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Abstract
Domain Generalization (DG) aims to resolve distribu-

tion shifts between source and target domains, and cur-
rent DG methods are default to the setting that data from
source and target domains share identical categories. Nev-
ertheless, there exists unseen classes from target domains
in practical scenarios. To address this issue, Open Set
Domain Generalization (OSDG) has emerged and several
methods have been exclusively proposed. However, most ex-
isting methods adopt complex architectures with slight im-
provement compared with DG methods. Recently, vision-
language models (VLMs) have been introduced in DG fol-
lowing the fine-tuning paradigm, but consume huge train-
ing overhead with large vision models. Therefore, in this
paper, we innovate to transfer knowledge from VLMs to
lightweight vision models and improve the robustness by
introducing Perturbation Distillation (PD) from three per-
spectives, including Score, Class and Instance (SCI), named
SCI-PD. Moreover, previous methods are oriented by the
benchmarks with identical and fixed splits, ignoring the di-
vergence between source domains. These methods are re-
vealed to suffer from sharp performance decay with our
proposed new benchmark Hybrid Domain Generalization
(HDG) and a novel metric H2-CV, which construct var-
ious splits to comprehensively assess the robustness of
algorithms. Extensive experiments demonstrate that our
method outperforms state-of-the-art algorithms on multi-
ple datasets, especially improving the robustness when con-
fronting data scarcity.

1. Introduction
Deep learning has attained remarkable success on var-

ious downstream tasks in computer vision, typically un-
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Figure 1. The balance between model performance and training
time consumption. Model performance is evaluated on the average
H-score of different splits based on the proposed HDG benchmark.
Our method achieves superior performance with less training time
compared with state-of-the-art (SOTA) methods in OSDG.

der the presumption that both training and test samples
are Independent and Identically Distributed (IID) with the
same label space. However, real-world data often exhibits
unpredictable distributions, leading to the failure of deep
neural networks. To address such distribution shifts, Do-
main Generalization (DG) is first introduced to leverage
data from multiple source domains to achieve generaliza-
tion on unseen target domains, from the perspective of
domain-invariant learning [16, 27, 32, 37, 39, 43], data
augmentation [8, 23, 52, 58, 59], and learning strategies
[2, 6, 20, 30, 48, 56]. However, it has been observed
that most existing domain generalization methods assume
a closed-set distribution, where the label space remains
identical across the source and target domain. To address
this limitation, Open Set Domain Generalization (OSDG)
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Figure 2. Illustration on the significance of the proposed HDG
benchmark. Previous DG benchmarks are evaluated on a single
split, producing unreliable conclusions for algorithms in practical
usage. We claim that robust algorithms should possess stable per-
formance on diverse data distributions.

has emerged to resolve unseen classes from target domains
[4, 24, 33, 40, 49, 61]. Nevertheless, most of these methods
entail considerable computational costs but with little im-
provement that are impractical for real-world applications.

Recently, Vision-Language Models (VLMs) have shown
powerful zero-shot transfer ability [22, 28, 38] on vari-
ous downstream tasks. Then several researches have ex-
plored plausible solutions for VLMs on Out-of-Distribution
(OOD) generalization [3, 7, 21, 31, 41]. However, most so-
lutions focus on fine-tuning or re-training the vision models
to achieve high performance on the exclusive task, but in-
evitably suffer from large memory usage and computational
costs. In contrast, our proposed perturbation distillation
method can distill knowledge from large-scale VLMs to
any lightweight vision models that introduces perturbation
from three perspectives, including score, class and instance,
named SCI-PD. As presented in Fig. 1, our approach sur-
passes conventional DG and OSDG methods with a large
margin. Compared with VLM-based fine-tuning meth-
ods, our method achieves superior performance with similar
training time.

Existing DG and OSDG methods are mostly evaluated
on the benchmark that the label sets of multiple source do-
mains are identical and fixed [32, 40, 49, 52]. Nevertheless,
datasets derived from different resources in real-world ap-
plications merely contain a random subset of total classes,
making it challenging to establish identical and fixed label
sets across source domains. Therefore, to thoroughly eval-
uate the practical applicability of DG and OSDG methods,
we propose a new benchmark called Hybrid Domain Gen-
eralization (HDG). As shown in Fig. 2, HDG comprises of

various splits to illustrate the diverse class discrepancy be-
tween source domains, producing reliable conclusions for
algorithms in practical usage. Moreover, a novel metric H2-
CV is proposed to measure the comprehensive robustness of
the algorithms.

