Rapid 3D Model Generation with Intuitive 3D Input

Tianrun Chen1,4*, Chaotao Ding2*, Shangzhan Zhang1*, Chunan Yu2, Ying Zang2†, Zejian Li3†, Sida Peng3, Lingyun Sun1

1College of Computer Science and Technology, Zhejiang University
2School of Information Engineering, Huzhou University
3School of Software Technology, Zhejiang University
4KOKONI3D, Moxin (Huzhou) Technology Co., LTD.

tianrun.chen@kokoni3d.com \{zhang3z, zejianlee, sunly\}@zju.edu.cn
\{2021388117, 2022388238\}@stu.zjhu.edu.cn 02750@zjhu.edu.cn

Abstract

With the emergence of AR/VR, 3D models are in tremendous demand. However, conventional 3D modeling with Computer-Aided Design software requires much expertise and is difficult for novice users. We find that AR/VR devices, in addition to serving as effective display mediums, can offer a promising potential as an intuitive 3D model creation tool, especially with the assistance of AI generative models. Here, we propose Deep3DVRSketch, the first 3D model generation network that inputs 3D VR sketches from novice users and generates highly consistent 3D models in multiple categories within seconds, irrespective of the users’ drawing abilities. We also contribute KO3D+, the largest 3D sketch-shape dataset. Our method pre-trains a conditional diffusion model on quality 3D data, then fine-tunes an encoder to map 3D sketches onto the generator’s manifold using an adaptive curriculum strategy for limited ground truths. In our experiment, our approach achieves state-of-the-art performance in both model quality and fidelity with real-world input from novice users, and users can even draw and obtain very detailed geometric structures. In our user study, users were able to complete the 3D modeling tasks over 10 times faster using our approach compared to conventional CAD software tools. We believe that our Deep3DVRSketch and KO3D+ dataset can offer a promising solution for future 3D modeling in metaverse era. Check the project page at http://research.kokoni3d.com/Deep3DVRSketch.

1. Introduction

Today, a surge in demand for versatile and customizable 3D content has been catalyzed by the emerging trend of AR/VR \cite{6, 55}. The virtual landscapes of the metaverse are calling out for creators with visions of immersive experiences waiting to be actualized. Yet the traditional tools of 3D modeling with computer-aided design (CAD) software pose barriers to crafting such imaginative domains. Existing widely-used CAD platforms demand substantial technical proficiency, including both command knowledge to understand numerous software functions and strategic knowledge to decompose designs into sequential modeling commands

*Equal contribution
†Corresponding Author
within a shared latent space with the pre-trained model, the coder is trained to map the 3D sketch onto feature vectors capable of generating high-quality shapes is fixed, and an encoder is trained to map the 3D sketch onto feature vectors within a shared latent space with the pre-trained model, which interact with the intermediate feature maps of the diffusion model, guiding it to generate corresponding 3D shapes. Finally, joint fine-tuning is performed for the diffusion model and the encoder to improve alignment between 3D sketches and shape generation. During the training in 3D sketch mapping, we found the networks falter in generalizing across wide-ranging sketching styles and geometries with limited samples, leading to occasional failures in accurately reconstructing intricate local details. We thus propose an adaptive curriculum learning strategy to better use the limited data to learn diverse and complex shapes. To further address the issue of limited data, we also introduce a new dataset, KO3D+, which comprises thousands of sketch-model pairs drawn by humans across seven categories. This dataset provides a more expansive and diverse resource for the new field of 3D modeling from 3D VR Sketches for the academic community.

Our method’s effectiveness is validated in comprehensive experiments. DeepVR3DSketch surpasses existing benchmarks in terms of model quality and fidelity, even with unseen inputs from novice users. Moreover, we demonstrate that even some very detailed structures can be generated based on users’ detailed 3D drawings. In our user study, participants expressed higher satisfaction levels with the generated models. Users can use our approach to perform 3D modeling more than 10 times faster than conventional CAD based approaches. We believe that our Deep3DVRSketch can serve as a promising solution for future 3D modeling in the impending metaverse era.

