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Figure 1. Different types of translucent materials recovered from ordinary photographs (insets) by our practical method.

Abstract

Material appearance is a key component of photoreal-
ism, with a pronounced impact on human perception. Al-
though there are many prior works targeting at measuring
opaque materials using light-weight setups (e.g., consumer-
level cameras), little attention is paid on acquiring the opti-
cal properties of translucent materials which are also quite
common in nature. In this paper, we present a practical
method for acquiring scattering properties of translucent
materials, based solely on ordinary images captured with
unknown lighting and camera parameters. The key to our
method is an inter-pixel translucency prior which states
that image pixels of a given homogeneous translucent ma-
terial typically form curves (dubbed translucent curves) in
the RGB space, of which the shapes are determined by the
parameters of the material. We leverage this prior in a
specially-designed convolutional neural network compris-
ing multiple encoders, a translucency-aware feature fusion
module and a cascaded decoder. We demonstrate, through
both visual comparisons and quantitative evaluations, that
high accuracy can be achieved on a wide range of real-
world translucent materials.

1. Introduction

A core demand in 3D content generation is to recover
physically-plausible material properties from photographs.
Knowledge of the recovered material properties is valu-
able in a broad range of applications including vir-
tual/augmented reality [24], visual perception [18], 3D
printing [33], robot control [57] and aesthetic medicine
[44]. Over the past years, much effort has been devoted
to acquiring materials from opaque objects that only con-
tain surface reflection [2, 3, 16, 25–27, 32, 41, 42, 48, 51],
excluding many real-world translucent materials (e.g., wax,
soaps, plastics and beverages shown in Fig. 1) in which sub-
surface scattering dominates [6, 36]. For these translucent
objects, light will not only reflect at the boundaries, but also
undergo a considerable number of scattering or absorption
events inside media, resulting in a very complex light field.
Often, each pixel of a photograph capturing a translucent
object receives light from all points along the line of sight
inside the volume [23].

To alleviate the problem, most early works analyze only
single scattering in optically thin media [23, 29, 49], cov-
ering a very limited range of translucent material in nature.
To deal with optically thick media, dedicated hardware sys-
tems are necessary, including structured lighting devices,
lasers and expensive high-end cameras [20, 33, 47]. Gen-
erally, repetitive calibrations are carried out every few min-
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utes during the capture [33], making the whole process te-
dious and time-consuming. An alternative choice, which
is very appealing recently, is resorting to powerful differ-
entiable renderers [35, 61, 67–69]. Although these meth-
ods avoid cumbersome acquisition facilities, they still need
camera and lighting parameters which are not always avail-
able for low-cost setups. Perhaps more importantly, current
differentiable rendering methods are usually hard to con-
verge in inverse rendering optimizations, when initial val-
ues are not selected properly [66].

Our goal in this paper is to significantly lower the acqui-
sition cost and to further facilitate the capturing process. To
this end, we propose a deep learning-based method that only
needs photographs taken by off-the-shelf commodity cam-
eras or mobile devices as the input, without knowing the
parameters of lighting, camera and even geometries. Ma-
terial priors learned from large-scale datasets can lower the
ill-posedness of the problem [5], but they tend to generate
large biases, manifested as color drifting and incorrect opac-
ity, when training and testing on different datasets. Note
that this is always the case since datasets of labeled real-
world translucent materials are absent currently. We address
this issue by introducing an inter-pixel translucency prior
based on two observations: 1) image pixels of a homoge-
neous translucent material typically form curves (dubbed
translucent curves) that passes through the origin in the
RGB space, and 2) their shapes are determined by the ma-
terial’s properties. We use these observations to derive a
pseudo-albedo map and a bias map for the specific translu-
cent material based on a regression algorithm, from multiple
images captured under different lighting conditions.

Based on the inter-pixel translucency prior, we train a
neural network IPTNet to predict translucent material prop-
erties from input images, without knowing the lighting and
camera parameters. IPTNet is a multi-branch convolu-
tional neural network (CNN) that takes multiple images
of the same translucent materials and the derived pseudo-
albedo/bias maps as the input. Specifically, the pseudo-
albedo map guarantees the correctness of the predicted
single-scattering albedo, while the bias map lets IPTNet fo-
cus more on translucent edges that are crucial to the pre-
diction of the extinction coefficient [21]. A translucency-
aware feature fusion module and a cascaded decoder are
developed to further improve the accuracy of prediction.

