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Figure 1. We propose Deep3DVRSketch, a pioneering way of 3D modeling which
takes 3D sketches drawn by novice users in AR/VR devices as input and accord-
ingly generates consistent high-quality 3D models, alleviating requirements of hu-
man skill and effort in traditional modeling.

Abstract
With the emergence of AR/VR, 3D models are in tremen-

dous demand. However, conventional 3D modeling with
Computer-Aided Design software requires much expertise
and is difficult for novice users. We find that AR/VR de-
vices, in addition to serving as effective display mediums,
can offer a promising potential as an intuitive 3D model
creation tool, especially with the assistance of AI genera-
tive models. Here, we propose Deep3DVRSketch, the first
3D model generation network that inputs 3D VR sketches
from novice users and generates highly consistent 3D mod-
els in multiple categories within seconds, irrespective of the
users’ drawing abilities. We also contribute KO3D+, the
largest 3D sketch-shape dataset. Our method pre-trains a
conditional diffusion model on quality 3D data, then fine-
tunes an encoder to map 3D sketches onto the generator’s
manifold using an adaptive curriculum strategy for limited
ground truths. In our experiment, our approach achieves
state-of-the-art performance in both model quality and fi-
delity with real-world input from novice users, and users
can even draw and obtain very detailed geometric struc-
tures. In our user study, users were able to complete the

3D modeling tasks over 10 times faster using our approach
compared to conventional CAD software tools. We believe
that our Deep3DVRSketch and KO3D+ dataset can offer
a promising solution for future 3D modeling in metaverse
era. Check the project page at http://research.
kokoni3d.com/Deep3DVRSketch.

1. Introduction

Today, a surge in demand for versatile and customizable
3D content has been catalyzed by the emerging trend of
AR/VR [6, 55]. The virtual landscapes of the metaverse
are calling out for creators with visions of immersive expe-
riences waiting to be actualized. Yet the traditional tools of
3D modeling with computer-aided design (CAD) software
pose barriers to crafting such imaginative domains. Existing
widely-used CAD platforms demand substantial technical
proficiency, including both command knowledge to under-
stand numerous software functions and strategic knowledge
to decompose designs into sequential modeling commands
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[3, 15]. This combination of required expertise and the
labor-intensive manual process poses challenges for rapid
iteration and scalable 3D content production in the meta-
verse era [18]. Is there an alternative approach to obtain
3D models that can achieve rapid creation, customization
based on user intent, and ease of use even for beginners?

This paper provides an exploratory solution to this prob-
lem. We find that AR/VR devices, beyond acting as effec-
tive display platforms, hold significant potential for facili-
tating user-friendly and intuitive 3D model creation, espe-
cially with the assistance of recent advances in AI genera-
tive models. Past experiences have demonstrated that even
beginners can effortlessly sketch 3D paths in the air using
AR/VR 3D sketching tools [2, 16, 27, 31, 60]. We utilize
these user-drawn, rudimentary 3D sketches in conjunction
with our carefully designed AI network for 3D model gener-
ation to infer complete 3D geometry that matches the user’s
intention within seconds (Fig.1). By leveraging AI gen-
erative models after the user completes a drawing, the 3D
model creation process can be greatly simplified, eliminat-
ing the need for skillful line drawings and laborious plane-
filling. This enables even novices to produce high-quality
3D models from basic and rough sketches, while preserv-
ing the users’ intended design.

Although promising, 3D model generation with 3D VR
sketches is still a challenging task. The first challenge is the
ambiguous connection between the 3D sketch and the cor-
responding 3D model, as novice users often struggle to pro-
duce accurate line drawings. Consequently, deterministic
regression or supervision to minimize the sketch-model dis-
tance, as in prior works [40, 63], reflects the user’s sketching
skills (or the lack thereof) in the final 3D model, which is
not friendly to novice users with a desire for high-quality
models. The second challenge is the limited data availabil-
ity. As of now, the only dataset available in 3D sketches and
the corresponding shapes is from Luo et al. [39], which con-
sists of merely one thousand samples and only one “chair”
category. This volume of data is clearly insufficient for
training a robust and generalized generative model.