2. Related Work

2.1. 3D Sketching in AR/VR

3D sketching tools have been developed with the emergence of AR/VR technologies. An early 3D sketching system in AR/VR was Holosketch [16], which enabled the creation of primitive shapes, freeform tubes, and 3D wireframes. Later work expanded the possibilities as hardware advanced [2, 27, 60]. Now, there are commercial tools like Tilt Brush, GravitySketch, and Quill. However, these systems rely heavily on manual operations that are labor-intensive and time-consuming. Recent solutions, such as the one proposed by Yu et al. [63], transform unstructured 3D sketches into smooth surfaces via optimization, but still rely on precise line drawings.

In light of this, to make possible 3D modeling for novice users with 3D sketches, in this paper, we propose to incorporate AI generative models to produce 3D shapes. The closest work to us is from Luo et al [40], which investigate shape prototyping and exploration with generative models based on normalizing flow and optimize the network based on the minimizing the distance between shapes and 3D sketches. However, as discussed earlier, matching sketches precisely leads to poor quality due to drawing imprecision...
by novice users. Their method is also limited to a single shape category per trained model. In contrast, our proposed generative approach can produce high-quality 3D shapes regardless of users’ drawing skills. Moreover, our model supports multi-category shape generation, better suited for real-world applications.

2.2. 3D Model Generation with Generative Models
3D shape generation has seen substantial progress in recent years. A variety of generative models have been explored in the field of 3D generation, including Generative Adversarial Networks (GANs) [1, 12, 58, 59, 67], Variational Autoencoders (VAEs) [14, 45], autoregressive models [42, 57, 61], normalizing flows [49], and more recently diffusion models [13, 29, 43, 46, 71]. In this work, We opt to build upon our network based on diffusion models, which have achieved state-of-the-art results in 3D shape generation tasks and can produce high visual quality shapes with fine details.

We note there is also a significant advancement in image-conditioned and text-conditioned 3D model generation networks recently [11, 20, 33–36, 47, 49, 51–53]. Unlike previous works, here we choose a very new modality of input – the 3D VR sketch. For AI generative models, using 3D VR sketch as the input to get 3D models also has few advantages compared to other inputs. Image inputs don’t allow for unrestricted, start-from-scratch 3D modeling; text is much less expressive or precise than a freehand sketch in conveying spatial or geometric information. While there are also some existing 3D model generation approaches focusing on 2D sketch input [4, 8–10, 21, 23, 32, 38, 44, 45, 54, 64–66, 69], the 2D sketch is ambiguous and abstract, which arises from inherent limitations in 2D sketches, including missing information due to occlusion and limited viewpoints. Sketching in 3D, in contrast, provides the capacity to communicate more comprehensive information, such as the complex internal features of objects like car seats. Hence, it opens the potential for achieving highly detailed and superior quality 3D modeling as demonstrated in this paper.

3. Method

3.1. 3D Sketch Acquisition and the KO3D+ dataset
The scarcity of existing datasets has hindered the progression of sketch-to-3D research, so we build a new dataset, KO3D+, by recruiting participants to draw 3D sketches in VR. The protocol of data acquisition is akin to that used by Luo et al. [40], in which participants were asked to draw over existing 3D models. The 3D models utilized were man-made high-quality 3D shapes sourced from ShapeNet dataset. We selected seven categories from ShapeNet: car, sofa, airplane, bench, display, watercraft, and table. Each category contains 600 3D sketches along with their corresponding 3D shapes, making this the most extensive 3D sketch dataset currently available. For an in-depth description of the dataset, including sample illustrations, please refer to the supplementary materials.

3.2. The Deep3DVRSketch Network
The Deep3DVRSketch aims to translate the provided 3D sketches to high-quality 3D models. The main component of Deep3DVRSketch is a diffusion-based generation framework designed to produce high-quality 3D shapes. In Section 3.2.1, we introduce the diffusion network structure. In 3.2.2, we show how we train the network. Specifically, our diffusion-based generation framework is trained in three stages, namely Generative Pre-Training, 3D Sketch Mapping, and Joint Fine-Tuning. Finally, a curriculum learning strategy is introduced to better utilize limited 3D sketch data and produce higher quality results (3.2.3).

