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Abstract

Long-term and accurate forecasting is the long-standing
pursuit of the human motion prediction task. Existing meth-
ods typically suffer from dramatic degradation in prediction
accuracy with increasing prediction horizon. It comes down
to two reasons: 1) Insufficient numerical stability caused by
unforeseen high noise and complex feature relationships in
the data, and 2) Inadequate modeling stability caused by
unreasonable step sizes and undesirable parameter updates
in the prediction. In this paper, we design a novel and sym-
plectic integral-inspired framework named symplectic inte-
gral neural network (SINN), which engages symplectic tra-
jectories to optimize the pose representation and employs
a stable symplectic operator to alternately model the dy-
namic context. Specifically, we design a Symplectic Repre-
sentation Encoder that performs on enhanced human pose
representation to obtain trajectories on the symplectic man-
ifold, ensuring numerical stability based on Hamiltonian
mechanics and symplectic spatial splitting algorithm. We
further present the Symplectic Temporal Aggregation mod-
ule, which splits the long-term prediction into multiple ac-
curate short-term predictions generated by a symplectic
operator to secure modeling stability. Moreover, our ap-
proach is model-agnostic and can be efficiently integrated
with different physical dynamics models. The experimental
results demonstrate that our method achieves the new state-
of-the-art, outperforming existing methods by 20.1% on Hu-
man3.6M, 16.7% on CUM Mocap, and 10.2% on 3DPW.

1. Introduction
Anticipating future human motions based on historical ob-
servations presents a crucial and formidable issue in the
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Figure 1. Illustration of human motion prediction challenges. (a)
Existing methods suffer from significant long-term performance
degradation. (b) Conventional motion representation is not nu-
merically stable.

realm of computer vision, particularly in scenarios such as
collision avoidance or handshake interactions. Owing to
its paramount significance, machine learning-driven human
motion prediction has witnessed a surge in research efforts,
yielding a diverse range of practical applications encom-
passing human-computer interaction, motion synthesis, and
autonomous driving [4, 24, 37, 44, 46, 51]

Drawing on the advancements in neural networks, early
methods (e.g., [3, 7, 8, 16, 34, 43]) have employed recur-
rent neural networks (RNNs) [36] such as Long Short-Term
Memory (LSTM) [14] and Gated Recurrent Unit (GRU)
[5] to realise human motion prediction as a vanilla tempo-
ral prediction issue. Despite the impressive performance,
the extension of such methods to complex pose sequences
still remains challenging due to the intricate kinematic and
anatomical nature of human motions. With all this in mind,
researchers have endeavored to incorporate prior knowl-
edge (kinematics and anatomy) to strengthen existing so-
lutions, such as utilizing graph Graph convolutional net-
works (GCN) [22, 23, 41, 47, 50] to capture spatial depen-
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dencies among the joints and human poses. Some works
[1, 6, 17, 26] attempt to exploit generative adversarial net-
works (GANs) [11] to predict future poses by adversarial
training strategy. [1] presents a common practice to achieve
diverse possible predictions. [26] utilizes the GANs to sim-
ulate path integrals and predict future motion profiles.

Upon scrutinizing and experimenting on the released im-
plementations of previous methods [16, 17, 22, 29, 31, 41],
we have empirically observed that incorporating motion pri-
ors and pertinent training strategies, whether implicitly or
explicitly, enhances the performance of motion prediction.
Moreover, as shown in Figure 1 (a), existing methods suffer
from dramatic degradation with increasing prediction hori-
zon. We attribute this issue is mainly due to the following
reasons. i) insufficient numerical stability: human motion
exhibits a stochastic nature, which is reflected in the data
through high noise levels and complex distributional char-
acteristics (see Figure 1 (b)). The larger the prediction field,
the higher the likelihood of capturing excessive noise. The
high dimension of pose sequences makes it challenging to
accurately estimate features and relationships in the data,
and this challenge increases with larger prediction hori-
zons. ii) inadequate modeling stability: different network
architectures have distinct performance bottlenecks when it
comes to handling temporal sequence problems. Pursuing
long-term temporal forecasting without proper layout can
lead to misinterpretations within the network, giving rise
to parametric models with fluctuations that complicate the
training process and network design.

To tackle the above challenges, we propose a symplectic
integral neural network (SINN) as illustrated in Figure 2.
It consists of two major components, namely a symplectic
representation encoder (SRE) and a Symplectic Temporal
Aggregation module (STA). These components mitigate the
degradation in prediction performance over time together
based on the symplectic integral.

