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Abstract

Weakly-supervised Video Anomaly Detection (wVAD)
aims to detect frame-level anomalies using only video-
level labels in training. Due to the limitation of coarse-
grained labels, Multi-Instance Learning (MIL) is prevail-
ing in wVAD. However, MIL suffers from insufficiency of
binary supervision to model diverse abnormal patterns. Be-
sides, the coupling between abnormality and its context hin-
ders the learning of clear abnormal event boundary. In
this paper, we propose prompt-enhanced MIL to detect var-
ious abnormal events while ensuring clear event bound-
aries. Concretely, we design the abnormal-aware prompts
by using abnormal class annotations together with learn-
able prompt, which can incorporate semantic priors into
video features dynamically. The detector can utilize the
semantic-rich features to capture diverse abnormal pat-
terns. In addition, normal context prompt is introduced to
amplify the distinction between abnormality and its context,
facilitating the generation of clear boundary. With the mu-
tual enhancement of abnormal-aware and normal context
prompt, the model can construct discriminative represen-
tations to detect divergent anomalies without ambiguous
event boundaries. Extensive experiments demonstrate our
method achieves SOTA performance on three public bench-
marks. The code is available at https://github.
com/Junxi-Chen/PE-MIL.

1. Introduction

To identify anomaly at frame level in video, Video Anomaly
Detection (VAD) has become vital in critical areas, e.g.,
surveillance systems [19], medical imaging [33] and au-
tonomous driving [1]. For great generalization ability
across diverse scenes, researchers [6, 8, 29, 31, 32, 43, 45]
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Figure 1. (a) Illustration of prompt-enhanced MIL. In multi-modal
feature space, text prompts integrate abnormal-aware semantic pri-
ors into visual features. NCP incorporates normal semantic into
ambiguous context feature. In such manner, our method learns
a more discriminative representation to deliver a precise anomaly
detection. (b) Anomaly detection examples of our method.

turn to weakly-supervised VAD (wVAD) which only lever-
ages video-level labels. Primarily, wVAD faces two key
challenges: 1) detecting complex anomalous patterns in var-
ied scenarios where temporal relationship and visual ap-
pearance of anomalies exhibit substantial discrepancies; 2)
generating clear abnormal event boundaries in the absence
of fine-grained boundary annotations.

To tackle wVAD, prior works [52, 55] generate noisy
frame-level abnormal labels and reduce noise subsequently,
but such manner limits the generalization ability to un-
seen scenarios. Recently, Multi-Instance Learning (MIL) is
leveraged by most methods [5, 6, 8, 23, 29, 45] to tackle
wVAD due to its ability to model patterns under coarse-
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grained labels. To detect abnormal events by frame-level
anomaly scores (1 for abnormal and 0 for normal events),
MIL-based methods [5, 6, 24, 29, 42, 53] apply ranking
loss to encourage the top scores in abnormal videos to be
higher than that in normal videos. In this way, MIL can
learn exclusive patterns in abnormal instances. However,
MIL is notoriously known [18, 24, 25] to suffer from am-
biguous event boundary and incompetence of modeling di-
vergent abnormal patterns. To this end, some works modify
the target [6, 25, 38, 54] or training strategies [18, 53] to
facilitate learning of clear event boundary. Besides, several
studies [6, 29, 45] introduce auxiliary information to facili-
tate modeling anomaly patterns in intricate scenarios.

Despite the progress, existing methods suffer from two
major dilemmas. 1) Binary labels are insufficient to capture
intricate abnormal patterns, because they only indicate a
general abnormal pattern. Besides, binary labels neglect the
semantic relevance between abnormalities, which indicates
the similar and unique patterns between abnormal events.
2) Coupling of abnormality and context patterns impedes
learning of clear boundary, e.g., in Fig. 1b, an explosion (ab-
normality) is usually coupled with fire and smoke (context).
But such abnormal context scene is rarely contained in nor-
mal videos. Consequently, the model learnt from coupled
data is infeasible to decouple abnormality from its context,
leading to ambiguous boundary. We notice that there ex-
ists strong semantic relevance between the contexts of ab-
normality and normality, under which the normal context
can enrich the ambiguous boundary context to exhibit a dis-
criminative pattern. Thus, modeling such relevance is able
to improve the robustness of wVAD on highly coupled sce-
narios, resulting in clear event boundaries.