In summary, we make the following contributions:
• We introduce an inter-pixel translucency prior to describe

the distribution of image pixels for a given translucent ob-
ject, making translucent material prediction accurate and
reliable for real-world measurements.

• We design IPTNet to predict translucent material proper-
ties from multiple images taken under unknown lighting
and camera settings.

• We propose a translucency-aware feature fusion module

and a cascaded decoder to further improve the accuracy
of prediction.

2. Related Work
Prediction models for translucent materials. Simulat-
ing light propagation in translucent materials has been
widely studied in graphics [50], building upon the radia-
tive transfer equation (RTE) [4]. These materials usu-
ally produce very complex radiance fields, since they al-
low light to penetrate their surfaces and scatter light in a
more complex fashion than opaque materials [13]. Over
the past decades, quite a few prediction models for sim-
ulating light behavior in translucent materials have been
proposed. Using these models inversely is the core of
many measurement methods [15, 33]. For optically thick
media in which high-order scattering dominates, radiative
transport can be simplified by the diffusion approximation
[8, 12, 36, 37, 62]. For optically thin media, the phase func-
tion (e.g., Henyey-Greenstein (HG) [30], Rayleigh [39], and
Lorenz-Mie [45, 46]) can impact appearance in a perceptu-
ally important way near thin geometric structures [14, 19].

Measurements of translucent materials. Measuring
the optical properties of translucent materials is a notori-
ously difficult task, since a sensor almost always observes
the combined effects of many scattering and absorption
events. Therefore, matching the appearance of real translu-
cent objects by manual adjustment of optical properties is
nearly impossible [15]. Common measurement methods
usually rely on dedicated hardware systems. For instance,
integrating spheres are often used in the field of optics to
find the the bulk optical properties of turbid media [54–
56, 58]. When single scattering dominates, scattering pa-
rameters can be measured directly, using static or dynamic
light scattering [38]. Narasimhan et al. [49] proposed a
method based on dilution for measuring the scattering and
absorption coefficients as well as the phase function. Gu
et al. [23] recovered inhomogeneous participating media
by projecting structured light. Unfortunately, these meth-
ods can only handle optically thin situations in which sin-
gle scattering dominates. For moderately-thick samples,
Mukaigawa et al. [47] projected high-frequency stripe pat-
terns to separate single and multiple scattering. Gkioulekas
et al. [20] proposed a material dictionary to facilitate the
optimization of bulk scattering properties of homogeneous
materials. To handle arbitrary translucent materials, differ-
entiable rendering based methods [5, 35, 61, 67–69] prevail,
but they are usually unstable [66].

Measurements of opaque materials. Our work is also
closely related to surface appearance acquisition which has
received continuous interest in computer vision and graph-
ics [11, 64]. Traditional methods usually require significant
equipment and expense [7, 17, 22, 31, 40, 59]. To reduce
the acquisition cost, it is attractive to use off-the-shelf com-
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modity mobile devices [1, 48]. Inspired by the success of
deep learning for a variety of vision and graphics tasks, re-
cent work has considered CNN-based material acquisition
[2, 3, 16, 25, 27, 41, 42, 48]. Notably, these opaque mate-
rials behave locally and do not consider particle scattering
inside objects, making them easier to model than translu-
cent materials.

3. Inter-Pixel Translucency Prior
3.1. Preliminaries

A translucent material containing particles that scatter and
absorb light is represented by its macroscopic bulk opti-
cal parameters, typically consisting of the extinction coeffi-
cient σt, the single-scattering albedo Λ, and the phase func-
tion p(θ). More introductions about optical parameters of
translucent materials are provided in the supplemental doc-
ument. For the phase function, we adopt the HG distribution
which is parameterized by a single parameter: g. Alterna-
tively, we can use the scattering coefficient σs and the ab-
sorption coefficient σa in place of σt and Λ, according to
the relationship: σt = σs + σa and Λ = σs/σt.

Generally, measuring the optical properties of a translu-
cent material is difficult since the above optical properties
cannot be easily separated. Often, two completely different
sets of material parameters can present almost identical vi-
sual effects in certain circumstances, which is known as the
principle of similarity [65, 70] for translucency. The first-
order similarity offers another set of optical parameters:

σ′
s = (1− g)σs, σ′

t = σ′
s + σa, Λ′ = σ′

s/σ
′
t (1)

which are less correlated than other sets [5], and will be
the target of our prediction. Moreover, the physical param-
eter space for translucent materials is extremely large and
perceptually non-uniform [19, 60]. All these issues make
translucent material acquisition challenging, especially un-
der a light-weight setting: input images are captured by a
consumer-level camera with unknown parameters.