In summary, this paper aims to enhance the practicality
of domain generalization from the perspective of algorithm,
benchmark and metric, which can be summarized as fol-
lows,
• We propose a more practical method, called SCI-PD

based on VLMs to address the OSDG task. We dismiss
the fine-tuning or re-training paradigm, and design pertur-
bation from score, class and instance to distill lightweight
vision models. To the best of our knowledge, we are the
first to transfer knowledge from VLMs to lightweight vi-
sion models for OSDG.

• We propose a more practical task of domain generaliza-
tion, called Hybrid Domain Generalization (HDG), which
is open set and the label sets of different source domains
are disparate and diverse. Meanwhile, a new evalua-
tion metric H2-CV is proposed to comprehensively assess
model robustness.

• Experimental results on different HDG benchmarks man-
ifest the superior performance of our method in compari-
son with previous DG, OSDG and VLM-based methods.
SCI-PD not only achieves state-of-the-art performance on
accuracy of source and target classes, but also shows pow-
erful robustness under the proposed metric H2-CV.

2. Related Work
Domain Generalization intends to train a model from

multiple source domains and migrate to arbitrary unseen
target domains. Currently, DG methods can be roughly
divided into three categories, including domain-invariant
learning [16, 27, 32, 37, 39, 43], data augmentation [8, 23,
52, 58, 59], and learning strategies [2, 6, 20, 30, 48, 56].
Most methods have achieved outstanding performance, but
inevitably indulge complex architectures and require exten-
sive training strategies that are impractical in real-world
scenarios. In this context, appropriate perturbation on in-
stance and feature has succeeded with little extra computa-
tional costs [52, 59]. From this perspective, we propose a
novel perturbation distillation method on vision-language
models that can be transferred to any lightweight vision
models.

Open Set Domain Generalization has recently been
proposed as a promising solution to tackle the impracticality
of closed-set distribution in domain generalization. To the
best of our knowledge, there are only few related works that
specifically address this issue [4, 24, 33, 40, 49, 61]. [40]
pioneers the formation of diverse label sets across source
and target domains, introducing a feature-level augmenta-
tion and a label-level distillation with meta-learning. [24]
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designs a decoupling loss to refine the feature representation
of unknown samples, thereby constructing a distinguish-
able feature space. Recent study from [33] acknowledges
the computational costs of [40] and proposes to integrate
its techniques with conventional DG methods. [4] designs
a post hoc modification on test-time unknown rejection to
discriminate test data for safe deployment. [49] considers
gradient matching across both inter-class and inter-domain
splits via meta-learning, yet it requires an identical label
distribution for source domains. Furthermore, [61] pro-
poses a more challenging scenarios, Open-Set Single Do-
main Generalization (OS-SDG), which the model is exclu-
sively trained on a single source domain. It leverages adver-
sarial learning to simulate the data distribution of unknown
classes. To sum up, while the aforementioned methods have
shed light on OSDG, they are concurrently constrained on
model robustness and computational costs.

Vision-Language Models have achieved great advance-
ments in pretraining on large-scale image-text datasets
[22, 28, 38]. Recently, the Contrastive Language-Vision
Pre-training [38] method achieves remarkable performance
on downstream tasks. Most recent studies [13, 51, 60] ad-
heres to the fine-tuning and re-training paradigm tailored
to specific downstream tasks. Inspired by these studies,
several methods [3, 7, 21, 41] have concentrated on how
to transfer knowledge from CLIP models to OOD scenar-
ios. [3] leverages mutual information from vision-language
models to guide the training of the task-specific model. [41]
designs a semantic training objective with a novel optimiza-
tion strategy from the perspective of fine-tuning CLIP mod-
els. [7] proposes diverse learnable vectors as pseudo-words
to synthesize novel styles in prompts for source-free do-
main generalization. [21] considers to enforce the image
embedding from smaller models closer to the correspond-
ing text embedding from VLMs for DG task. Nevertheless,
there are no explorations on distillation of CLIP models to
lightweight vision models for OSDG.