In this paper, we propose a novel prompt-enhanced MIL
to capture diverse abnormalities with clear event bound-
aries, via introducing abnormal-aware and normal con-
text prompt, as shown in Fig. 1a. Concretely, to con-
struct abnormal-aware prompts, we obtain the embeddings
of abnormal class annotations, augmented with learnable
prompt. Prompt constraint loss is designed to ensure their
semantic consistency, so as to obtain the abnormal-aware
prompts with rich semantics. Next, we devise an event
relevance reasoning module to dynamically guide the fine-
grained alignment between the abnormal-aware prompts
and video features. Through this manner, the video features
incorporate accurate semantic prior to facilitate capturing
complex and diverse abnormal patterns. For clear abnormal
boundary, we further learn a normal context prompt through
two-stage training, which serves as the comprehensive sum-
mary of the normal patterns. The normal context prompt
can enrich boundary context feature for revealing their dis-
criminative character. As such, the detector can better dis-
tinguish between context snippets and abnormal snippets,
thereby enhancing the generation of clear event boundary.

The main contributions of this paper are as follows:

• We propose prompt-enhanced MIL for wVAD, which ex-
ploits abnormal-aware prompts to integrate semantic pri-
ors into video features for modeling divergent abnormal
patterns precisely.

• We introduce the normal context prompt that serves as a
summary of normal patterns, for enriching the boundary
context feature. In doing so, a more discriminative char-
acter can be revealed to decouple anomaly and its context,
resulting in a clear abnormal event boundary.

• Extensive experiments demonstrate that our method per-
forms favourably against the state-of-the-art methods on
three public datasets.

2. Related Work

2.1. Weakly-Supervised Video Anomaly Detection

In wVAD, video-level annotations are provided and frame-
level anomaly scores are required. Most of the wVAD
works apply MIL-based methods due to its ability to learn
discriminative representation under weak labels. Sultani et
al. [31] introduce the inaugural MIL approach featuring a
ranking loss, in addition to presenting a large-scale VAD
dataset. Later, Zhang et al. [54] explore an intra-bag loss,
which is complementary to the MIL ranking loss. To catch a
better sequential relationship for anomaly detection, Zhu et
al. [57] use an attention module to model the temporal con-
text of anomalies. As Graph Convolutional Network (GCN)
prevailing [2], Cho et al. [6] model context and motion cor-
relation by GCN to detect anomaly. Lv et al. [24] propose
unbiased MIL by training model with both clustered confi-
dent and ambiguous sets to alleviate false alarm.

2.2. Prompt Learning in Video Understanding

Recent studies successfully extend prompt learning to video
understanding tasks. For instance, Wang et al. [41] align
video clips with text embeddings of category labels for ac-
tion recognition task. Ju et al. [15] construct prompt tem-
plates by category labels and investigate the effect of label
position within the templates. However, manual prompt de-
sign is time-consuming [10]. Some works [20, 29, 48] uti-
lize the definitions provided by knowledge-base to create
prompt templates. Wu et al. [46] learns semantic by pre-
dicting correct class labels with concatenated visual and text
features. However, coarse-grained alignment learns confus-
ing semantic, thereby leading to inaccuracy in anomaly de-
tection. Different from them, we do a fine-grained align-
ment between visual and text features because wVAD is
sensitive to noise. Furthermore, we utilize learnable prompt
with proposed prompt constraint loss to integrate rich se-
mantic features into visual features.
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Figure 2. Pipeline of the proposed method: (1) Temporal Feature Fusion module (Sec. 3.2) and Scale-Aware Prediction Head (Sec. 3.3)
are utilized to model the temporal relationships and generate multi-scale anomaly scores. (2) Abnormal-Aware Prompt Learning (Sec. 3.4)
is applied to facilitate the intermediate feature incorporating a semantic priors by abnormal-aware prompts. (3) Normal Context Prompt
(Sec. 3.5) is learned by two-stage training and enriches the boundary context feature to exhibit a discriminative pattern.