Facing these challenges, we propose a novel framework,
Deep3DVRSketch, for creating high-quality 3D shapes
from input 3D sketches, regardless of the user’s drawing
skills. Instead of deterministic regression, our approach for-
mulates this task as a conditional generation problem and
designs a three-stage decoupled-generator training strat-
egy to fully use limited training samples. Specifically, we
first pre-train a conditional diffusion model on 3D object
datasets with 3D shapes and rendered images, which have
a large amount of data thanks to the fast development of
3D content creation. Then, the diffusion model that is ca-
pable of generating high-quality shapes is fixed, and an en-
coder is trained to map the 3D sketch onto feature vectors
within a shared latent space with the pre-trained model,

which interact with the intermediate feature maps of the
diffusion model, guiding it to generate corresponding 3D
shapes. Finally, joint fine-tuning is performed for the diffu-
sion model and the encoder to improve alignment between
3D sketches and shape generation. During the training in
3D sketch mapping, we found the networks falter in gener-
alizing across wide-ranging sketching styles and geometries
with limited samples, leading to occasional failures in accu-
rately reconstructing intricate local details. We thus propose
an adaptive curriculum learning strategy to better use the
limited data to learn diverse and complex shapes. To fur-
ther address the issue of limited data, we also introduce a
new dataset, KO3D+, which comprises thousands of sketch-
model pairs drawn by humans across seven categories. This
dataset provides a more expansive and diverse resource for
the new field of 3D modeling from 3D VR Sketches for the
academic community.

Our method’s effectiveness is validated in comprehen-
sive experiments. DeepVR3DSketch surpasses existing
benchmarks in terms of model quality and fidelity, even
with unseen inputs from novice users. Moreover, we
demonstrate that even some very detailed structures can be
generated based on users’ detailed 3D drawings. In our
user study, participants expressed higher satisfaction lev-
els with the generated models. Users can use our approach
to perform 3D modeling more than 10 times faster than
conventional CAD based approaches. We believe that our
Deep3DVRSketch can serve as a promising solution for fu-
ture 3D modeling in the impending metaverse era.

2. Related Work
2.1. 3D Sketching in AR/VR
3D sketching tools have been developed with the emergence
of AR/VR technologies. An early 3D sketching system in
AR/VR was Holosketch [16], which enabled the creation
of primitive shapes, freeform tubes, and 3D wireframes.
Later work expanded the possibilities as hardware advanced
[2, 27, 60]. Now, there are commercial tools like Tilt Brush,
GravitySketch, and Quill. However, these systems rely
heavily on manual operations that are labor-intensive and
time-consuming. Recent solutions, such as the one pro-
posed by Yu et al. [63], transform unstructured 3D sketches
into smooth surfaces via optimization, but still rely on pre-
cise line drawings.

In light of this, to make possible 3D modeling for novice
users with 3D sketches, in this paper, we propose to incor-
porate AI generative models to produce 3D shapes. The
closest work to us is from Luo et al [40], which investigate
shape prototyping and exploration with generative models
based on normalizing flow and optimize the network based
on the minimizing the distance between shapes and 3D
sketches. However, as discussed earlier, matching sketches
precisely leads to poor quality due to drawing imprecision
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by novice users. Their method is also limited to a single
shape category per trained model. In contrast, our proposed
generative approach can produce high-quality 3D shapes re-
gardless of users’ drawing skills. Moreover, our model sup-
ports multi-category shape generation, better suited for real-
world applications.
2.2. 3D Model Generation with Generative Models
3D shape generation has seen substantial progress in recent
years. A variety of generative models have been explored in
the field of 3D generation, including Generative Adversarial
Networks (GANs) [1, 12, 58, 59, 67], Variational Autoen-
coders (VAEs) [14, 45], autoregressive models [42, 57, 61],
normalizing flows [49], and more recently diffusion models
[13, 29, 43, 46, 71]. In this work, We opt to build upon our
network based on diffusion models, which have achieved
state-of-the-art results in 3D shape generation tasks and can
produce high visual quality shapes with fine details.