Knowledge Distillation (KD) has been studied in early
stage to transfer knowledge from teacher models to stu-
dent models [18, 34]. Techniques in KD have evolved into
various aspects, such as self-distillation that has achieved
comparable performance [54, 55]. Recently, distillation
on CLIP models have become a promising solution on
diverse downstream tasks. [14, 41, 53, 57] concentrate
on fine-tuning vision models for uni-modal tasks, while
[9, 12, 35, 44] focuse on multi-modal tasks. Despite the
aforementioned success of KD, there are only few tech-
niques that specifically address domain generalization. [50]
proposes a teacher-to-student distillation network with a
regularization term on gradients. [26] introduces a novel
training objective that imposes penalties on discrepancies
between single logits and ensembled counterparts. [42] pro-
poses self-distillation on classification token between ran-

dom intermediate transformer blocks and final blocks, but
is exclusively designed for Vision Transformers (ViT) [11]
that limits practicality.

3. Method
In this section, we first introduce the preliminaries of

OSDG and CLIP model. Then a detailed description on our
method SCI-PD is presented, as shown in Fig. 3.

3.1. Preliminaries

Open Set Domain Generalization. Suppose there are
multiple source domains D1,D2, ...,DS for training, where
each domain Ds = {(xs, ys)}ns

s=1 consists of ns data-label
pairs with unique label set Cs. Also, there are certain tar-
get domains where domain Dt = {(xt, yt)}nt

t=1 has diverse
label set Ct. Assume the union of label sets from source
domains C1, C2, ..., CS as C, then Ca = C ∪ Ct represents
the total label sets, whereas Cu = Ca \ C is label sets of
unknown classes. The goal of OSDG is to train models on
source domains, and generalize well on the unseen target
domains with unknown classes, where the target sample xt

should be classified as the correct class if it belongs to C or
should be labeled as “unknown” if it belongs to Cu. Simi-
lar to domain generalization, no data and label from target
domains are available for training.

CLIP model [38]. The CLIP model consists of an image
encoder fI and a text encoder fT . Previous studies on CLIP
model for zero-shot inference on downstream tasks usu-
ally adopt the following procedure. First, each target class
c ∈ Ct is transformed using a template such as “a photo of
a {c}”. Then, the text encoder transforms the class tokens
from all classes into the text embeddings Et = [eti]

N
i=1,

while an image encoder simultaneously encodes the input
images into the image embeddings Ef = [efi]

B
i=1, where

N is the number of known classes and B denotes the num-
ber of instances in a batch. Finally, the cosine similarity of
the image embedding and the text embedding is calculated
as si = ⟨eti, efi⟩, and the class with the maximum cosine
similarity is the predicted label of the image.

As recent studies focus on how to finetune CLIP for
downstream tasks, we observe that a simple variant of
cross-entropy loss is employed with remarkable achieve-
ment [18]. Specifically, the similarity between each image
embedding with different text embeddings is calculated as
s = {s1, s2, ...sN}, and is then normalized using Softmax
function,

p̂s = S (s;λ) =
exp(si/λ)∑N
i=1 exp(si/λ)

(1)

where S is Softmax function and λ is the conventional tem-
perature in CLIP. Note that λ equals to 1 when omitted.
Then, the normalized similarity is leveraged to guide the
classification process,

Lbase = CE(p, p̂s) (2)
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Figure 3. The overall framework of our method SCI-PD, including Score Perturbation (SP), Instance Perturbation (IP) and Class Pertur-
bation (CP). SP saturates GT information into the similarity scores from CLIP to exploit semantics. IP excavates underlying semantics in
instances via the weight distribution. CP saturates semantics from pretrained text embeddings to the class weights of the classifier.

where p represents the output from the downstream image
encoder and the classifier, and CE(·; ·) represents the cross-
entropy loss. Note that we denote this method as CLIPBase
for abbreviation.