3. Method

3.1. Overview

The architecture of the overall framework is depicted in
Fig 2. Specifically, given an untrimmed video X v with
corresponding audio X a, we employ pretrained backbone
networks to extract video features Fa and audio features
Fv . To model the temporal relationship, these features are
then passed to a transformer-based temporal feature fusion
module, which leverages both context attention and event
attention. Subsequently, the scale-aware prediction head is
employed to predict the anomaly scores and facilitate mod-
eling the abnormal patterns at different scales. To capture
diverse abnormal patterns, abnormal-aware prompt learning
is applied to incorporate rich semantic to intermediate fea-
tures X e. Furthermore, we learn the normal context prompt
guided by normal label with frozen model. The proposed
normal context prompt can enrich the feature during model
inference to generate clear event boundary.

3.2. Temporal Feature Fusion

Temporal feature fusion module is proposed to model long-
range context and short-range event temporal dependencies
by utilizing self-attention mechanism [37]. Considering the
computational overhead, we divided input video X v and
audio X a into 16-frame non-overlapping snippets. Pre-
trained frozen backbones are utilized to extract video and
audio features, formulating snippet-level feature sequence

Fv ∈ RN×Dv and Fa ∈ RN×Da whereN is the number of
snippets andDv , Da are the feature dimension of video and
audio respectively. Then video and audio features are con-
catenated along dimension to create multi-modal features
F ∈ RN×(Dv+Da).

Inspired by the success of attention-based methods [7,
17, 34–36, 39] in multi-modal data, we adopt attention
mechanism to model temporal relationship.The similarity
matrix is computed and dynamic position encoding [29]
E ∈ RN×N is add to similarity matrix M ∈ RN×N to
incorporate position prior information:

M = fq(F) · fk(F)⊤ + E ,
Ej,k = exp

(
−
∣∣γ(j − k)2 + β

∣∣) , (1)

where f(·) corresponds to linear layers and the symbol ⊤
denotes the transpose operation. The variables j ∈ [1, N ]
and k ∈ [1, N ] refer to the number of two snippets, while
γ and β represent learnable weight and bias terms. Then
compute context attention map and feature Fg ∈ RN×Dh

as follows:

Fg = softmax

(
M√
Dh

)
· fv(F), (2)

where Dh indicates the hidden dimension.
To focus on consecutive event snippets and solve the

long-range noise, the similarity matrix is masked to capture
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short-range event dependencies :

M̃ij =

{
Mij , j ∈

[
max

(
0, i−

⌊
w
2

⌋)
,min

(
i+

⌊
w
2

⌋
, N

)]
−∞, otherwise

(3)
where M̃ ∈ RN×N refers to event similarity matrix and w
is the event size of the mask. Afterwards,we compute the
event context feature Fe following equation 2.

A learnable gate weight α is introduced to fuse con-
text and event features. Subsequently, a residual connection
is utilize followed by layer normalization to derive feature
Fc ∈ RN×(Dv+Da) which can be formulated as:

Fo = α · Fg + (1− α) · Fe

Fc = LayerNorm (F + fo (Norm (Fo)))
(4)

where Norm(·) denotes a composite of power normaliza-
tion [50] and L2 normalization.

3.3. Scale-Aware Prediction Head

To magnify varied-scale abnormal events, we propose a
scale-aware prediction head, as shown in Fig 2. To ob-
tain high-level semantic featureXe

s ∈ R⌊N/s⌋×Dm , a multi-
layer perceptron is applied:

X e
s = Dropout (GELU (Convs (Fc))) (5)

where Dm is the semantic feature dimension and Convs
refers to one-dimension convolutional layer with a stride of
s. The module is followed by GELU [13] activation and
dropout operation. Subsequently, the anomaly scores are
generated from semantic feature, which can be denoted as:

Ỹs = σ (ft (Dropout (GELU (Convs (X e))))) (6)

where ft(·) refers to causal convolution layer and σ(·) is
the sigmoid activation function. X e is extracted with stride
1 and Ỹs ∈ R⌊N/s⌋ indicates the predicted frame-level
anomaly scores.

