer will result in a 4× down-

0 200 400 600 800 1000
0

200

400

600

800

1000

RepLK [31, 29, 27, 13]
0 200 400 600 800 1000

0

200

400

600

800

1000

SLaK [51, 49, 47, 13]
0 200 400 600 800 1000

0

200

400

600

800

1000

PeLK [51, 49, 47, 13]

0.2

0.4

0.6

0.8

1.0

Figure 4. Effective receptive field (ERF) comparison. Our PeLK

has larger ERFs than SLaK and RepLK, spreading a wider area.

sampling of the input images. So for input 2242, a 51× 51
kernel is roughly able to cover the global feature map af-

ter stem. And for input 3842, a 101 × 101 kernel is equal

to a global convolution, thus continuing scaling up kernel

can not bring more global perception but only wasted pa-

rameters. This essentially suggests that kernel configuration

should be tightly related to the input size. Currently, for the

most commonly used 2242 and 3842 training, PeLK and

PeLK-101 are the suitable options respectively. Moreover,

with the development of hardware devices and computing

power in the future, our approach will hopefully shine fur-

ther when it is affordable to pretrain at higher resolutions.

6. Analysis

6.1. Visualization of ERFs.

Previous large kernel convnets like RepLKNet and SLaK

attribute their performance gains to their large Effective Re-

ceptive Fields (ERFs). Facilitated by peripheral convolu-

tion, PeLK has a much larger perception range. There-

fore, we argue that PeLK’s strong performance comes from

larger ERFs. To verify, we depict the ERFs following Re-

pLKNet and SLaK, we sample and resize 50 images from

the validation set to 1024 × 1024, and measure the con-

tribution of the pixel on input images to the central point

of the feature map generated in the last layer. The con-

tribution scores are further accumulated and projected to

a 1024 × 1024 matrix, as visualized in Fig 4. Our PeLK

spreads high-contribution pixels in a much larger ERF, vali-

dating our hypothesis and further exhibiting our effectivess.

Table 7. Ablation on the kernel size configuration. Kernel-wise

positional embedding is used.

Model Input Size Kernel Size Top-1 Acc

PeLK 224× 224 51-49-47-13 81.6

PeLK-101 224× 224 101-69-67-13 81.6

PeLK-151 224× 224 151-89-87-13 81.2

PeLK 384× 384 51-49-47-13 82.7

PeLK-101 384× 384 101-69-67-13 83.0

PeLK-151 384× 384 151-89-87-13 82.8

5563

0.05%

3.20%

24.80%

71.95%

87.4%

12.6%

FFN Conv Down-Sample Pos-EmbedHead Backbone

(a) FLOPs proportion of head & backbone (b) FLOPs proportion of backbone’s components

Figure 5. Analysis of FLOPs. (a) FLOPs proportion of head &

backbone. (b) FLOPs proportion of backbone’s components. The

head is UperNet and the backbone is PeLK-T respectively. FLOPs

are based on input sizes of (2048, 512).

6.2. Analysis of FLOPs

We provide a detailed breakdown of the FLOPs for the

PeLK-T architecture utilized in semantic segmentation in

Fig.5. As shown in Fig.5(a), we depict the FLOPs distri-

bution between the head (i.e., UperNet [51]) and backbone

(i.e., PeLK-T) of the model. In Fig.5(b), we give a com-

prehensive analysis of the FLOPs contributions from dif-

ferent components of the backbone (i.e., PeLK-T), includ-

ing FFNs, large-kernel convolutions, down-sampling lay-

ers, and kernel-wise positional embedding. There are two

noteworthy points. Firstly, large kernel convolutions ac-

count for approximately 25% of the overall FLOPs of the

backbone, thus further scaling up the kernel size does not

significantly increase the overall FLOPs. Secondly, the ex-

tra FLOPs introduced by positional embedding are minimal,

accounting for only 0.05% of the backbone’s FLOPs. So,

kernel-wise positional embed is both cheap and elegant.