We note there is also a significant advancement in image-
conditioned and text-conditioned 3D model generation net-
works recently [11, 20, 33–36, 47, 49, 51–53]. Unlike pre-
vious works, here we choose a very new modality of input –
the 3D VR sketch. For AI generative models, using 3D VR
sketch as the input to get 3D models also has few advantages
compared to other inputs. Image inputs don’t allow for un-
restricted, start-from-scratch 3D modeling; text is much less
expressive or precise than a freehand sketch in conveying
spatial or geometric information. While there are also some
existing 3D model generation approaches focusing on 2D
sketch input [4, 8–10, 21, 23, 32, 38, 44, 54, 64–66, 69],
the 2D sketch is ambiguous and abstract, which arises from
inherent limitations in 2D sketches, including missing infor-
mation due to occlusion and limited viewpoints. Sketching
in 3D, in contrast, provides the capacity to communicate
more comprehensive information, such as the complex in-
ternal features of objects like car seats. Hence, it opens the
potential for achieving highly detailed and superior quality
3D modeling as demonstrated in this paper.

3. Method
3.1. 3D Sketch Acquisition and the KO3D+ dataset
The scarcity of existing datasets has hindered the progres-
sion of sketch-to-3D research, so we build a new dataset,
KO3D+, by recruiting participants to draw 3D sketches in
VR. The protocol of data acquisition is akin to that used by
Luo et al. [40], in which participants were asked to draw
over existing 3D models. The 3D models utilized were
man-made high-quality 3D shapes sourced from ShapeNet
dataset. We selected seven categories from ShapeNet: car,
sofa, airplane, bench, display, watercraft, and table. Each
category contains 600 3D sketches along with their corre-
sponding 3D shapes, making this the most extensive 3D
sketch dataset currently available. For an in-depth descrip-
tion of the dataset, including sample illustrations, please re-

fer to the supplementary materials.

3.2. The Deep3DVRSketch Network
The Deep3DVRSketch aims to translate the provided 3D
sketches to high-quality 3D models. The main component
of Deep3DVRSketch is a diffusion-based generation frame-
work designed to produce high-quality 3D shapes. In Sec-
tion 3.2.1, we introduce the diffusion network structure. In
3.2.2, we show how we train the network. Specifically,
our diffusion-based generation framework is trained in three
stages, namely Generative Pre-Training, 3D Sketch Map-
ping, and Joint Fine-Tuning. Finally, a curriculum learning
strategy is introduced to better utilize limited 3D sketch data
and produce higher quality results (3.2.3).

3.2.1 Preliminary: Conditional 3D Diffusion Model.

DeepVR3DSketch utilize a conditional diffusion model as
the 3D shape generator, which has demonstrated success in
obtaining high-quality and diverse 3D models compared to
other methods such as using normalizing flows [17, 40].
Principle of Diffusion Models. A diffusion model is
trained to sample from a target distribution by reversing a
sequential noise diffusion process. Given a sample repre-
sented as z, we generate zt for each t in the range from 1
to T by progressively introducing Gaussian noise, adher-
ing to a predetermined variance schedule. Subsequently, a
time-conditional 3D UNet, represented as ϵθ, is utilized for
denoising. Finally, the UNet generate new 3D shapes by
denoising from a new Gaussian noise.
3D Shape Representation. Here, we represent a 3D shape
as a discrete 3D volume – a Signed Distance Function
(SDF) volume. This SDF volume calculates the signed dis-
tance from the center of each grid cell to the nearest shape
surface. The mesh, which is also the zero isosurface, can
be derived from the the grids using the Marching Cube al-
gorithm. The SDF volume can be converted into a discrete
occupancy volume where each grid cell holds a binary oc-
cupancy based on whether the absolute value of its SDF is
beneath a predefined threshold.
Coarse-to-Fine Diffusion. High-fidelity 3D shape rep-
resentation requires modeling fine details using high-
resolution discrete signed distance fields (SDFs). How-
ever, fully generating dense SDF grids incurs prohibitive
computational and memory costs due to cubic complexity.
To avoid a huge computational burden while still main-
taining a high-quality model generation, we follow [68]
and use a two-stage diffusion framework utilizing a self-
conditioning continuous diffusion model. In specific, the
first stage generates a low-resolution 3D occupancy volume
F ∈ Rn×n×n×1 to provide a preliminary approximation of
the 3D shape. Subsequently, the second stage constructs a
high-resolution sparse volume S ∈ RN×N×N×4.