3.2. Observations

To alleviate the problem, we introduce the inter-pixel
translucency prior, which is derived from a variable num-
ber of images taken of the same homogeneous translucent
object under uncalibrated lighting directions. We assume
that the object is positioned in front of a black background
and lit by a white illuminant (e.g., a build-in flash light of
a mobile phone). Under this setting, we observe that im-
age pixels from the same position across multiple images
(Ii, i = 1, 2, ..., n) typically form a curve (or line) in the
RGB space. We term these curves translucent curves to
emphasize this characteristic.

We validate and quantify this observation on both syn-
thetic and real-world examples in Fig. 2. Here, we collect

pixels across multiple images (shown in the insets) of the
same translucent material captured under varying lighting
conditions. Two different patches1 are shown for each ex-
ample. We clearly see from Fig. 2 that pixels from the same
position on the object are distributed roughly along curves.
These curves pass through the origin and stem from shading
variations within the object.

Let’s analyze how these curves form and their rela-
tionship with the bulk optical properties of the underly-
ing translucent material. For optically thick parts in which
multiple scattering dominates, Pat and Wolfgang [28] have
found that there is a non-linear relationship between the
single-scattering albedo Λ′ and the surface reflectance R,
which could be written as R = f(Λ′). Since these parts
reflect light in a similar way as opaque surfaces, the pixels
in these areas take values proportional to R, i.e., I ∝ f(Λ′).
Therefore, when pixel values are plotted under different
lighting conditions, they are roughly distributed along a line
of which the gradient is determined by Λ′. For optically thin
parts, e.g., the translucent edges [21], single scattering plays
an important role. Pixel values in these parts are closely re-
lated to the contribution of the attenuated light paths inside
the medium. The attenuation is determined by the extinc-
tion coefficient and usually follows an exponential law. It
varies across channels, indicating that pixel values of dif-
ferent channels will have different rates of attenuation.

3.3. The pseudo-albedo map and bias map

Based on the observations, we derive a pseudo-albedo map
A and a bias map B from multiple input images of the same
translucent object, using an efficient regression method.
The goal is to fit a line to the pixel distribution and measure
the difference between the regressed line and the real pixel
distributions, which then conveys the level of translucency.

Assuming that the collected pixels at the same posi-
tion (x, y) across multiple images form a potential line
Ir(x, y)/krx,y = Ig(x, y)/kgx,y = Ib(x, y)/kbx,y passing
through the origin, where superscripts {r, g, b} indicate
channels, our method produces optimized per-pixel and per-
channel slopes by:

k1x,y = argmin
k∗
x,y

n∑
i=1

(
k∗x,yI

b
i (x, y)− Iri (x, y)

)2
k2x,y = argmin

k∗
x,y

n∑
i=1

(
k∗x,yI

b
i (x, y)− Igi (x, y)

)2 (2)

where k1x,y = krx,y/k
b
x,y and k2x,y = kgx,y/k

b
x,y . The opti-

mization is conducted on a set of n images. As we could
scale {krx,y, kgx,y, kbx,y} without alternating the direction of
the line, it is safe to assume kbx,y = 1 and k1x,y = krx,y ,

1To make the visualization in Fig. 2 clear, we analyze a small patch
instead of a single pixel for each case.
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Figure 2. Illustration of the inter-pixel translucency prior on two synthetic (left) and three real-world (right) translucent objects. The last
row shows that RGB space pixel values from the same position of a translucent material are distributed roughly along curves.

k2x,y = kgx,y . Then, the pixel value of A is given by:

A(x, y) = N
(
krx,y, k

g
x,y, 1

)
(3)

where N denotes the vector normalization operation. The
bias map B evaluates the mean Euclidean distance between
normalized image pixels from Ii and pixels from A:

B(x, y) =
1

n

n∑
i=1

[N (Ii(x, y))−A(x, y))]
2
. (4)

Generally, the pseudo-albedo map A, encoding per-pixel
pseudo-albedo f(Λ′), is not the real albedo map, but a proxy
very close to it. The closeness depends on the optical thick-
ness of the medium. The bias map B marks translucent
edges that do not generally follow a linear distribution of
pixels, and serves as a weight map to reflect the spatially-
varying optical thickness of a give translucent object. In-
tuitively, a pixel from the optically thick region reaches al-
most zero in the bias map B, while a large pixel value in the
bias map B indicates that the corresponding pixel lies on a
translucent edge. This information serves as an important
cue for translucent material acquisition. Several examples
of A and B are shown in Fig. 4.