3.2. Score Perturbation

The success of CLIPBase makes us reconsider the dif-
ference between CLIPBase and the baseline method ERM
[25] in DG. CLIPBase takes the similarity p̂s from CLIP as
supervision. We observe that the distribution of p̂s contains
affluent semantics which are essential for domain-invariant
learning, but it inevitably introduces redundant noise from
incorrect predictions. ERM merely utilizes the Ground-
Truth (GT) label for supervision, but rigidly restricts seman-
tics and introduces domain-specific information that mis-
lead model convergence. Consequently, we introduce Score
Perturbation (SP) to balance semantics from CLIP and GT
labels.

Specifically, suppose a sample from source domains as
xs whose GT label is ys and the similarity from CLIP is
p̂s ∈ R1×N . We obtain the index yc of the maximum simi-
larity p̂s as the predicted label from CLIP. Obviously, there
appears to be misclassified samples that yc ̸= ys. Thus, we
design masks that follows the formula:

mask =

{
1, yc ̸= ys

0, yc = ys
∈ R1×N (3)

where 1 and 0 are all-ones matrix and all-zeros matrix, re-
spectively. Then we saturate the GT labels into the sim-
ilarity from CLIP based on the mask. Suppose the max-

imum similarity as p̂s,max and the one-hot label of ys as
ys ∈ R1×N . We establish the score perturbation PL as,

PL = mask ⊙ (p̂s,max × ys) ∈ R1×N (4)

where × denotes the cross product and ⊙ is the Hadamard
product. Then we add this perturbation to the similarity p̂s
with a τ -Softmax for normalization,

p̂l = S (p̂s + PL; τ) (5)

The proposed SP has two-fold advantages. Firstly, SP re-
mains the distribution of p̂s that successfully preserves the
semantics that boost the domain-invariant learning. Sec-
ondly, SP saturates perturbation from accurate GT labels
that suppress semantic noises from CLIP.

3.3. Instance Perturbation

The similarity from CLIP is to quantify the relations be-
tween an image and all the classes. Consequently, instances
with sharp distribution of p̂s manifest low similarity relative
to other classes, whose semantics are scarce for domain-
invariant learning. In contrast, a more uniform distribution
of p̂s suggests that the instance share more commonalities
with other classes, in which the abundant semantics are im-
plicitly included. From this perspective, we observe that
the original objective Lbase in Eq. 2 equally address all in-
stances that semantics from a more uniform distribution are
constrained.

We propose instance perturbation to excavate more un-
derlying semantics. The maximum similarity p̂s,max rep-
resents the certainty of CLIP model on the classification of
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the image xs, and lower certainty stands for a higher possi-
bility for affluent semantics, and vice versa. Consequently,
we use a exponential reciprocal as the perturbation,

PI = (
1

p̂s,max
)α (6)

Then, the total classification loss can be defined with the
saturation on score perturbation and instance perturbation
as follows,

Lsip = PI · CE(p, p̂l) (7)

3.4. Class Perturbation

CLIP is trained with the objective of a contrastive loss
between the image and the text modality. However, most
downstream vision tasks merely use the pretrained image
encoder from CLIP with a new classifier as the network
[3, 51]. Thus, when fine-tuning the downstream vision
model, the alignment between two modalities are broken
that deteriorates the performance [41]. From this perspec-
tive, we design class perturbation to saturate the semantics
from pretrained text encoder to the classifier.

Let W ∈ RN×Cw denotes the weight of the classifier,
and first the L2-norm is applied on Et and W . Then, we
design the class perturbation as the similarity of Et,

PC = Et · ET
t (8)

Next, we add the perturbation by pulling the similarity be-
tween Et and W closer to the perturbation PC with loss
Lcp,

St,w = W · ET
t (9)

Finally, the class perturbation loss is:

Lcp = CE(S (St,w),S (PC))

+ CE(S (ST
t,w),S (PT

C ))
(10)

3.5. Train and Inference

Combining the two losses, the final training objective is:

LSCI−PD = Lsip + β × Lcp (11)

where β is the trade-off hyper-parameter between the clas-
sification loss and the class perturbation loss.

For inference, all algorithms follow the same procedure
proposed in [33, 40, 49].