In the two stages, we use a 5-level UNet in the first stage,
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Figure 2. Key Designs of Deep3DVRSketch. (a) Conditional diffusion model pre-training with rendered images. (b) Sketch encoder
fine-tuning to map sketches into diffusion manifold. (c) Curriculum learning exploits limited sketch-shape pairs.

and a 4-level UNet in the second stage, where an octree-
based convolutional neural network handles the SDF data
in sparse voxel format. For details of the network config-
uration, please refer to Supplementary Material. Both the
UNets are trained with the denoising loss [26]:

L(θ) = Ez,ϵ∼N(0,1),t

[∥∥ϵ− ϵθ
(
zt, t, {ci}Ni=1

)∥∥2] (1)

in which N(0, 1) denotes Gaussian distribution, {ci}Ni=1 de-
note the condition applied to the generation process.
Learning the Conditional Distribution. Our 3D genera-
tion is a conditional generation setting in which the condi-
tions {ci}Ni=1 are injected into the diffusion-based genera-
tion process to accept user input. The conditioning signal
is applied by using task-specific encoders to transform the
conditioning signal c (e.g. images, sketches) into a 1024-
dimensional latent code l. Subsequently, multi-head cross-
attention is used to infuse l into the UNet. The diffusion
model may produce samples with limited diversity given the
conditional input. To alleviate the issue, we adopt classifier-
free guidance [25]. For more information, please refer to the
Supplementary Material.

3.2.2 The Training of Deep3DVRSketch
In the following part, we show our multi-stage training strat-
egy to make possible high-quality shape generation from
3D Sketches. We anticipate the diffusion model to create
3D shapes from a latent space, which will later be utilized
for the downstream task of transforming 3D sketches into
3D models. In this context, the downstream fine-tuning is
focused solely on comprehending the specifics of this task,
while the intricate process of 3D shape generation lever-
ages the pre-trained knowledge from the model. Specifi-
cally, in the Generative Pre-Training stage, we pre-train a
conditional 3D diffusion generator that can produce high-
quality shapes based on image conditioning. The images go

through an image encoder Epretrain(·) and derive a man-
ifold Z used to condition the diffusion model to produce
plausible 3D shapes.

Next, in 3D Sketch Mapping stage, we train a sketch en-
coder Esketch(·) to map the input 3D sketch s into a latent
code w+

s = Es(s) ∈ R1024 lying in the manifold Z while
leaving the pretrained diffusion generator intact. The out-
puts of Esketch(·) at this stage will be closer to Z, but still
cannot reach the perfect alignment. Therefore, we intro-
duce a Joint Fine-Tuning stage, we fine-tune both the en-
coder E(·) and the diffusion generator altogether to obtain
much-improved alignment in Esketch(·) and Epretrain(·) in
the pre-training stage. Such a phased training approach is
beneficial in maximizing the use of pre-trained knowledge
and has been proven to be a key factor in significantly en-
hancing the final output quality.
Stage 1: Generative Pre-Training. The aim of this phase
is to train a diffusion model to generate 3D shapes from a
latent space that will subsequently be employed for the spe-
cific downstream task of converting 3D sketches into 3D
models. To do so, we present the network with a vast collec-
tion of high-quality 3D shapes and condition the diffusion
process with rendered images. These images are encoded
by a pre-training encoder, denoted as Epretrain(·).

Taking inspiration from previous works of visual-
linguistic pretraining and their remarkable transferability
[48, 70], we map the image condition to a CLIP latent space
with a fixed pre-trained CLIP encoder. The diffusion model
is conditioned by embedding from the CLIP latent space
Z via cross-attention. By doing so, we obtain a diffusion
model that can generate high-quality 3D shapes with global
conditions from the CLIP latent space Z.
Stage 2: 3D Sketch Mapping. Then, we map the 3D
sketch input to the CLIP latent space Z and keep the pre-
trained diffusion model in Stage 1 frozen. The 3D sketch is
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represented by point clouds, so we designed a transformer
point encoder to encode the 3D sketch s into a latent code
w+

s = Es(s) ∈ R1024, which is the same dimension as the
CLIP feature in the previous stage.