6.3. Inference Throughput Measurement

We compare inference throughput measurement in Table 8.

The results are obtained on an A100 GPU with input res-

olution of 224 × 224. We use PyTorch 1.10.0 + cuDNN

8.2.0 and FP32 precision. Although SLaK uses stripe con-

volution to speed up the computation of very large kernel,

we still hold a clear speed advantage (i.e., 1.5× speedup).

This advantage is particularly remarkable considering that

PeLK outperforms SLaK on ADE20K, COCO and Ima-

geNet. More importantly, scaling up kernel to 101 only

brings minor speed overhead, further exhibiting our de-

sign’s merits in scaling properties.

Table 8. Inference throughput comparison on ImageNet-1K. The

results are in FP32 precision. We use an A100 GPU with PyTorch

1.10.0 + cuDNN 8.2.0 to conduct this experiment.

Models Input Kernel Size Throughput

SLaK-T [23] 2242 51-49-47-13 754

PeLK-T 2242 51-49-47-13 1138

PeLK-101-T 2242 101-69-67-13 1077

7 13 21 31 41 51 61 101 151
Kernel Size

25

50

75

100

125

150

175

#P
ar

am
 (M

)

Dense Conv
Peripheral Conv

Figure 6. Scaling efficiency comparison. We compare the model

size with a set of kernel sizes from 7 to 151. Our peripheral convo-

lution has a clear advantage, bringing minor parameter overhead.

6.4. Kernel Scaling Efficiency.

Our peripheral convolution reduces the parameter complex-

ity of dense convolutions from O(K2) to O(logK), which

enables us to scale up kernel size with a remarkably minor

model size overhead. To demonstrate this, we simply re-

place all the kernels in stages of ConvNeXt-T with a set of

kernel sizes from 7 to 151 and report the required number

of parameters. As shown in Fig 6, our approach exhibits a

remarkable scaling advantage, and we can see a clear gap

when the kernel size is larger than 50. Using dense con-

volution results in a rapidly growing model size, which is

unacceptable in practice. In contrast, our peripheral convo-

lution incurs only a minor model size overhead, making it

possible to design extremely large kernel convnets.

7. Conclusion

This paper explores the design of extremely large kernel

convolutional neural networks. We propose a new form of

convolution termed peripheral convolution, which can re-

duce the parameter complexity of dense convolution from

O(K2) to O(logK) while keeping dense convolution’s

merits. Built upon the proposed peripheral convolution, we

design extremely large dense kernel CNNs and achieve no-

table improvements across a variety of vision tasks. Our

strong results suggest biologically inspired mechanisms can

make a promising tool to boost modern network design.

Acknowledgments

This work is supported in part by the National Key R&D

Program of China (Grant No.2022ZD0116403), the Na-

tional Natural Science Foundation of China (Grant No.

61721004), and the Strategic Priority Research Program of

Chinese Academy of Sciences (Grant No. XDA27000000).

We thank Yurong Zhang for the help in the depiction of

Fig.1(b) and Bo Zhang for technical support.

5564

References

[1] Megengine:a fast, scalable and easy-to-use deep learning

framework. https://github.com/MegEngine/

MegEngine, 2020. 3

[2] Benjamin Balas, Lisa Nakano, and Ruth Rosenholtz. A

summary-statistic representation in peripheral vision ex-

plains visual crowding. Journal of vision, 9(12):13–13, 2009.

2, 3

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-

ing into high quality object detection. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 6154–6162, 2018. 5

[4] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu

Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,

Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-

box and benchmark. arXiv preprint arXiv:1906.07155, 2019.

5

[5] Yukang Chen, Jianhui Liu, Xiangyu Zhang, Xiaojuan Qi, and

Jiaya Jia. Largekernel3d: Scaling up kernels in 3d sparse

cnns. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 13488–13498,

2023. 2

[6] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-

ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.