4. Hybrid Domain Generalization
Hybridness. We start from the definition of hybrid-

ness H that illustrates the insight of the proposed HDG.
As source domains derived from diverse resources are diffi-
cult to maintain identical label sets, H is designed to mea-
sure the discrepancy between label sets of source domains.
Specifically, let the intersection of the label sets from two
source domains as Ci,j = Ci ∩ Cj , and all combinations of

two source domains as U whose total number of combina-
tion pairs is,

|U | = C2
M =

M(M − 1)

2
(12)

where |·| denotes the number of elements and M is the num-
ber of source domains. Thus, the hybridness H is defined
as,

H =

∑U
(i,j) |Ci,j |
N |U | (13)

The hybridness can simultaneously reflect the overlap be-
tween source domains and the severity of data scarcity. A
smaller H signifies a less overlap between source domains
and a greater data scarcity.

Conventional Benchmarks. With the definition of hy-
bridness, all the conventional benchmarks are unified and
evaluated only under a single scenario. Specifically, the
OSDG benchmark was initially introduced in [40] that aims
to evaluate the accuracy across both known and unknown
categories. However, H is fixed that is not sufficient to
evaluate model robustness. The most recent work [49]
on OSDG is constrained to identical label space across
source domains, which is less persuasive because it man-
dates H = 1. Furthermore, [61] proposes an OS-SDG
benchmark, which is less challenging compared with the
situation when H = 0. Besides, it has no appropriate met-
ric to evaluate model robustness.

HDG Benchmark. In practice, label sets of different
source domains are disparate and diverse. However, previ-
ous methods are oriented by conventional benchmarks with
a fixed hybridness that are not practical, and exhibit sig-
nificant performance degradation when hybridness changes
or even are infeasible for implementation under other hy-
bridness. Therefore, we modify the hybridness to build
the HDG benchmark. Specifically, we pre-set four dif-
ferent representative H to establish four splits, including
0, 1

2M , 1
M , 1 (detailed splits for each dataset are presented

in the supplementary material). Meanwhile, we propose
a new evaluation metric H2-CV to comprehensively assess
the robustness of the algorithms based on the H-score from
different H. Specifically, H2-CV utilizes the coefficient of
variation in Statistics to evaluate the dispersion of a distri-
bution. Suppose the set of discrete values of H-score on
different H is S, then the formula of H2-CV is,

H2-CV =
σ(S)

S
× 100% (14)

where σ(S) is the standard deviation value and S is the
mean value. Consequently, an algorithm with low H2-CV
means a small σ(S) and a large S that is considered as ro-
bust. Meanwhile, we adopt two other evaluation metrics:
Top-1 accuracy and H-score [1], which have been widely
utilized to assess the accuracy on known categories and un-
known categories.
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5. Experiments

5.1. Experiment Setup

We conduct experiments on three datasets for domain
generalization, including PACS [29], OfficeHome [47] and
DomainNet [36] on the proposed HDG benchmark. We
adopt CLIP model [38] with ViT-B/16 [11] as the image
encoder, and select ResNet18 [17] pretrained on ImageNet
[10] as the lightweight vision model if not specified. We
follow the leave-one-domain-out evaluation protocol on all
datasets, and select the model with the best accuracy on val-
idation splits for testing. The evaluation metrics are Top-1
accuracy, H-score and the proposed H2-CV. More dataset
and implementation details can be found in the supplemen-
tary material.

5.2. Comparison with State-of-the-Art Methods

We compare the proposed method with 12 methods, in-
cluding ERM [25], CORAL [43], MMD [30], RSC [20],
MixStyle [59], CIRL [32], XDED [26], RISE [21] for
closed-set DG; ARPL [5], DAML [40], EDir-CORAL [33],
MEDIC [49] for OSDG. For a fair comparison, we conduct
the baseline of VLM-based method CLIPBase as clarified in
Section 3. Note that the accuracy and H-score on different
H is the average of all domains following the leave-one-
domain-out protocol. We report the detailed results on each
domain in the supplementary material.