3.2.1 Preliminary: Conditional 3D Diffusion Model.
DeepVR3DSketch utilizes a conditional diffusion model as the 3D shape generator, which has demonstrated success in obtaining high-quality and diverse 3D models compared to other methods such as using normalizing flows [17, 40].

Principle of Diffusion Models. A diffusion model is trained to sample from a target distribution by reversing a sequential noise diffusion process. Given a sample represented as z, we generate z_t for each t in the range from 1 to T by progressively introducing Gaussian noise, adhering to a predetermined variance schedule. Subsequently, a time-conditional 3D UNet, represented as ϵ, is utilized for denoising. Finally, the UNet generates new 3D shapes by denoising from a new Gaussian noise.

3D Shape Representation. Here, we represent a 3D shape as a discrete 3D volume – a Signed Distance Function (SDF) volume. This SDF volume calculates the signed distance from the center of each grid cell to the nearest shape surface. The mesh, which is also the zero isosurface, can be derived from the the grids using the Marching Cube algorithm. The SDF volume can be converted into a discrete occupancy volume where each grid cell holds a binary occupancy based on whether the absolute value of its SDF is beneath a predefined threshold.

Coarse-to-Fine Diffusion. High-fidelity 3D shape representation requires modeling fine details using high-resolution discrete signed distance fields (SDFs). However, fully generating dense SDF grids incurs prohibitive computational and memory costs due to cubic complexity. To avoid a huge computational burden while still maintaining a high-quality model generation, we follow [68] and use a two-stage diffusion framework utilizing a self-conditioning continuous diffusion model. In specific, the first stage generates a low-resolution 3D occupancy volume $F \in \mathbb{R}^{n \times n \times 1}$ to provide a preliminary approximation of the 3D shape. Subsequently, the second stage constructs a high-resolution sparse volume $S \in \mathbb{R}^{N \times N \times N \times 4}$.

In the two stages, we use a 5-level UNet in the first stage,
and a 4-level UNet in the second stage, where an octree-based convolutional neural network handles the SDF data in sparse voxel format. For details of the network configuration, please refer to Supplementary Material. Both the UNets are trained with the denoising loss [26]:

$$L(\theta) = \mathbb{E}_{z, \epsilon \sim \mathcal{N}(0,1), t} \left[\left\| \epsilon - \epsilon_\theta \left(z_t, \{c_i\}_{i=1}^N\right) \right\|^2 \right]$$

in which $\mathcal{N}(0,1)$ denotes Gaussian distribution, $\{c_i\}_{i=1}^N$ denote the condition applied to the generation process.

Learning the Conditional Distribution. Our 3D generation is a conditional generation setting in which the conditions $\{c_i\}_{i=1}^N$ are injected into the diffusion-based generation process to accept user input. The conditioning signal is applied by using task-specific encoders to transform the conditioning signal c (e.g. images, sketches) into a 1024-dimensional latent code l. Subsequently, multi-head cross-attention is used to infuse l into the UNet. The diffusion model may produce samples with limited diversity given the conditional input. To alleviate the issue, we adopt classifier-free guidance [25]. For more information, please refer to the Supplementary Material.

3.2.2 The Training of Deep3DVRSketch

In the following part, we show our multi-stage training strategy to make possible high-quality shape generation from 3D Sketches. We anticipate the diffusion model to create 3D shapes from a latent space, which will later be utilized for the downstream task of transforming 3D sketches into 3D models. In this context, the downstream fine-tuning is focused solely on comprehending the specifics of this task, while the intricate process of 3D shape generation leverages the pre-trained knowledge from the model. Specifically, in the Generative Pre-Training stage, we pre-train a conditional 3D diffusion generator that can produce high-quality shapes based on image conditioning. The images go through an image encoder $E_{\text{pretrain}}(\cdot)$ and derive a manifold \mathcal{Z} used to condition the diffusion model to produce plausible 3D shapes.