4. IPTNet
The objective of IPTNet (Inter-Pixel Translucent Network)
is to predict the bulk optical parameters of a homogeneous
translucent material, with the help of the inter-pixel translu-
cency prior.

4.1. Network architecture

Our IPTNet is a multi-image CNN that comprises sev-
eral encoders and two specially-designed modules: a

translucency-aware feature fusion module and a cascaded
decoder, as illustrated in Fig. 3. In the same way as a prior
material acquisition work [10], to extract different material
features FI in various image regions, a weight-sharing en-
coder EI is trained on multiple images to extract features
from the optical characteristics of the material. The number
of encoders is dynamically determined to match the number
of inputs.

Additionally, two extra encoders EA and EB are adopted
to extract features from the generated pseudo-albedo map
and bias map. The translucency-aware feature fusion mod-
ule tries to combine features from different parts. Leverag-
ing the combined feature maps, the cascaded decoder pre-
dicts the scattering parameters step-by-step, thereby pre-
serving both the global and local information of the material
for the {σ′

t, g} decoder branch.

4.2. Translucency-aware feature fusion

To better exploit translucent cues from input images, we in-
troduce a translucency-aware feature fusion module. This
module enables efficient extraction and summarization of
features from multiple images while highlighting translu-
cent edges that allow light to pass through. Specifically,
the intermediate feature maps

{
F1

I , . . . ,Fn
I

}
produced by

the weight-sharing encoders EI are fused into a single joint
feature map FJ by selecting the maximum value reported
by any intermediate feature map at each pixel and channel.
This process of max-pooling guarantees that each interme-
diate feature map has equal means to contribute to the con-
tent of the joint feature map, without smoothing out high-
frequency features. To highlight the per-channel translu-
cency, the bias map’s feature map FB is multiplied with FJ

to produce a new weighted feature map FT :

FT = FJ ⊗ (EB(B)) (5)
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Figure 3. Network architecture of IPTNet. A set of n images {I1, I2, ..., In} for a translucent material captured under different lighting
conditions are resized to 256 × 256 pixels. From these images, we obtain a pseudo-albedo map A and a bias map B. These images pass
through multiple encoders, a translucent-aware feature fusion module and a cascaded decoder, predicting a set of material parameters.

where ⊗ means element-wise multiplication. The motiva-
tion is that we let the network pay more attention to features
extracted from raw input images (rather than the pseudo-
albedo map A) for optically thin parts. To achieve a simi-
lar goal, previous work [5] utilized image edge detection to
produce meaningful weight maps. However, edge detection
is incapable of detecting translucency features on different
channels, and it may fail to detect edges on the dark regions.

Since the pseudo-albedo map A can offer supplementary
details pertaining to the surface reflectivity of translucent
materials [28], we directly concatenate its feature map FA

with the joint feature map to form the feature map FO:

FO = FJ c⃝(EA(A)) (6)

where c⃝ denotes concatenation operation.

4.3. Cascaded decoder

As aforementioned, visual appearance of optically thick
parts is primarily dominated by Λ′ [28, 53], while optically
thin parts which are highlighted by the bias maps reveal the
effect of blending and correlation between all parameters
[5, 21]. To enhance the accuracy of estimation, we propose
a cascaded decoder that fully exploits the inherent optical
property decomposition effect.

The cascaded decoder starts with two feature encoders,
EO and ET , which convert FO and FT into latent vectors
VO and VT , respectively. Following this, an MLP M1 is
employed to predict Λ′. It is important to note that the
global information of the material is concealed by the bias
map, which is necessary as the translucent edges display the
correlated effect of the scattering parameters. To preserve
both the global information and the details of the translu-
cent edges, we reintroduce the estimated global information
of the material regarding Λ′ into the decoding MLP M2 of

Figure 4. Two training examples from our dataset.