Twins: Revisiting the design of spatial attention in vision

transformers. Advances in Neural Information Processing

Systems, 34:9355–9366, 2021. 1

[7] MMSegmentation Contributors. MMSegmentation:

Openmmlab semantic segmentation toolbox and

benchmark. https : / / github . com / open -

mmlab/mmsegmentation, 2020. 3

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 5

[9] Arturo Deza and Miguel Eckstein. Can peripheral repre-

sentations improve clutter metrics on complex scenes? Ad-

vances in neural information processing systems, 29, 2016.

2, 3

[10] Arturo Deza and Talia Konkle. Emergent proper-

ties of foveated perceptual systems. arXiv preprint

arXiv:2006.07991, 2020. 2, 3

[11] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang

Ding. Scaling up your kernels to 31x31: Revisiting large

kernel design in cnns. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, pages

11963–11975, 2022. 1, 2, 3, 6

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020. 1, 2, 6

[13] Lex Fridman, Benedikt Jenik, Shaiyan Keshvari, Bryan

Reimer, Christoph Zetzsche, and Ruth Rosenholtz. Sideeye:

A generative neural network based simulator of human pe-

ripheral vision. arXiv preprint arXiv:1706.04568, 2017. 3

[14] Stephen Gould, Joakin Arfvidsson, Adrian Kaehler, Ben-

jamin Sapp, Marius Messner, Gary Bradski, Paul Baum-

starck, Sukwon Chung, Andrew Y Ng, et al. Peripheral-

foveal vision for real-time object recognition and tracking

in video. 2007.

[15] Anne Harrington and Arturo Deza. Finding biological plau-

sibility for adversarially robust features via metameric tasks.

In SVRHM 2021 Workshop@ NeurIPS, 2021. 3

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 5

[18] Aditya Jonnalagadda, William Yang Wang, BS Manjunath,

and Miguel P Eckstein. Foveater: Foveated transformer

for image classification. arXiv preprint arXiv:2105.14173,

2021. 3

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Advances in neural information processing systems,

25, 2012. 1, 2

[20] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

1

[21] Jerome Y Lettvin et al. On seeing sidelong. The Sciences,

16(4):10–20, 1976. 2

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

Computer Vision–ECCV 2014: 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings,

Part V 13, pages 740–755. Springer, 2014. 5

[23] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao

Xiao, Boqian Wu, Mykola Pechenizkiy, Decebal Mocanu,

and Zhangyang Wang. More convnets in the 2020s: Scal-

ing up kernels beyond 51x51 using sparsity. arXiv preprint

arXiv:2207.03620, 2022. 1, 2, 3, 5, 6, 8

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. In

Proceedings of the IEEE/CVF international conference on

computer vision, pages 10012–10022, 2021. 1, 2, 6

[25] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-

enhofer, Trevor Darrell, and Saining Xie. A convnet for the

2020s. In Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, pages 11976–11986,

2022. 1, 2, 6

[26] Chin Ian Lou, Daria Migotina, Joao P Rodrigues, Joao

Semedo, Feng Wan, Peng Un Mak, Pui In Mak, Mang I Vai,

Fernando Melicio, J Gomes Pereira, et al. Object recognition

test in peripheral vision: a study on the influence of object

color, pattern and shape. In Brain Informatics: International

Conference, BI 2012, Macau, China, December 4-7, 2012.

Proceedings, pages 18–26. Springer, 2012. 2, 3

5565

[27] Hristofor Lukanov, Peter König, and Gordon Pipa. Bio-

logically inspired deep learning model for efficient foveal-

peripheral vision. Frontiers in Computational Neuroscience,

15:746204, 2021. 3

[28] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European conference on

computer vision (ECCV), pages 116–131, 2018. 5

[29] Juhong Min, Yucheng Zhao, Chong Luo, and Minsu Cho.