OfficeHome [47]. As shown in Table 1, it can be ob-
served that our method SCI-PD surpasses all other SOTA
methods on the three metrics. Concretely, our method ex-
ceeds the SOTA method XDED [26] with 3.91% on accu-
racy and 4.37% on H-score. Meanwhile, the metric H2-CV
is capable to show the robustness of the algorithms. XDED
can achieve comparable performance when H = 1, but per-
formance degrades on other settings that results in a high
H2-CV with poor robustness. CORAL [43] is considered as
a robust algorithm with a low H2-CV of 6.47%, and the H2-
CV of EDir-CORAL [33] decreases compared with DAML
[40]. Compared with the baseline method CLIPBase on
VLMs, SCI-PD can improve 3.62% and 3.41% on accuracy
and H-score and a further 1.20% improvement on H2-CV
that proves the effectiveness of the proposed method. More-
over, although RISE is a recent CLIP-based DG algorithm,
it performs 7.43% and 5.92% worse than SCI-PD where the
performance drops significantly when H = 0. Furthermore,
Fig. 4 illustrates that the proposed method holds the capa-
bility for enhancing performance on all domains rather than
a single domain. Especially the variance in the Art domain
evidently validates the robustness of our method that the
discrepancy between different H is small.

PACS [29]. As PACS is a relatively simple benchmark
with merely 7 classes, we observe that the SOTA meth-
ods, such as XDED [26] and CIRL [32] on closed-set DG,

(a) Art (b) Clipart

(c) Product (d) Real World

Figure 4. H-score on different domains under diverse hybridness
H for OfficeHome.

achieve comparable performance with VLM-based method
under the setting H = 1 in Table 2. However, they suf-
fer from 18.76% and 14.49% decay on H-score compared
with SCI-PD when H = 1/6. Meanwhile, results on H2-
CV shows that the variation of the robustness on different
methods is high. As the SOTA methods CIRL and XDED
achieve comparable performance on accuracy and H-score,
CIRL obviously has better robustness. Moreover, RISE [21]
merely performs well when H = 1, but suffers from 6.29%
on H2-CV that demonstrates the low robustness. MEDIC
[49] is even constrained with H = 1 that cannot be em-
ployed on other settings, limiting its practicality in real-
world applications. From this perspective, SCI-PD exceeds
all methods on the robustness and stability.

DomainNet [36]. We refer to the results in DomainBed
[15] and discover that ERM [25] is a strong baseline in Do-
mainNet, surpassing most DG methods. Thus, we merely
implement recent SOTA methods and results in Table 3
show a slight improvement with a maximum of 0.48% on H-
score. Nevertheless, CLIPBase exceeds ERM with 2.50%
on H-score and 9.60% on H2-CV that proves the powerful
zero-shot ability of VLMs. As DomainNet is a challenging
dataset which is difficult to improve performance, SCI-PD
shows a 2.73% and 2.14% improvement on accuracy and
H-score compared with CLIPBase. Moreover, the perfor-
mance of SCI-PD when H = 1/10, can surpass all con-
ventional DG methods when H = 1/5, which is capable to
resolve the issue of data scarcity.

5.3. Transferability

To evaluate the transferability of our method, we con-
duct experiments using various lightweight vision back-
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Table 1. Comparison of state-of-the-art methods on Acc (%), H-score (%) and H2-CV (%) for OfficeHome.

Method
H = 0 H = 1/6 H = 1/3 H = 1 Average

H2-CV (↓)
Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

ERM [25] 46.09 43.94 50.64 47.85 59.92 53.73 65.55 57.79 55.55 50.83 10.47
ARPL [5] 44.31 43.28 48.62 46.68 57.68 53.06 63.58 56.95 53.55 49.99 10.66
RSC [20] 41.95 41.59 47.21 45.98 56.94 52.47 63.59 57.25 52.42 49.32 12.15

MMD [30] 50.77 47.30 53.62 49.37 61.21 54.69 65.53 58.32 57.78 52.42 8.28
Mixstyle [59] 48.75 46.30 53.11 49.97 61.15 54.68 66.89 59.00 57.47 52.49 9.13
CORAL [43] 55.14 50.74 57.22 52.24 63.37 56.84 67.68 59.62 60.85 54.86 6.47
DAML [40] 51.64 48.60 54.95 51.80 62.22 56.86 67.36 60.61 59.04 54.46 8.46