We note that the CLIP latent space is a highly abstract
domain. Mapping highly sparse and abstract 3D sketches
represented by point clouds onto this space is a challeng-
ing task, especially when the quantity of 3D sketch data is
limited. Addressing this challenge, we introduce additional
prior knowledge about 3D space. Specifically, we utilize
a pre-trained point encoder Uni3D [70], which is aligned
with the CLIP latent space, to serve as the 3D sketch en-
coder. Structurally equivalent to the vanilla transformer of
ViT, this encoder has already learned to represent a wealth
of point cloud features from a substantial dataset consisting
of millions of 3D shapes, corresponding images, and text
entries under a multi-modal alignment learning objective.
In the ablation study, we show this pre-training is critical
for the network performance.
Stage 3: Joint Fine-Tuning. We observe that exclusively
adjusting the 3D sketch Esketch(·) is insufficient to ensure
the optimal alignment of the shape generation process with
the sketch input. Therefore, inspired by previous prac-
tice in image diffusion-based generation [56], we concur-
rently fine-tune both the 3D sketch Esketch(·) and the diffu-
sion model to ensure significantly enhanced spatial seman-
tic alignment. This approach proves beneficial in maximiz-
ing the utilization of pre-trained knowledge and is also cru-
cial for achieving improved quality.

3.2.3 Adaptive Curriculum Learning
As we mentioned in the introduction, the data scarcity and
the complexity of 3D sketches are two main challenges in
our task. In our framework, we find that with only limited
training data of 3D sketches and 3D model pairs, networks
struggle to generalize across large variations in sketching
styles and geometries when mapping abstract 3D sketches
to a latent space to condition a generative model. In our ex-
periment, we can observe that the network occasionally fails
to accurately reconstruct intricate local details. In these re-
gions, the network struggles with precise parameterization
due to less smooth areas in the implicit function. Even small
errors can produce incorrect signs, leading to inaccurate sur-
face reconstructions.

Drawing inspiration from curriculum learning, we intend
to tackle these challenges by emulating the human learning
process in sketching. Just as beginners in sketching start
with simple, flexible shapes and gradually progress towards
more complex and difficult ones in later training, we aim to
incorporate this learning strategy into our framework.
Sample Difficulty Score. In curriculum learning, the care-
ful selection and sequencing of samples, from simple to
complex, is crucial for effective and incremental skill de-
velopment. The selection is based on a difficulty score esti-

mated on samples. Inspired by Curriculum DeepSDF [19],
we consider points with incorrect estimates as hard samples,
points with correct estimates as easy samples, and points be-
tween 0 and the ground truth as semi-hard samples. We use
the following difficulty score.

scur = 1 + λsgn(y)sgn(ŷ − y) (2)

Here, y is the ground truth SDF value, ŷ is the predicted
SDF value, and 0 ≤ λ ≤ 1 control the importance of hard
and semi-hard samples. sgn(v)=1 if v>=0 and sgn(v)=-1 if
v<0.
Adaptive Curriculum. Unlike traditional curriculum
learning which designs the curriculum manually, we use an
adaptive curriculum strategy. [30] This is, to the best of our
knowledge, the first attempt at applying an adaptive curricu-
lum in a conditional 3D generation task.

Specifically, we first leverage the pre-trained network to
acquire the initial difficulty score and sort the initial dataset
X in ascending order based on the current difficulty score
s. We subsequently use the pacing function p(·) to form
the sample pool X′, from which we draw a mini-batch
B′ = [B′

1, ...,B
′
M ] to train the target network. The pacing

function p(·) is a monotonically increasing function that de-
termines the speed at which we learn from simpler to more
complex samples. Finally, we update the difficulty score s
at the end of the forward propagation and compute a new
sample pool X′.