Following [43], we apply the MIL-based loss as the fun-
damental objective function. For abnormal videos, top-k
anomaly scores are selected to reinforce the abnormal fea-
tures and for normal videos, the maximum score is sampled
to decrease the prominent anomaly score in normal video.
Parameter k is set as follows:

k =

{
⌊ N
16×s⌋+ 1, Y = 1

1, Y = 0
(7)

where Y ∈ R refers to video-level ground-truth. Y equals 1
if it is an abnormal video and 0 if it is a normal video.

The video-level prediction Ŷs2 ∈ R can be computed as
the mean of the top-k anomaly scores:

Ŷs =
1

k

∑
i∈top- k

Ỹi
s (8)

The MIL-based loss function is computed by binary cross-
entropy as follows:

LMIL = −Y log
(
Ŷs

)
− (1− Y) log

(
1− Ŷs

)
(9)

3.4. Abnormal-Aware Prompt Learning

Abnormal-aware Prompt Learning (APL) is proposed to fa-
cilitate modeling diverse anomalous patterns with semantic-
rich visual features. Through APL, semantic prior from text
prompts is incorporated into visual feature. The process
of APL includes three steps which are event-context sepa-
ration, abnormal-aware prompts construction and dynamic
cross-modal alignment.

Firstly, we separate event and context feature to enable a
fine-grained semantic learning. Since the videos may con-
tain event and context instances, aligning all snippets with
same prompt will confuse the model with unclear semantic.
We leverage the scaled anomaly scores as activations to sep-
arate video-level event and context features as illustrated:

Ve
s =

exp(µỸs)− 1∑
t(exp(µỸt

s)− 1)
· X e

s

Vc
s =

exp(µ(1− Ỹs))− 1∑
t(exp(µ(1− Ỹt

s))− 1)
· X e

s

Vs = {Ve
s ,Vc

s}

(10)

where Ve
s ∈ RDm and Vc

s ∈ RDm refer to the event and
context feature respectively and t indicates the number of
the snippet. Predetermined scaling factor is denoted by µ
that works in conjunction with the exp(·) operation to am-
plify activations with high confidence. Then the event fea-
ture Ve

s ∈ RDm and context feature Vc
s ∈ RDm are concate-

nated together to form overall visual feature Vs. For normal
videos, only event visual feature is sampled as Vs = Ve

s .
Secondly, we composite abnormal-aware prompts as se-

mantic cues. To determine the precise semantic relationship
for capturing various abnormal patterns, the annotations are
divided into three sub-classes which are positive, relevant
and negative class. For an abnormal video, the positive an-
notation indicates the abnormal classes presented within the
video, while the relevant annotation refers to collection of
nonexistent abnormal class labels. The negative label de-
notes normal label. For normal videos, the positive and
relevant annotations are the normal label and the negative
annotation corresponds to all abnormal labels. The original
abnormal text labels are transformed into embedding ten-
sors through the tokenizer and embedding layer of the text
backbone. For instance, the initial embedding T p

init of pos-
itive label can be derived as:

T p
init = Embed(Token(’Positive Label’)) (11)

Considering the original class annotations are too succinct
to summarize complex events and scarce of rich semantic,
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we introduce learnable prompt to the original text embed-
ding to increase the generalization capability and derive
semantic-rich text feature. We concatenate the learnable
prompt with the embedding tensor:

T p
embed = {T l, T p

init} (12)

where T l ∈ RL×Dm denotes learnable prompt and L is the
length of learnable prompt. Subsequently, the semantic-rich
label embedding is passed to the text encoder to obtain text
feature of sub-classes, denoted as T p, T r and Tn. They are
then concatenated to form the text feature of each label:

T = {T p, T r, Tn} (13)

Finally, by dynamic cross-modal alignment through
event relevance reasoning, we enrich the visual features
with semantic prior to learn class-specific abnormal pat-
terns. The visual-text correlation distributionP is computed
as:

ψ(Vs, T ) =
Vs · T⊤

∥Vs∥∥T∥

P (Vs) =
exp(ψ(Vs, T )/τ)∑C+1

k=1 exp (ψ (Vs, Tk) /τ)