Next, in 3D Sketch Mapping stage, we train a sketch encoder $E_{\text{sketch}}(\cdot)$ to map the input 3D sketch s into a latent code $w_s^* = \mathcal{E}_s(s) \in \mathbb{R}^{1024}$ lying in the manifold \mathcal{Z} while leaving the pretrained diffusion generator intact. The outputs of $E_{\text{sketch}}(\cdot)$ at this stage will be closer to \mathcal{Z}, but still cannot reach the perfect alignment. Therefore, we introduce a Joint Fine-Tuning stage, we fine-tune both the encoder $E(\cdot)$ and the diffusion generator altogether to obtain much-improved alignment in $E_{\text{sketch}}(\cdot)$ and $E_{\text{pretrain}}(\cdot)$ in the pre-training stage. Such a phased training approach is beneficial in maximizing the use of pre-trained knowledge and has been proven to be a key factor in significantly enhancing the final output quality.

Stage 1: Generative Pre-Training. The aim of this phase is to train a diffusion model to generate 3D shapes from a latent space that will subsequently be employed for the specific downstream task of converting 3D sketches into 3D models. To do so, we present the network with a vast collection of high-quality 3D shapes and condition the diffusion process with rendered images. These images are encoded by a pre-training encoder, denoted as $E_{\text{pretrain}}(\cdot)$.

Taking inspiration from previous works of visual-linguistic pretraining and their remarkable transferability [48, 70], we map the image condition to a CLIP latent space with a fixed pre-trained CLIP encoder. The diffusion model is conditioned by embedding from the CLIP latent space \mathcal{Z} via cross-attention. By doing so, we obtain a diffusion model that can generate high-quality 3D shapes with global conditions from the CLIP latent space \mathcal{Z}.

Stage 2: 3D Sketch Mapping. Then, we map the 3D sketch input to the CLIP latent space \mathcal{Z} and keep the pretrained diffusion model in Stage 1 frozen. The 3D sketch is
represented by point clouds, so we designed a transformer point encoder to encode the 3D sketch s into a latent code $w_+ = \mathcal{E}_s(s) \in \mathbb{R}^{1024}$, which is the same dimension as the CLIP feature in the previous stage.

We note that the CLIP latent space is a highly abstract domain. Mapping highly sparse and abstract 3D sketches represented by point clouds onto this space is a challenging task, especially when the quantity of 3D sketch data is limited. Addressing this challenge, we introduce additional prior knowledge about 3D space. Specifically, we utilize a pre-trained point encoder Uni3D [70], which is aligned with the CLIP latent space, to serve as the 3D sketch encoder. Structurally equivalent to the vanilla transformer of ViT, this encoder has already learned to represent a wealth of point cloud features from a substantial dataset consisting of millions of 3D shapes, corresponding images, and text entries under a multi-modal alignment learning objective. In the ablation study, we show this pre-training is critical for the network performance.

Stage 3: Joint Fine-Tuning. We observe that exclusively adjusting the 3D sketch $E_{\text{sketch}}(\cdot)$ is insufficient to ensure the optimal alignment of the shape generation process with the sketch input. Therefore, inspired by previous practice in image diffusion-based generation [56], we concurrently fine-tune both the 3D sketch $E_{\text{sketch}}(\cdot)$ and the diffusion model to ensure significantly enhanced spatial semantic alignment. This approach proves beneficial in maximizing the utilization of pre-trained knowledge and is also crucial for achieving improved quality.

3.2.3 Adaptive Curriculum Learning

As we mentioned in the introduction, the data scarcity and the complexity of 3D sketches are two main challenges in our task. In our framework, we find that with only limited training data of 3D sketches and 3D model pairs, networks struggle to generalize across large variations in sketching styles and geometries when mapping abstract 3D sketches to a latent space to condition a generative model. In our experiment, we can observe that the network occasionally fails to accurately reconstruct intricate local details. In these regions, the network struggles with precise parameterization due to less smooth areas in the implicit function. Even small errors can produce incorrect signs, leading to inaccurate surface reconstructions.

Drawing inspiration from curriculum learning, we intend to tackle these challenges by emulating the human learning process in sketching. Just as beginners in sketching start with simple, flexible shapes and gradually progress towards more complex and difficult ones in later training, we aim to incorporate this learning strategy into our framework.