The difficulty score is also adaptable to varying training
duration. The difficulty score for the (k+ 1)th position can
be expressed as:

sk+1 = (1− α)sk + αscur (3)

where k = ⌊m/inv⌋ where m denotes the mth mini-batch.
inv is controls the frequency of difficulty score updates, and
α controls the speed of difficulty score updates.
Pacing Function. To manage the pace of sample learn-
ing, we require a monotonically increasing pacing function,
p(·), to constrain the size of the sample pool X′. The func-
tion can be expressed as:

p(i) = n×min(1, p0 × q⌊i/r0⌋) (4)

where n represents the number of samples. p0 is the sample
proportion at the initial step. q controls the speed of sam-
ple proportion growth. r0 controls the frequency of sample
proportion growth, and i is the current step. For more infor-
mation, please refer to the Supplementary Material.

4. Experiment
4.1. Dataset
Our method first pre-trains a generative diffusion model
on a large 3D shape dataset (ShapeNetCore-v2) for high-
quality synthesis (Stage 1). The model is then fine-tuned
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on aligned and normalized sketch-shape pairs (Stages 2-3).
The availability of 3D sketch and 3D model pair datasets
is limited. Currently, there is only one dataset available by
Luo et al [39]. This dataset consists of 1,005 sketch shape
pairs in the chair class. We adopt their dataset and use their
predefined split, 803 for training and 202 for testing. We use
5,721 samples of chairs from the ShapeNet dataset in the
first stage pre-training. In addition to the Luo et al. dataset,
we introduce our own dataset, KO3D+, which encompasses
7 categories from ShapeNet with the defined test-train split.
We use 12,970 samples of chairs the corresponding cate-
gories in the ShapeNet dataset in the first stage pre-training.
4.2. Implementation Details
During the first pre-training stage, we trained the first UNet
using the Adam optimizer [28] with a fixed learning rate
of 2 × 10−4 for 800 epochs. For the subsequent UNet, we
utilized the AdamW optimizer [37] with a fixed learning
rate of 1e-4 for 500 epochs. In the second Sketch Mapping
stage, we trained the sketch encoder for 300 epochs with a
learning rate of 2e-4 and Adam optimizer. Finally, in the
third Joint Fine-Tuning stage, we tuned the diffusion model
and the sketch encoder jointly for 300 epochs with a learn-
ing rate of 2e-4 with Adam optimizer. The training process
was conducted using 8 NVIDIA A100 graphics cards.
4.3. Evaluation Metrics
We quantitatively evaluate the generated 3D shapes in terms
of the fidelity and quality. Following prior works in 3D gen-
erative models [22, 50], we choose the bidirectional Cham-
fer distance (CD) as the similarity metric between two 3D
shapes to measure the fidelity of generated result and the
Frèchet Inception Distance (FID) [24] to measure the visual
quality of generated result. For more details about the eval-
uation metrics, please refer to the Supplementary Material.
4.4. Qualitative and Quantitative Evaluation
Our experiment is conducted in two settings: 1) Training
a single-category 3D generation network using the dataset
from Luo et al. [40] and the proposed KO3D+ dataset. 2)
Training a multi-category 3D generation network using the
proposed KO3D+ dataset. We find our method significantly
outperforms existing 3D and 2D baselines in model fidelity
and quality.
Single-Category 3D Generation. We first use the dataset
from Luo et al. [40] to train our network and compare it
with Luo et al. [40]. Our approach outperforms the ex-
isting methods in both model fidelity and quality as show
in Tab. 1. This improved performance extends to the data
in the KO3D+ dataset as well. Specifically, we selected
the ”car” category and trained our approach alongside Luo
et al.’s method, and our approach consistently outperforms
theirs. Importantly, our approach excels at reconstructing
intricate details, such as the car’s mirrors and interior seats
(in Fig. 3). This not only demonstrate the strong capability
of our algorithm, but also showcases the inherent advan-

Category Method FID ↓ CD ↓

Chair [39] Luo et al. [40] 11.5313 0.0305
Ours 8.7701 0.0220

Car Luo et al. [40] 20.7812 0.0303
Ours 7.9213 0.0047

Table 1. Quantitative Result for Single-Category 3D Generation

Method FID ↓ CD ↓
Luo et al. [40] 30.5313 0.0455
Ours 15.5397 0.0304

Table 2. Quantitative Result for Multi-Category 3D Generation

Method FID ↓ CD ↓
Luo et al. [40] 11.5313 0.0305
Ours 8.7701 0.0220
LAS-Diffusion [68] 11.2195 0.0501
Deep3DSketch [9] 108.7884 0.1362
Deep3DSketch+ [8] 163.3932 0.1295