(14)

where C refers to the number of abnormal class and τ cor-
responds to temperature factor. We propose event relevance
reasoning module to dynamically calculate the semantic rel-
evance, and formulte the alignment objective O. The pro-
cess can be denoted as follows:

O =

[
Oe

p Oe
r Oe

n

Oc
p Oc

r Oc
n

]
=

[
1 c · ψ(T p, T r) 0
0 c · ψ(Tn, T r) 1

]
(15)

where c is a scaling factor which equals 1 if it is a normal
video. e, c in superscript correspond to the event and con-
text features. p, r, n in subscript refer to the positive, rele-
vant and negative text features. The target distribution can
be computed as:

Q(Vs) =
exp (Ov

t )∑C+1
k=1 exp

(
Ov

t,k

) (16)

The abnormal-aware prompt learning loss LAPL can be
computed by Kullback-Leibler divergence, as follows:

LAPL = EP∼P (v) [logP (Vs)− logQ(Vs)] (17)

To ensure the consistency between learnable prompt and
class annotation. Prompt constraint loss LPC is introduced:

LPC = 1− T l · T⊤
init

∥T l∥ ∥Tinit∥
(18)

In the first training phase, the overall objective function can
be denoted as:

L = LMIL + λLAPL + βLPC (19)

where hyper-parameter λ and β are used to balance the loss.
By optimizing the objective function, the model can lever-
age semantic-rich feature to generate a more discriminate
representation. Consequently, our method can detect vari-
ous anomaly patterns precisely.

3.5. Normal Context Prompt

Normal Context Prompt (NCP) is proposed to generate a
clear abnormal event boundary by enriching the ambigu-
ous context feature. NCP is devised to summary the la-
tent normal event distribution of the trained model. NCP
VNCP ∈ RK×Dv can be interpreted as a normal visual fea-
ture sequence, where K refers to the NCP length.

We apply a two-stage training strategy to learn NCP as
illustrated in Fig. 2. In first stage, the model captures abnor-
mal and normal patterns. In the second stage, we freeze the
model for NCP to fit captured normal distribution. NCP is
passed to the model as input and the provided ground-truth
label is 0. We compute the mean square error loss for NCP
to learn normal distribution. The loss can be denoted as:

LMSE =
1

N

N∑
i=1

(Y − Ỹi)2 (20)

During inference phase, we concatenate the normal con-
text prompt with multi-modal feature sequence. The en-
riched feature is passed to temporal feature fusion module
which can fuse the multi-model feature with NCP by at-
tention mechanism. It amplifies the feature discrepancy by
dynamically integrating abnormal context with enrichment
from normal domain, taking advantage of the higher fea-
ture relevance. The detector can leverage the distinction to
determine accurate event boundary.

4. Experimental Results
4.1. Datasets

UCF-Crime [31] encompasses 13 distinct anomaly cate-
gories, originating from diverse scenes, including streets,
family rooms, and shopping malls. The dataset comprises
1610 training videos and 290 test videos.
ShanghaiTech [19] comprises 13 campus scenes from
surveillance system with fixed point of view. It contains
238 videos in training set and 199 videos in the test set.
XD-Violence [45] is the most extensive dataset currently
available for wVAD. It comprises videos gathered from var-
ious sources, including movies, games, and car cameras.
The dataset is challenging because it contains rich artis-
tic expressions such as changing perspective and dynamic
camera movements. This dataset includes 3954 training
videos with video-level annotations, 800 test videos with
frame-level labels, and encompasses six distinct anomaly
categories. In addition, it offers video with audio, facilitat-
ing anomaly detection by harnessing multi-modal cues.
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Supervision Methods Feature AP(%)

Semi-
SVM Baseline I3D+VGGish 50.78

Supervised
OCSVM [30] I3D+VGGish 27.25
Conv-AE [12] I3D+VGGish 30.77

Weakly-

MIL-Rank [31] C3D RGB 73.20

Supervised

CA-VAD [4] I3D RGB 76.90
RTFM [32] I3D RGB 77.81
CRFD [44] I3D RGB 75.90
DDL [28] I3D RGB 80.72
MSL [18] VideoSwin-RGB 78.59
S3R [42] I3D RGB 80.26

MGFN [5] VideoSwin-RGB 80.11
UR-DMU [56] I3D RGB 81.66

Zhang et al. [53] I3D+VGGish 81.43
CMA-LA [27] I3D+VGGish 83.54

MACIL-SD [49] I3D+VGGish 83.40
CoMo [6] I3D RGB 81.30

PEL4VAD [29] I3D RGB 85.59
HyperVD [26] I3D+VGGish 85.67

Ours I3D RGB 88.05
Ours I3D+VGGish 88.21(+2.54)

Table 1. Comparison with other methods on XD-Violence.