Peripheral vision transformer. Advances in Neural Informa-

tion Processing Systems, 35:32097–32111, 2022. 3, 6

[30] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and

Jian Sun. Large kernel matters–improve semantic segmen-

tation by global convolutional network. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 4353–4361, 2017. 2

[31] RT Pramod, Harish Katti, and SP Arun. Human peripheral

blur is optimal for object recognition. Vision research, 200:

108083, 2022. 4

[32] Maithra Raghu, Thomas Unterthiner, Simon Kornblith,

Chiyuan Zhang, and Alexey Dosovitskiy. Do vision trans-

formers see like convolutional neural networks? Advances

in Neural Information Processing Systems, 34:12116–12128,

2021. 1

[33] Ruth Rosenholtz. Capabilities and limitations of peripheral

vision. Annual review of vision science, 2:437–457, 2016. 2

[34] Ruth Rosenholtz. Demystifying visual awareness: Periph-

eral encoding plus limited decision complexity resolve the

paradox of rich visual experience and curious perceptual fail-

ures. Attention, Perception, & Psychophysics, 82(3):901–

925, 2020. 2, 3

[35] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1, 2

[36] Hans Strasburger, Ingo Rentschler, and Martin Jüttner. Pe-

ripheral vision and pattern recognition: A review. Journal of

vision, 11(5):13–13, 2011. 2

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

5

[38] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

2

[39] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2818–2826, 2016. 2

[40] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-

cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,

Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al.

Mlp-mixer: An all-mlp architecture for vision. Advances

in neural information processing systems, 34:24261–24272,

2021. 2

[41] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through at-

tention. In International conference on machine learning,

pages 10347–10357. PMLR, 2021. 6

[42] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through at-

tention. In International conference on machine learning,

pages 10347–10357. PMLR, 2021. 1

[43] Asher Trockman and J Zico Kolter. Patches are all you need?

arXiv preprint arXiv:2201.09792, 2022. 2

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017. 1

[45] Manish Reddy Vuyyuru, Andrzej Banburski, Nishka Pant,

and Tomaso Poggio. Biologically inspired mechanisms for

adversarial robustness. Advances in Neural Information Pro-

cessing Systems, 33:2135–2146, 2020. 3

[46] Panqu Wang and Garrison W Cottrell. Central and peripheral

vision for scene recognition: A neurocomputational model-

ing exploration. Journal of vision, 17(4):9–9, 2017. 3

[47] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao

Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.

Pyramid vision transformer: A versatile backbone for dense

prediction without convolutions. In Proceedings of the

IEEE/CVF international conference on computer vision,

pages 568–578, 2021. 1, 6

[48] William H Warren and Kenneth J Kurtz. The role of cen-

tral and peripheral vision in perceiving the direction of self-

motion. Perception & psychophysics, 51(5):443–454, 1992.

2

[49] Ross Wightman. Pytorch image models. https:

//github.com/rwightman/pytorch- image-

models, 2019. 4

[50] Maarten WA Wijntjes and Ruth Rosenholtz. Context miti-

gates crowding: Peripheral object recognition in real-world

images. Cognition, 180:158–164, 2018. 2, 3

[51] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and

Jian Sun. Unified perceptual parsing for scene understand-

ing. In Proceedings of the European conference on computer

vision (ECCV), pages 418–434, 2018. 5, 8

[52] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and

Jian Sun. Unified perceptual parsing for scene understand-

ing. In Proceedings of the European conference on computer

vision (ECCV), pages 418–434, 2018. 3

[53] Weihao Yu, Pan Zhou, Shuicheng Yan, and Xinchao Wang.

Inceptionnext: When inception meets convnext. arXiv

preprint arXiv:2303.16900, 2023. 5

[54] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,

Zi-Hang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng

Yan. Tokens-to-token vit: Training vision transformers from

5566

scratch on imagenet. In Proceedings of the IEEE/CVF in-

ternational conference on computer vision, pages 558–567,

2021. 6

[55] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

6848–6856, 2018. 5

[56] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-

dler, Adela Barriuso, and Antonio Torralba. Semantic under-

standing of scenes through the ade20k dataset. International

Journal of Computer Vision, 127:302–321, 2019. 5

5567