Sample Difficulty Score. In curriculum learning, the careful selection and sequencing of samples, from simple to complex, is crucial for effective and incremental skill development. The selection is based on a difficulty score estimated on samples. Inspired by Curriculum DeepSDF [19], we consider points with incorrect estimates as hard samples, points with correct estimates as easy samples, and points between 0 and the ground truth as semi-hard samples. We use the following difficulty score.

$$s_{\text{cur}} = 1 + \lambda \text{sgn}(y)\text{sgn}(\hat{y} - y)$$

Here, y is the ground truth SDF value, \hat{y} is the predicted SDF value, and $0 \leq \lambda \leq 1$ control the importance of hard and semi-hard samples. $\text{sgn}(v) = 1$ if $v \geq 0$ and $\text{sgn}(v) = -1$ if $v < 0$.

Adaptive Curriculum. Unlike traditional curriculum learning which designs the curriculum manually, we use an adaptive curriculum strategy. [30] This is, to the best of our knowledge, the first attempt at applying an adaptive curriculum in a conditional 3D generation task.

Specifically, we first leverage the pre-trained network to acquire the initial difficulty score and sort the initial dataset \mathcal{X} in ascending order based on the current difficulty score s. We subsequently use the pacing function $p(\cdot)$ to form the sample pool \mathcal{X}', from which we draw a mini-batch $\mathcal{B}' = [\mathcal{B}'_1, \ldots, \mathcal{B}'_M]$ to train the target network. The pacing function $p(\cdot)$ is a monotonically increasing function that determines the speed at which we learn from simpler to more complex samples. Finally, we update the difficulty score s at the end of the forward propagation and compute a new sample pool \mathcal{X}'.

The difficulty score is also adaptable to varying training duration. The difficulty score for the $(k + 1)^{\text{th}}$ position can be expressed as:

$$s_{k+1} = (1 - \alpha)s_k + \alpha s_{\text{cur}}$$

where $k = \lfloor m / \text{inv} \rfloor$ where m denotes the m^{th} mini-batch. inv is controls the frequency of difficulty score updates, and α controls the speed of difficulty score updates.

Pacing Function. To manage the pace of sample learning, we require a monotonically increasing pacing function, $p(\cdot)$, to constrain the size of the sample pool \mathcal{X}'. The function can be expressed as:

$$p(i) = n \times \min(1, p_0 \times q^{i/r_0})$$

where n represents the number of samples. p_0 is the sample proportion at the initial step. q controls the speed of sample proportion growth. r_0 controls the frequency of sample proportion growth, and i is the current step. For more information, please refer to the Supplementary Material.

4. Experiment

4.1. Dataset

Our method first pre-trains a generative diffusion model on a large 3D shape dataset (ShapeNetCore-v2) for high-quality synthesis (Stage 1). The model is then fine-tuned
on aligned and normalized sketch-shape pairs (Stages 2-3). The availability of 3D sketch and 3D model pair datasets is limited. Currently, there is only one dataset available by Luo et al [39]. This dataset consists of 1,005 sketch shape pairs in the chair class. We adopt their dataset and use their predefined split, 803 for training and 202 for testing. We use 5,721 samples of chairs from the ShapeNet dataset in the first stage pre-training. In addition to the Luo et al. dataset, we introduce our own dataset, KO3D+, which encompasses 7 categories from ShapeNet with the defined test-train split. We use 12,970 samples of chairs the corresponding categories in the ShapeNet dataset in the first stage pre-training.

4.2. Implementation Details
During the first pre-training stage, we trained the first UNet using the Adam optimizer [28] with a fixed learning rate of 2 × 10⁻⁴ for 800 epochs. For the subsequent UNet, we utilized the AdamW optimizer [37] with a fixed learning rate of 1e⁻⁴ for 500 epochs. In the second Sketch Mapping stage, we trained the sketch encoder for 300 epochs with a learning rate of 2e⁻⁴ and Adam optimizer. Finally, in the third Joint Fine-Tuning stage, we tuned the diffusion model and the sketch encoder jointly for 300 epochs with a learning rate of 2e⁻⁴ with Adam optimizer. The training process was conducted using 8 NVIDIA A100 graphics cards.

4.3. Evaluation Metrics
We quantitatively evaluate the generated 3D shapes in terms of the fidelity and quality. Following prior works in 3D generative models [22, 50], we choose the bidirectional Chamfer distance (CD) as the similarity metric between two 3D shapes to measure the fidelity of generated result and the Fréchet Inception Distance (FID) [24] to measure the visual quality of generated result. For more details about the evaluation metrics, please refer to the Supplementary Material.