{σ′
t, g}. The whole process of the cascaded decoder can be

summarized as{
Λ′ = M1(EO(FO))

{σ′
t, g} = M2(ET (FT ),Λ

′).
(7)

4.4. Dataset preparation

Generating a large number of training images and labels in
the real world from previously acquired real scattering pa-
rameters [20, 49] is a tedious and time-consuming process
that requires accurate and repetitive photo captures. Cur-
rently, only a few types of scattering parameters can be pre-
cisely acquired, which is insufficient to cover the parameter
space of translucent materials. Alternatively, training a neu-
ral network using synthetic datasets has been proven to be
a reasonable choice [1, 9, 25, 43]. In our work, we gener-
ate a synthetic dataset that is rendered using the physically
based renderer, Mitsuba [63]. This renderer is capable of
generating photorealistic images that capture a wide range
of translucency effects.

Our synthetic dataset contains images of translucent ob-
jects with diverse geometries, illuminations, viewpoints and
scattering parameters. The dataset comprises 22 distinct
shapes with a variety of thin and thick geometrical charac-
teristics. Each scene is illuminated by a small area light
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source with arbitrary brightness and position and is ob-
served from 5 different viewpoints. Inspired by the previous
work [5], we choose the parameter space of translucent ma-
terials as σ′

t ∈ [25mm−1, 300mm−1], Λ′ ∈ [0.3, 0.95], and
HG phase functions with g ∈ [0, 0.9]. For each combination
of shape and viewpoint, we render 10 images under differ-
ent lighting conditions, resulting in a total of 16,800 groups
of images in our dataset.

To assess the effectiveness and generalization ability of
the trained model, we collect three additional test sets, each
of which comprises 300 groups of images:
• the TrView test set contains 2 additional viewpoints which

do not exist in the training set,
• the TrLight test set contains significantly different light-

ing configurations from those in the training set, and
• the TrShape test set contains 3 new shapes which are

never seen in the training set, accompanied with novel
viewpoints and lighting configurations.

5. Experiments
We implement our pipeline using PyTorch[52]. The learn-
ing rate is initialized to 0.00005, adjusted with the powered
of 0.92 every five epochs. All other hyperparameters are set
by default. The loss function computed on the predicted pa-
rameters is l1 norm. We train the network with a batch size
of 4 for 80 epochs, taking about 18 hours on an NVIDIA
Tesla V100 graphics card.

5.1. Experiments on synthetic data

We compare our method with two state-of-the-art ap-
proaches that can handle translucent material acquisition.
Specifically, Inverse Transport Network (ITN) [5] is a neu-
ral network-based translucent material acquisition solution
that combines a CNN and a differentiable rendering based
loss. We also choose Mitsuba 3 [34] along with Dr.jit [35]
as an optimization-based baseline. To verify the effective-
ness of different methods on the three test sets, we adopt
three metrics: 1) MSE over (normalized) parameters, 2)
PSNR over rendered images, and 3) SSIM over rendered
images. For each method, the predicted parameters of all
three test sets will be applied on three different shapes : 1)
a hexahedron model (see the first row of Fig. 4) labeled as
H, 2) a duck model (see the second row of Fig. 6) labeled
as D, and 3) a dragon model (see the second row of Fig. 4)
labeled as R.

We first compare our method with three variants of ITN:
• The ITN(S) method uses a single image as its input, ac-

companying with a differentiable renderer.
• The ITN(M) method runs ITN(S) repeatedly on all 10 im-

ages in a test set group and obtains averaged results, en-
abling fair comparisons with ours.

• The ITN(-Dr) method uses a single image as its input
without differentiable rendering, avoiding potential errors

Figure 5. Visual comparison with different variants of ITN [5].
Each column shows rendered images with predicted optical pa-
rameters from different methods. The insets show error maps as
compared with the reference.

caused by differentiable rendering.
Table 1 summarizes the quantitative results, showing that

IPTNet achieves significant performance gains over all ITN
variations on all three test sets in both the parameter do-
main and the image domain. It is noteworthy that IPTNet
provides much more accurate prediction results on Λ′ than
other methods with the assistance of pseudo-albedo map
and translucency-aware feature fusion module. This em-
phasizes the accurate restoration of chromaticity of opaque
regions in Fig. 5, where ITN-based approaches offer scat-
tering parameters with varying degrees of aberration on
both translucent and opaque object parts.