Table 3. Quantitative Comparison with 2D Sketch-Based Methods

tage of utilizing 3D sketches, as these structures can be eas-
ily represented and conveyed through 3D sketches, whereas
they pose significant challenges when using 2D sketches.
The ability of our approach to accurately capture and re-
construct these fine-grained features further highlights the
benefits of employing 3D sketches in the modeling process.
Multi-Category 3D Generation. Next, we evaluate the
cross-category performance of our approach by utilizing all
the data from the KO3D+ dataset. As depicted in Fig. 4,
our Deep3DVRSketch successfully generates high-quality
3D models across multiple categories. In contrast, the ex-
isting approaches fail to produce meaningful results (Tab.
2) and we have witnessed a mode collapse in existing meth-
ods. (details in Supplementary Material). This highlights
the superior capability of our approach in handling diverse
categories and consistently generating accurate and visually
pleasing 3D models, making it a promising solution with
broader applicability.
Comparison with 2D Sketch-Based Approaches. We also
compare our 3D sketch-based generation approach with a
solely 2D sketch-based method. The projection of a 3D
sketch onto a 2D plane serves as a 2D sketch. We evaluate
our approach against representative methods for generating
3D models from 2D sketches, namely LAS-Diffusion [68],
Deep3DSketch [9], and subsequent work, Deep3DSketch+
[8]. Experimental results show Deep3DVRSketch with 3D
sketch as the input produces more plausible shapes with bet-
ter 3D awareness and local geometric control compared to
2D sketch-input approaches, as shown in Table 3 and Fig. 5
(see the arms in the first row and the legs and seat pad in the
second row.) More examples in Supplementary Material.
4.5. User Study
3D Model Quality and Fidelity. To further validate the ef-
fectiveness of our sketch-to-model algorithm, we conducted
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Figure 3. The Visualization of Performance Comparison. Our Deep3DVRSketch generates highly detailed, high-quality 3D shapes. Even
small geometric features like car seats and spoilers are accurately reconstructed, as evidenced in the magnified regions.

Figure 4. The Visualization of Multi-Category Generation Results from Our Deep3DVRSketch. In our Deep3DVRSketch, one network
model is capable of generating high-fidelity and high-quality shapes at multiple categories from 3D sketch draw by novice users. It is not
necessary to train multiple models for different categories.

Figure 5. Comparison with 2D Sketch-Based Approaches. Our
Deep3DVRSketch exhibits superior shape quality and fidelity
compared to 2D sketch-based approaches.

a user study to evaluate the fidelity and quality of the gener-
ated 3D models. We adopted the widely used 5-point mean
opinion score (MOS) metric, as in prior works [5, 7, 41, 62].
Specifically, users were asked to rate the following two fac-
tors on a scale of 1 to 5: Q1) How well does the output
3D model match the input sketch? (Fidelity); Q2) What is
your opinion on the overall quality of the output 3D model?
(Quality)

We recruited 12 designers from a 3D printing company
who are familiar with 3D modeling and presented 48 results
generated by our algorithm. Prior to the study, we explained
the definitions of fidelity and quality. The average ratings
are reported in Table 4. Compared to existing methods, our

algorithm achieved higher user ratings, validating its effec-
tiveness of our proposed approach.

Methods (Q1): Fidelity (Q2): Quality

Luo et al. [40] 2.02 ± 0.84 1.98 ± 0.86
Ours 4.06 ± 0.76 4.03 ± 0.81

Table 4. Mean Opinion Scores (1-5) from User Study

Deep3DVRSketch Make Rapid 3D Modeling Possible.
To demonstrate the practical utility of our proposed method,
we conducted a user study with 3 professional 3D design-
ers from a 3D printing company. The experts were asked to
model 9 reference shapes using both our VR sketch-based
approach and their familiar CAD software tools (ZBrush).
We recorded the average modeling time for each method in
Tab. 5. With our approach, the designers could complete the
modeling over 10 times faster, including sketching and net-
work inference time (average 7.3 seconds on A100 GPU).
The user study validates our approach as a practical tool for
accelerating 3D design workflows. For more details, please
refer to the Supplemantary Material.