EDir-CORAL [33] 52.01 49.07 55.09 51.93 61.90 56.76 66.81 59.89 58.95 54.42 7.70
XDED [26] 49.11 46.25 53.32 50.26 61.96 55.65 66.89 59.70 57.82 52.96 9.67
RISE [21] 43.58 43.40 48.59 48.08 59.20 54.69 65.82 59.46 54.30 51.41 11.94
CLIPBase 52.38 49.96 54.48 51.46 60.80 55.54 64.78 58.73 58.11 53.92 6.40
SCI-PD 56.94 53.55 58.25 56.00 63.66 58.07 68.08 61.70 61.73 57.33 5.20

Table 2. Comparison of state-of-the-art methods on Acc (%), H-score (%) and H2-CV (%) for PACS.

Method
H = 0 H = 1/6 H = 1/3 H = 1 Average

H2-CV (↓)
Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

ERM [25] 35.85 28.97 52.30 45.57 71.38 61.20 82.81 70.52 60.59 51.56 30.64
ARPL [5] 37.22 30.37 54.50 46.96 72.03 61.59 81.91 68.24 61.41 51.79 28.13

Mixstyle [59] 43.14 28.00 60.76 48.71 76.95 64.88 84.11 71.22 66.24 53.20 31.41
MMD [30] 38.12 37.89 56.62 50.89 73.91 64.24 80.21 69.36 62.21 55.59 22.04

CORAL [43] 39.85 37.59 60.49 48.27 72.68 62.96 82.27 69.02 63.82 54.46 22.62
EDir-CORAL [33] 41.25 37.10 68.81 56.74 78.49 67.27 84.48 72.04 68.26 58.29 23.04

XDED [26] 36.60 16.71 51.55 38.11 74.00 61.50 84.23 71.17 61.60 46.87 45.15
CIRL [32] 50.32 35.27 61.46 42.38 72.33 45.07 85.29 62.72 67.35 46.36 21.79
RISE [21] 39.51 34.51 59.87 53.14 75.59 70.14 82.10 75.71 64.27 58.38 27.56

MEDIC [49] - - - - - - 86.20 71.47 - - -
CLIPBase 43.91 38.23 64.32 55.14 79.16 69.20 84.22 72.89 67.90 58.87 23.15
SCI-PD 48.69 41.93 66.58 56.87 80.13 71.03 85.25 75.03 70.16 61.21 21.27

bones. We choose EfficientNet-B0 [45] and MobileNet-
V3 [19], whose parameters are far less than ResNet18
[17] that are regarded as real-time architectures. Results
from Table 4 present the average accuracy and H-score
of four splits and SCI-PD surpasses the baseline method
ERM [25] and CLIPBase with a relatively large margin.
Concretely, compared with ResNet18 of 11.4M parameters,
EfficientNet-B0 merely has 5.3M parameters but exceeds
ResNet18 with 2.43% and 1.32% on accuracy and H-score
for SCI-PD. Meanwhile, SCI-PD can boost the performance
on MobileNet-V3 to achieve comparable results with ERM
on ResNet18, but five times less parameters.

5.4. Ablation Study

Key Components. As our method is consisted of three
types of perturbation, we conduct ablation study to inves-
tigate the effectiveness of each component in Table 5. We
start from the vanilla CLIPBase, clarified in Section 3, as
the baseline method. Then we sequentially add instance
perturbation, score perturbation and class perturbation. Re-
sults show that IP, SP and CP can improve 0.20%, 1.94%

and 1.27% on H-score. Also, IP and CP improves on H2-
CV that serves as the key to enhance robustness.

Hyper-parameter Analysis. Low hyper-parameter sen-
sitivity is a critical determinant for practical applications.
Consequently, we conduct experiments on τ , α and β to
demonstrate the practicality of our method. Fig. 5 shows
the average H-score on four splits. The fluctuation of three
hyper-parameters are low with merely 1.27%, 0.39% and
0.25%. The best performance is achieved when α = 0.8,
τ = 0.5 and β = 0.1.

(a) τ for SP (b) α for IP (c) β for CP

Figure 5. Experimental results on hyper-parameters.