4.2. Evaluation Metrics

Following previous works [8, 31, 54], we opt the Area Un-
der the Curve (AUC) of the frame-level Receiver Operat-
ing Characteristic (ROC) curve as the evaluation metric, for
assessing the performance of our method on UCF-Crime
and ShanghaiTech datasets. For XD-Violence, following
[18, 45, 53], we use Average Precision (AP) as the metric.

4.3. Implementation Details

Consistent with existing methods [29, 44], we encode the
videos into 1024-dimension video features by RGB-stream
I3D [3] video encoder, which is pretrained on Kinetics [16]
dataset. For audio features, we leverage VGGish [14] audio
encoder pretrained on YouTube [14] dataset. Each snippet
consists of 16 frames. The batch size is 128 and the learning
rate is 5 × 10−4 with a cosine decay strategy. The window
size w is 9. The NCP length K is 35 for XD-Violence and
UCF-Crime, and 5 for ShanghaiTech. λ and β are 1 and 8
respectively for model training. The scales of s are 2 and
3. λ with 0.001 is applied to balance multi-scale loss. In
comparison, we reproduce other methods by released codes.
More implementation details are in the supplementary.

4.4. Comparisons with SOTA methods

Results on XD-Violence. The proposed method is com-
pared with following SOTA methods, which can be cate-
gorized as semi-supervised methods [12, 30] and weakly
supervised methods [4–6, 18, 26–29, 31, 32, 42, 44, 49,
53, 56]. The results are shown in Table 1. Our method sur-
passes all previous semi-supervised methods and weakly-
supervised methods. Notably, when utilizing the same I3D-
RGB video features and VGGish audio features, our method
achieves an absolute gain of 2.54% in terms of the AP com-
pared to the best previous method [26]. This superiority

Supervision Methods Feature AUC(%)

Semi-
Mem-AE [11] - 71.20

Supervised
HF 2-VAD [21] - 76.20
DLAN-AC [47] - 74.70

Weakly-

MIL-Rank [31] C3D RGB 86.30

Supervised

GCN [55] TSN RGB 84.44
CLAWS [51] C3D RGB 89.67
AR-Net [38] RGB+Flow 91.24

MIST [9] I3D RGB 94.83
CRFD [44] I3D RGB 97.48
RTFM [32] I3D RGB 97.21
MSL [18] VideoSwin-RGB 97.32

NL-MIL [25] I3D RGB 97.43
S3R [42] I3D RGB 97.48

UMIL [24] X-CLIP RGB 96.78
Ours I3D RGB 98.35(+0.87)

Table 2. Comparison with other methods on ShanghaiTech.

Supervision Methods Feature AUC(%)

Semi-
Conv-AE [12] - 50.60

Supervised
Lu et al. [22] - 76.20
GODS [40] BoW+TCN 70.46

Weakly-

MIL-Rank [31] C3D RGB 75.41

Supervised

GCN [55] TSN RGB 82.12
MIST [9] I3D RGB 82.30

CRFD [43] I3D RGB 84.89
RTFM [32] I3D RGB 84.30
MSL [18] VideoSwin-RGB 85.62

PEL4VAD [29] I3D RGB 85.62
NL-MIL [25] I3D RGB 85.63

S3R [42] I3D RGB 85.99
CoMo [6] I3D RGB 86.10
UMIL [24] X-CLIP RGB 86.75

Ours I3D RGB 86.83 (+0.73)

Table 3. Comparison with other methods on UCF-Crime.