4.6. Ablation Study
We perform extensive ablation study to validate the design
choices in our Deep3DVRSketch network, as quantitative

12560



Method Time (s) ↓
Conventional CAD Software 869.2 ± 410.2
Ours 89.4 ± 29.6

Table 5. The Average Time Comparison of 3D Modeling

Figure 6. Qualitative Evaluation for Ablation Studies

results shown in Tab. 6. Experiments in this section is per-
formed with the datasets from Luo et al. [39]
Benefits of Stage 1: Generative Pre-Training. Pre-
training the diffusion model on large 3D datasets is cru-
cial for enabling high-quality shape synthesis. Removing
this stage and directly training the sketch-conditional dif-
fusion model, with identical network architecture, causes
significant performance drops. As evidenced in Fig. 6 (a)
and in Tab. 6, the model fails to learn to generate plausible
shapes without pretraining. This highlights the importance
of leveraging abundant 3D data to first cultivate strong gen-
erative priors, before adapting the model to the sketch do-
main where labeled data is scarce.

Method CD ↓ FID ↓
Deep3DVRSketch 0.0220 8.7701
w/o Stage 1: Generative Pre-Training 0.0305 25.0112
w/o Stage 3: Joint Fine-Tuning 0.0256 9.9729
w/o Encoder Pre-Training at Stage 2 0.0405 17.3267
w/o Curriculum Learning 0.0237 9.5470

Table 6. Quantitative Evaluation of Ablation Study

Benefits of Stage 3: Joint Fine-Tuning. The Joint Fine-
Tuning stage is critical for aligning the sketch encodings
with the generative model to produce shapes that match the

input sketches. Without this fine-tuning, there is a per-
formance drop as evident in Tab. 6. Interestingly, we
find that without fine-tuning, the visual quality of generated
shapes remains high, but they fail to correspond to the input
sketches, as evidenced in Fig. 6 (b) for the legs of the chair
and the arms of the chair.
Benefits of Encoder Pre-Training at Stage 2. To map 3D
sketches into the abstract CLIP latent space with limited
data, we leverage a pretrained point cloud encoder Uni3D
[70] to provide inductive biases about 3D structure. In ab-
lation studies, we use random initialization of this encoder,
which can be found significantly harms performance. Fig.
6 (c) demonstrates that in the absence of a pre-trained 3D
sketch encoder, the generated shapes exhibit high visual
quality. However, they deviate from the intended corre-
spondence with the input sketches, indicating a failure in
successfully performing 3D sketch mapping.
Benefits of Curriculum Learning. The curriculum learn-
ing approach is employed to address the issue of limited
data availability and helps mitigate the challenge of general-
izing across large variations in sketching styles and geome-
tries. By removing the curriculum learning, we observe that
the network occasionally fails to accurately predict complex
shape structures, as evidenced in Figure 6 (d), like the back
of the chair and the wheel & arms of the chair.

5. Conclusion
This paper introduces Deep3DVRSketch, a 3D model gen-
eration network designed to generate high-fidelity and con-
sistent 3D models in multiple categories from drawings in
3D VR space by novice users. Our approach combines VR
3D sketching with AI generative models to simplify the 3D
model creation process. We formulate the task as a condi-
tional generation problem and employ a three-stage train-
ing strategy, along with adaptive curriculum learning, to ad-
dress the challenges posed by data scarcity and the com-
plexity of sketches. To facilitate research in this field, we
also introduce the KO3D+ dataset, which is currently the
largest 3D sketching dataset containing ground truth 3D
shapes. Extensive experiments demonstrate the effective-
ness of our approach in terms of model quality, fidelity, and
user satisfaction. We believe that Deep3DVRSketch, along
with the proposed KO3D+ dataset, opens new avenues for
research in 3D modeling and holds promise for the future of
3D modeling in the metaverse era.
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