Other Variants. Most recent studies on VLMs for the
DG task adopt the fine-tuning paradigm that the down-
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Table 3. Comparison of state-of-the-art methods on Acc (%), H-score (%) and H2-CV (%) for DomainNet.

Method
H = 0 H = 1/10 H = 1/5 H = 1 Average

H2-CV (↓)
Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

ERM [25] 17.21 21.94 27.08 31.07 29.98 33.71 38.69 40.70 28.24 31.86 21.10
ARPL [5] 17.10 21.78 27.23 30.97 30.46 34.17 38.90 41.05 28.42 31.99 21.66

Mixstyle [59] 17.61 22.53 27.54 31.64 30.42 34.11 38.71 40.86 28.57 32.29 20.35
XDED [26] 17.63 22.44 27.86 31.76 30.79 34.21 38.98 40.96 28.82 32.34 20.53
CLIPBase 24.61 28.16 31.53 34.37 33.00 35.94 36.58 38.98 31.43 34.36 11.50
SCI-PD 25.28 28.80 33.89 36.30 36.09 38.36 41.36 42.55 34.16 36.50 13.64

Table 4. Experimental results of other lightweight vision models
on OfficeHome.

Method Params
Average

H2-CV
Acc H-score

EfficientNet-B0 [45] 58.50 53.66 9.36
+ CLIPBase 5.3M 58.71 54.23 6.28
+ SCI-PD 64.16 58.65 5.98

MobileNetV3 [19] 47.47 45.00 12.13
+ CLIPBase 2.0M 49.79 47.22 8.30
+ SCI-PD 52.74 49.60 8.81

Table 5. Ablation study on different components for SCI-PD on
OfficeHome. I-PD denotes perturbation distillation on instance,
while SI-PD conducts perturbation on score and instance.

Model IP SP CP
Average

H2-CV
Acc H-score

CLIPBase - - - 58.11 53.92 6.40
I-PD ✓ - - 58.76 54.12 5.93

SI-PD ✓ ✓ - 60.24 56.06 6.39
SCI-PD ✓ ✓ ✓ 61.73 57.33 5.20

stream model should have identical architecture as VLMs.
Nevertheless, we extend SCI-PD to larger vision models for
comparison with SOTA methods on [3] and the zero-shot
ability of CLIP models [38]. For a fair comparison, we all
select CLIP model with ResNet50 as the image encoder.
Results in Table 6 show that our method achieves a stable
performance that the H2-CV is merely 3.04%, exceeding
MIRO [3] of 11.76%. Especially when H = 0, SCI-PD
surpasses MIRO with 20.05% on accuracy and 15.03% on
H-score.

Table 6. Comparison of methods on zero-shot and re-training
paradigm for OfficeHome.

Method Type
Average

H2-CV
Acc H-score

CLIP [38] Zero-shot 51.31 50.53 -
MIRO [3] Re-train 56.56 51.90 14.80
SCI-PD Distill 63.48 57.30 3.04

5.5. Visualization

We present the t-SNE [46] visualization of the feature
distribution on PACS when H = 0. As displayed in Fig. 6,
for the baseline method ERM [25], the boundary between
categories is ambiguous. The efficient method CORAL [43]
has improved the compactness between clusters, but the per-
formance on unknown categories declines. Nevertheless,
with the guidance on CLIP model [38], SCI-PD can pro-
mote the intra-class compactness and inter-class variance
that improves the performance.

(a) ERM [25] (b) CORAL [43] (c) SCI-PD

Figure 6. The t-SNE [46] results of feature distribution on PACS
when H = 0.

6. Conclusion

In this paper, we investigate the issues in practical sce-
narios of domain generalization. We firstly develop a novel
Perturbation Distillation (PD) algorithm, to transfer zero-
shot ability from vision-language models to lightweight vi-
sion models, thereby avoiding large computation costs in
conventional fine-tuning paradigm. We introduce the per-
turbation from Score, Class and Instance (SCI) that suffi-
ciently excavate the knowledge from VLMs. Furthermore,
we propose a Hybrid Domain Generalization (HDG) bench-
mark and a novel metric H2-CV to comprehensively evalu-
ate the model robustness. Experimental results demonstrate
that our method achieves the state-of-the-art performance
with a relatively large margin on three diverse metrics.
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