results from precise modeling of divergent abnormal pat-
terns by APL. NCP also contributes to the deliver a more
precise anomaly detection results by generating clear event
anomaly boundary and eliminating false alarm.
Results on ShanghaiTech. Table 2 presents the perfor-
mance comparisons on the ShanghaiTech dataset. Our
method demonstrates superior performance in terms of
AUC when compared to previous semi-supervised ap-
proaches [11, 21, 47] and weakly-supervised methods [9,
18, 24, 25, 29, 31, 32, 38, 42, 44, 51, 55]. Specifically, when
using the same I3D features, our method outperforms the
state-of-the-art methods. APL facilitates modeling of diver-
gent abnormal patterns and NCP helps to generate of clear
event anomaly scores. They contribute to more accurate and
reliable anomaly detection.
Results on UCF-Crime. Table 3 presents the performance
comparisons on UCF-Crime dataset. Our method demon-
strates favorable performance comparing to current meth-
ods [6, 9, 12, 18, 22, 24, 25, 29, 31, 32, 40, 42, 43, 55]. It is
noted that compared to the other datasets, our method does
not bring much gains. Our conjecture is that different ab-
normal events in UCF-Crime dataset exhibit a high degree
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Figure 3. AP results w.r.t. sub-classes on XD-Violence

of homogeneity and fixed-view surveillance video results in
a low level of coupling between abnormal events and con-
text. The attribute of the abnormality diminishes the impact
of our method.

Baseline SA-Head APL NCP AP(%)

✓ 78.73
✓ ✓ 80.82
✓ ✓ ✓ 86.62
✓ ✓ ✓ ✓ 88.21

Table 4. Ablation studies of proposed modules on XD-Violence.

ERR LP LPC AP(%)

85.61
✓ 87.78
✓ ✓ 87.45
✓ ✓ ✓ 88.21

Table 5. Ablation studies of modules in APL on XD-Violence.

K 0 1 5 10 35 50

AP(%) 86.62 87.47 87.87 88.09 88.21 88.20

Table 6. Ablation studies of NCP length on XD-Violence.

4.5. Ablation Studies

Effect of proposed module. We conduct ablation studies
of proposed modules on XD-Violence dataset as shown in
Table 4. To prove the necessity of capturing multi-scale ab-
normality, we compare our method with Scale-Aware pre-
diction Head (SA-Head) with baseline. The results show
a 2.9% improvement in terms of AP, which illustrate that
learning multi-scale abnormal events can capture the tem-
poral abnormal pattern better, thus improving detection per-
formance. Besides, to illustrate the effect of Abnormal-
aware Prompt Learning (APL), we compare the baseline
with/without APL. From the results, we note that APL can
bring 5.8% performance gain in AP, which indicates the
importance of semantic prior in modeling diverse abnor-
mal patterns. In addition, we illustrate the impact of NCP

which can lead to 1.59% improvement in AP. This result
demonstrates that NCP can decouple the abnormal context
and event effectively, reducing boundary enlargement and
false alarm to boost detection performance. To evaluate the
ability of capturing diverse abnormalities, we compare AP
of sub-classes of the model without APL (green bar) and the
model with APL (blur bar) in Fig. 3. The model with APL
outperforms the one without APL, which proves that APL
can facilitate detecting diverse abnormal events.
Effect of modules in APL. To demonstrate effectiveness
of each module and loss function in APL, we conduct ab-
lation studies in APL, as shown in Table 5. Intending to
demonstrate the necessity of doing fine-grained alignment
based on event relevance, we compare our method using
Event Relevance Reasoning (ERR) with the baseline using
constant factors as target. The result shows the ERR can
gain 2.17% increment in AP, which reveals the event rele-
vance plays a vital role in modeling complex relationship of
abnormal patterns and essence in diverse abnormalities. In
addition, to verify the effect of learnable prompt, we con-
duct experiments between raw text embedding and embed-
ding with learnable prompt. Notably, the performance drops
by 0.34 % in term of AP without the prompt constraint loss.
This illustrates the significance of prompt constraint loss for
generating semantic related abnormal-aware prompts. To-
gether with learnable prompt and prompt constraint loss,
our method can boost performance by 0.43%, which verifies
the effectiveness of semantic-rich abnormal aware prompts
in capturing diverse abnormal patterns.
Effect of NCP length. To illustrate effectiveness of NCP,
we conduct ablation studies with varied lengths K of NCP,
as shown in Table 6. Notably, the NCP can bring 0.8% gain
in AP with length of 1 and maximum 1.59% gain in AP with
length of 35, which proves the effect of NCP in detecting
anomaly precisely.