4.4. Qualitative and Quantitative Evaluation
Our experiment is conducted in two settings: 1) Training a single-category 3D generation network using the dataset from Luo et al. [40] and the proposed KO3D+ dataset. 2) Training a multi-category 3D generation network using the proposed KO3D+ dataset. We find our method significantly outperforms existing 3D and 2D baselines in model fidelity and quality.

Single-Category 3D Generation. We first use the dataset from Luo et al. [40] to train our network and compare it with Luo et al. [40]. Our approach outperforms the existing methods in both model fidelity and quality as shown in Tab. 1. This improved performance extends to the data in the KO3D+ dataset as well. Specifically, we selected the “car” category and trained our approach alongside Luo et al.’s method, and our approach consistently outperforms theirs. Importantly, our approach excels at reconstructing intricate details, such as the car’s mirrors and interior seats (in Fig. 3). This not only demonstrate the strong capability of our algorithm, but also showcases the inherent advantage of utilizing 3D sketches, as these structures can be easily represented and conveyed through 3D sketches, whereas they pose significant challenges when using 2D sketches. The ability of our approach to accurately capture and reconstruct these fine-grained features further highlights the benefits of employing 3D sketches in the modeling process.

Multi-Category 3D Generation. Next, we evaluate the cross-category performance of our approach by utilizing all the data from the KO3D+ dataset. As depicted in Fig. 4, our Deep3DVRSketch successfully generates high-quality 3D models across multiple categories. In contrast, the existing approaches fail to produce meaningful results (Tab. 2) and we have witnessed a mode collapse in existing methods. (details in Supplementary Material). This highlights the superior capability of our approach in handling diverse categories and consistently generating accurate and visually pleasing 3D models, making it a promising solution with broader applicability.

Comparison with 2D Sketch-Based Approaches. We also compare our 3D sketch-based generation approach with a solely 2D sketch-based method. The projection of a 2D sketch onto a 2D plane serves as a 2D sketch. We evaluate our approach against representative methods for generating 3D models from 2D sketches, namely LAS-Diffusion [68], Deep3DSketch [9], and subsequent work, Deep3DSketch+ [8]. Experimental results show Deep3DVRSketch with 3D sketch as the input produces more plausible shapes with better 3D awareness and local geometric control compared to 2D sketch-input approaches, as shown in Table 3 and Fig. 5 (see the arms in the first row and the legs and seat pad in the second row.) More examples in Supplementary Material.

4.5. User Study
3D Model Quality and Fidelity. To further validate the effectiveness of our sketch-to-model algorithm, we conducted

<table>
<thead>
<tr>
<th>Category</th>
<th>Method</th>
<th>FID ↓</th>
<th>CD ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair [39]</td>
<td>Luo et al. [40]</td>
<td>11.5313</td>
<td>0.0305</td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>8.7701</td>
<td>0.0220</td>
</tr>
</tbody>
</table>

Table 1. Quantitative Result for Single-Category 3D Generation

<table>
<thead>
<tr>
<th>Method</th>
<th>FID ↓</th>
<th>CD ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luo et al. [40]</td>
<td>30.5313</td>
<td>0.0455</td>
</tr>
<tr>
<td>Ours</td>
<td>15.5397</td>
<td>0.0304</td>
</tr>
</tbody>
</table>

Table 2. Quantitative Result for Multi-Category 3D Generation

<table>
<thead>
<tr>
<th>Method</th>
<th>FID ↓</th>
<th>CD ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAS-Diffusion</td>
<td>11.2195</td>
<td>0.0501</td>
</tr>
<tr>
<td>Deep3DSketch</td>
<td>108.7884</td>
<td>0.1362</td>
</tr>
<tr>
<td>Deep3DSketch+</td>
<td>163.3932</td>
<td>0.1295</td>
</tr>
</tbody>
</table>

Table 3. Quantitative Comparison with 2D Sketch-Based Methods
Deep3DVRSketch generates highly detailed, high-quality 3D shapes. Even small geometric features like car seats and spoilers are accurately reconstructed, as evidenced in the magnified regions.