We next compare our method with a differentiable ren-
dering based inverse rendering method in Mitsuba 3 [34].
We only compare our method with it in the image do-
main due to the similarity relation [65]. We compare our
approach with two variants of it using a stochastic start-
ing point: 1) Dr(σ′

t) optimizes only one parameter σ′
t and

2) Dr(σ′
t,Λ

′, g) optimizes all parameters. Without precise
knowledge of scene lighting and geometries, these differ-
entiable rendering based methods are hard to converge.
Even providing this information to these methods, they still
achieve sub-optimal results and may even converge to incor-
rect results (see the last row of Fig. 6). Our IPTNet, without
any additional information about lighting and geometries,
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Table 1. Quantitative comparison with different variants of ITN [5] on three test sets: TrView, TrShape and TrLight. The best results of
each group are highlighted in bold.

TrView TrShape TrLight
Ours ITN(S) ITN(M) ITN(-Dr) Ours ITN(S) ITN(M) ITN(-Dr) Ours ITN(S) ITN(M) ITN(-Dr)

M
SE

↓ σ′
t 0.014 0.021 0.015 0.023 0.026 0.035 0.027 0.036 0.015 0.026 0.038 0.047

Λ′ 0.001 0.026 0.045 0.052 0.002 0.011 0.013 0.087 0.010 0.167 0.087 0.102
g 0.025 0.200 0.079 0.505 0.033 0.068 0.055 0.053 0.027 0.196 0.065 0.408

PS
N

R
↑ H 38.68 34.88 35.94 34.02 37.41 33.91 34.58 33.52 36.34 28.41 29.62 29.01

D 37.37 33.08 33.86 32.02 35.96 31.77 31.94 31.31 33.45 24.22 25.73 24.96
R 38.87 34.76 35.77 33.89 37.55 33.70 34.07 33.29 35.74 27.31 28.82 28.06

SS
IM

↑ H 0.993 0.972 0.975 0.964 0.993 0.986 0.983 0.984 0.988 0.950 0.954 0.950
D 0.993 0.966 0.969 0.957 0.994 0.985 0.982 0.984 0.986 0.932 0.937 0.932
R 0.996 0.977 0.979 0.971 0.996 0.988 0.987 0.988 0.990 0.950 0.954 0.951

beats these differentiable rendering based methods on all
cases in Fig. 6. Moreover, the inverse rendering technique
takes about 20 minutes to converge while our IPTNet only
needs roughly 30 milliseconds to extract information from
a scene on the same device.

Figure 6. Visual comparison with a differentiable rendering (Dr)
based optimization method from Mitsuba 3 [34].

5.2. Experiments on real-world examples

We conduct multiple experiments on a wide range of real-
world translucent objects. Fig. 7 shows reconstruction re-
sults of three waxy cubes from our method and ITN(M).
The input images were captured using a camera equipped
with a standard LED area light source. The acquired LDR
images can be utilized as input for our method follow-
ing a straightforward post-processing step, inverse gamma
correction, as our algorithm for generating the pseudo-
albedo map and bias map disregards over-exposed or under-
exposed pixels, which are infrequent and easy to identify.
Our method provides superior prediction results that ben-
efit from the inter-pixel translucency prior, particularly on
edges, in comparison to ITN(M), whose predicted scatter-
ing parameters exhibit reduced saturation and translucency

on rendered images. As our method narrows the gap be-
tween real and virtual images, it demonstrates that the re-
sults supplied by our method almost match captured photos
visually and statically.

Fig. 8 compares our method with a conventional 3D
reconstruction method based on multi-view stereo (MVS).
Without special designs, existing MVS methods fail to re-
cover translucent appearance from ordinary images. They
tend to produce incorrect diffuse reflectance from translu-
cent objects. As expected, our method faithfully reproduces
the translucent appearance which is highlighted by the back
lit renderings (Back) in the fourth column of Fig. 8.

Our method is robust to a wide range of translucency. To
show this, we test our method on waxy blocks with different
thicknesses in Fig. 9. Our recovered results closely match
the reference images in all cases, even for objects with great
translucency (the thin waxy block in the first column of Fig.
9. More results of real-world translucent materials accom-
panied with complex geometries are shown in Fig. 1. We
also test our method on orange juice at various concentra-
tions in the supplemental document.