4.6. Qualitative Results

Anomaly Scores. To intuitively substantiate the effec-
tiveness of our approach, the anomaly scores predicted
by our method are visualized on the most challenging
XD-Violence dataset in Fig. 4 compared to other meth-
ods [29, 31]. As demonstrated in Fig. 4a, our method ef-
fectively predict precise anomaly scores while significantly
mitigating the occurrence of ambiguous boundary and false
alarm, compared to the SOTA method [29]. Fig. 4b and
Fig. 4c exemplify the proficiency of our method in predict-
ing precise anomaly scores for long-term anomaly videos
with multi-segment variable types and subtle intervals be-
tween anomalies. Fig. 4d further illustrates the efficacy of
mitigating false alarm in challenging normal videos. The
capability of detecting diverse abnormal patterns demon-
strates that effectiveness of semantic prior in capturing var-
ious abnormalities. The decoupling of abnormal event and
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(a) Shooting (b) Riot

(c) Fighting (d) Normal

Figure 4. Qualitative results of our method on XD-Violence test
video. The pink square indicates the section where abnormal
events occur. The Y-axis represents anomaly scores, while the X-
axis represents the frame number of videos.

(a) Baseline (b) Baseline with APL

Figure 5. Feature distribution of the semantic feauture without and
with APL using t-SNE

context further prove that NCP can enrich the ambiguous
context feature to exhibit a more discriminative character.
Feature Distribution. For better comprehension of the
APL module, we employ t-SNE for visualizing the features
X e from the intermediate layer. As depicted in Fig. 5a, the
disparity between normal and abnormal features is minimal
without APL, where some abnormal features are mingled
with the normal cluster. With APL, a clear gap emerges be-
tween the abnormal and normal clusters. Moreover, all the
abnormal features are exclusively grouped within the cor-
rect cluster, as demonstrated in Fig. 5b. This illustrates APL
can facilitate to increase discrepancy between normal and
abnormal events, leading to accurate anomaly detection.
Attention Map. To demonstrate the effect of NCP, we visu-
alize the anomaly scores and corresponding attention maps
with and without NCP. In Fig. 6a, Fig. 6b and Fig. 6c, we
illustrate the anomaly scores with/without NCP by blue and
gray lines, respectively. By introducing NCP, the model ef-

Figure 6. (a), (b) and (c) are visualization of anomaly scores on
three hard cases with coupled boundary. (d), (e) and (f) are the
attention maps of above cases without NCP. (g), (h) and (i) are the
attention maps with NCP (only maps of visual features are shown).

fectively establishes clear abnormal event boundaries. From
Fig. 6d, Fig. 6e and Fig. 6f, we find that the attention maps
without NCP are scattered. Instead, with the enrichment of
NCP, our method can highlight the abnormal features and
decoupled the context features, as shown in Fig. 6g, Fig. 6h
and Fig. 6i. By employing NCP, the distinctiveness of the
context is enhanced, leading to precise anomaly detection.

5. Conclusions
This paper proposes the prompt-enhanced MIL to cap-
ture diverse abnormal patterns with a clear abnormal event
boundary for wVAD. Given the embeddings of abnormal
class annotations, we first introduce learnable prompt to
augment them and design a constraint loss to guarantee their
semantic consistency, thus gaining abnormal-aware prompt.
Next, we incorporate the semantic prior into video features
by aligning them with the learned prompt. In this way, the
model can use semantic-rich features to capture diverse ab-
normal patterns. Further, normal context prompt is intro-
duced as a summary of normal patterns to amplify the dis-
tinction of abnormality and abnormal context. Ambiguous
context feature is enriched to generate a clear event bound-
ary. Extensive experiments show our method achieves
SOTA performance on three public benchmarks.
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