In our Deep3DVRSketch, one network model is capable of generating high-fidelity and high-quality shapes at multiple categories from 3D sketch draw by novice users. It is not necessary to train multiple models for different categories.

Comparison with 2D Sketch-Based Approaches. Our Deep3DVRSketch exhibits superior shape quality and fidelity compared to 2D sketch-based approaches.

We recruited 12 designers from a 3D printing company who are familiar with 3D modeling and presented 48 results generated by our algorithm. Prior to the study, we explained the definitions of fidelity and quality. The average ratings are reported in Table 4. Compared to existing methods, our algorithm achieved higher user ratings, validating its effectiveness of our proposed approach.

<table>
<thead>
<tr>
<th>Methods</th>
<th>(Q1): Fidelity</th>
<th>(Q2): Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luo et al. [40]</td>
<td>2.02 ± 0.84</td>
<td>1.98 ± 0.86</td>
</tr>
<tr>
<td>Ours</td>
<td>4.06 ± 0.76</td>
<td>4.03 ± 0.81</td>
</tr>
</tbody>
</table>

Table 4. Mean Opinion Scores (1-5) from User Study

Deep3DVRSketch Make Rapid 3D Modeling Possible.
To demonstrate the practical utility of our proposed method, we conducted a user study with 3 professional 3D designers from a 3D printing company. The experts were asked to model 9 reference shapes using both our VR sketch-based approach and their familiar CAD software tools (ZBrush). We recorded the average modeling time for each method in Tab. 5. With our approach, the designers could complete the modeling over 10 times faster, including sketching and network inference time (average 7.3 seconds on A100 GPU). The user study validates our approach as a practical tool for accelerating 3D design workflows. For more details, please refer to the Supplemantary Material.

4.6. Ablation Study
We perform extensive ablation study to validate the design choices in our Deep3DVRSketch network, as quantitative
Table 5. The Average Time Comparison of 3D Modeling

<table>
<thead>
<tr>
<th>Method</th>
<th>Time (s) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional CAD Software</td>
<td>869.2 ± 410.2</td>
</tr>
<tr>
<td>Ours</td>
<td>89.4 ± 29.6</td>
</tr>
</tbody>
</table>

Table 6. Quantitative Evaluation of Ablation Study

<table>
<thead>
<tr>
<th>Method</th>
<th>CD ↓</th>
<th>FID ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep3DVRSketch</td>
<td>0.0220</td>
<td>8.7701</td>
</tr>
<tr>
<td>w/o Stage 1: Generative Pre-Training</td>
<td>0.0305</td>
<td>25.0112</td>
</tr>
<tr>
<td>w/o Stage 3: Joint Fine-Tuning</td>
<td>0.0256</td>
<td>9.9729</td>
</tr>
<tr>
<td>w/o Encoder Pre-Training at Stage 2</td>
<td>0.0405</td>
<td>17.3267</td>
</tr>
<tr>
<td>w/o Curriculum Learning</td>
<td>0.0237</td>
<td>9.5470</td>
</tr>
</tbody>
</table>

5. Conclusion

This paper introduces Deep3DVRSketch, a 3D model generation network designed to generate high-fidelity and consistent 3D models in multiple categories from drawings in 3D VR space by novice users. Our approach combines VR 3D sketching with AI generative models to simplify the 3D model creation process. We formulate the task as a conditional generation problem and employ a three-stage training strategy, along with adaptive curriculum learning, to address the challenges posed by data scarcity and the complexity of sketches. To facilitate research in this field, we also introduce the KO3D+ dataset, which is currently the largest 3D sketching dataset containing ground truth 3D shapes. Extensive experiments demonstrate the effectiveness of our approach in terms of model quality, fidelity, and user satisfaction. We believe that Deep3DVRSketch, along with the proposed KO3D+ dataset, opens new avenues for research in 3D modeling and holds promise for the future of 3D modeling in the metaverse era.

Acknowledgments

This work was supported by National Key R&D Program of China (2022YFB330301), NSFC (No. 62172364), Information Technology Center, and State Key Lab of CAD&CG, Zhejiang University. The research is also partially funded by Moxin (Huzhou) Technology Co., LTD.
References