5.3. Ablation studies

We perform some ablation studies to verify the validity of
our design of the network architecture. We test three ablated
models of IPTNet: 1) the mean model replaces the max
pooling layer in IPTNet with mean pooling layer, 2) the -
pr model predicts scattering parameters solely using images
as its input without additional bias maps and pseudo-albedo
maps, and 3) the single model uses a single decoder to pre-
dict all parameters, instead of our cascaded decoder. Table
2 demonstrates that our complete model consistently beats
these ablated models on most metrics. In particular, the ab-
sence of the proposed prior (i.e., the -pr model) degrades
the performance, leading to less accurate prediction.
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Figure 7. Quantitative experiment on real-world examples. We
compare images rendered according to predicted parameters of our
method and ITN(M) on waxy cubes. The fourth column shows
their relative errors to real captures within dotted boxes.

Figure 8. Visual comparison with a conventional 3D reconstruc-
tion method based on multi-view stereo (MVS) which can only
reproduce purely diffuse appearance.

5.4. Limitations

Our method has several limitations. First, the regression al-
gorithm for the pseudo-albedo/bias maps requires at least
three images. Otherwise, it will not work properly. Sec-
ond, for near-transparent objects that will mix its color with
the scene background, the proposed inter-pixel translucency
prior is no longer valid, easily resulting in inaccurate pre-
diction. Third, our method may fail for input images with
large portions of over-saturated pixels due to specular ma-
terials. More discussions on limitations are provided in the

Figure 9. Test on red waxy blocks with different thicknesses.

Table 2. Quantitative comparison with different ablated models.

TrShape TrLight
Ours mean -pr single Ours mean -pr single

M
SE

↓ σ′
t 0.026 0.040 0.038 0.033 0.015 0.011 0.033 0.018

Λ′ 0.002 0.003 0.003 0.003 0.010 0.019 0.034 0.026
g 0.033 0.075 0.098 0.040 0.027 0.057 0.092 0.076

PS
N

R
↑ H 37.41 35.53 35.53 36.35 36.34 34.63 31.74 32.92

D 35.96 33.30 33.92 34.27 33.45 30.43 28.61 28.22
R 37.55 35.33 33.80 36.21 35.74 33.75 31.37 31.67

SS
IM

↑ H 0.993 0.991 0.990 0.992 0.988 0.985 0.976 0.982
D 0.994 0.991 0.992 0.992 0.986 0.980 0.967 0.975
R 0.996 0.994 0.994 0.995 0.990 0.986 0.978 0.984

supplemental document.

6. Conclusion
In this paper, we have proposed a practical method for
translucent material acquisition, which relies only on a
low-cost setup and ordinary images. The success of this
method owes to an inter-pixel translucency prior, which
demonstrates that pixels collected from multiple images of
a translucent material form translucent curves in the RGB
space, and a specially-designed neural network that takes
a pseudo-albedo map and a bias map stemming from this
prior into consideration. We have shown from experiments
on both synthetic data and real-world examples that the
proposed method achieves state-of-the-art performance and
supports a wide range of translucent materials in our daily
life.
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[61] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. Path re-
play backpropagation: Differentiating light paths using con-
stant memory and linear time. ACM Trans. Graph., 40(4),
2021. 2

[62] Jiaping Wang, Shuang Zhao, Xin Tong, Stephen Lin,
Zhouchen Lin, Yue Dong, Baining Guo, and Heung-Yeung
Shum. Modeling and rendering of heterogeneous translucent
materials using the diffusion equation. ACM Trans. Graph.,
27(1), 2008. 2

[63] Wenzel Jakob. Mitsuba renderer. 5
[64] Tim Weyrich, Jason Lawrence, Hendrik Lensch, Szymon

Rusinkiewicz, and Todd Zickler. Principles of appearance
acquisition and representation. In ACM SIGGRAPH 2008
Classes, New York, NY, USA, 2008. Association for Com-
puting Machinery. 2

[65] D. R. Wyman, M. S. Patterson, and B. C. Wilson. Similar-
ity relations for anisotropic scattering in monte carlo simu-
lations of deeply penetrating neutral particles. J. Comput.
Phys., 81(1):137–150, 1989. 3, 6

[66] Jiankai Xing, Fujun Luan, Ling-Qi Yan, Xuejun Hu, Houde
Qian, and Kun Xu. Differentiable rendering using rgbxy
derivatives and optimal transport. ACM Trans. Graph., 41
(6), 2022. 2
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