The objective of SRE is to construct numerical stability
by converting motion from traditional 3D Euclidean space
into a Hamiltonian mechanical system, which is composed
of kinetic and potential energy (i.e., location, and velocity).
We explicitly model the physical dynamics of joints with
3D velocity, which is utilized as the control actions to pro-
duce the joint trajectories. Moreover, we observe that it is
beneficial to transform the original high-dimensional pose
sequence into low-dimensional per-joint and per-direction
sliced trajectories to be processed by the neural network
parallelly (see Figure 2). This is because that learning the
interactions between joints from the high-dimensional mo-
tion data itself poses a significant challenge on conventional
methods. We thus utilize the symplectic spatial splitting al-
gorithm to ameliorate this issue. Specifically, the dimension
of our model’s output is reduced to T ×2 trajectories on the
symplectic manifold, where T is the number of frames to

be predicted, each composed of a velocity magnitude and
a direction angle w.r.t. the hyperplanes in a 3D coordinate
system. To summarize, our proposed SRE generates numer-
ically stable motion representations with the following ad-
vantages. First, leveraging velocity to model the dynamics
of human motions can filter out unwanted noise and irreg-
ular fluctuations. Second, reducing the data dimension not
only prevents entering scenarios of network overfitting but
also promotes learning more robust and significant features
and dependencies. Finally, our predicted low-dimensional
trajectories, which consist of the control actions only, can
be integrated into human pose efficiently and effectively
through a user-defined dynamics model without additional
overhead for network learning.

The mission of STA is to guarantee modeling stability
by a stable symplectic operator based on the symplectic
temporal splitting algorithm. Specifically, a model is first
trained to perform relatively short-term motion prediction,
replicas of which are next temporally concatenated and fine-
tuned for long-term prediction. The model and its replicas
are shared weights, so our proposed method is parameter-
efficient without increasing the original model size. Based
on these, to ensure the stability of the symplectic structure,
we employ pre-trained networks as the symplectic opera-
tors to predict the outcome in different sub-steps (i.e., short-
term steps) with a stable parameter structure. Additionally,
we design a GAN-based network, which utilizes adversarial
training to distinguish between the generated and real mo-
tion trajectories. This adversarial loss is, for the first time,
applied to human motion prediction to enhance long-term
prediction accuracy. Notably, this pre-trained symplectic
operator can effectively control the perceptual field so that
the network will not be affected by the perceptual field due
to changes in the prediction term. The symplectic integral-
based deep neural network is model-agnostic, which is also
able to improve the long-term prediction capability of other
existing motion prediction models.

Contributions. To summarize, our key contributions
are as follows: 1) We propose a novel framework that is
model-agnostic based on symplectic integral for human mo-
tion prediction tasks. 2) We present a symplectic represen-
tation encoder and a symplectic temporal aggregation mod-
ule to separately enhance pose representation and model dy-
namic context stably and effectually for long-term and ac-
curate motion prediction. 3) Our method achieves state-of-
the-art results in predicting human motion on three chal-
lenging benchmark datasets, Human3.6M, CMU Mocap,
and 3DWP. To the best of our knowledge, we are the first to
combine symplectic integral with deep learning and explic-
itly model the dynamic controls of joints for human motion
prediction. To facilitate future research, our source code
is released at https://github.com/adamlyu789/
SINN.
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2. Related Work
Articulated Poses Representation. Researchers rec-
ognize the importance of investigating different schemes
for parameterized human poses. These pose representa-
tion schemes can be broadly classified into two categories,
namely physical representations and mathematical repre-
sentations. For the physical schemes [12, 26, 38, 42, 50],
human poses are represented as hierarchical body parts re-
flecting the body structures and the kinematic relations.
Further, joint velocity and acceleration are engaged to
model motion dynamics. In MPT [27], the human pose
is presented as the joint trajectory. For the mathemati-
cal schemes [2, 25, 30, 35, 45], human motion sequences
are mapped to different mathematical spaces and abstracted
into different distributions, with the goal of facilitating
the learning process. QuaterNet [35] represents rotations
with quaternions. HMR [25] proposes to explicitly en-
code anatomical constraints by modeling their skeletons
with a Lie algebra representation. These approaches based
on modified pose representation have achieved laudable re-
sults. Therefore, we attempt to propose a more valid rep-
resentation that can alleviate the inherent problem of hu-
man poses and achieve efficient long-term prediction per-
formance.

Motion Prediction. Early approaches utilized non-
linear Markov models [19], Gaussian Process dynamic
models [40], and Restricted Boltzmann Machines [20] to
tackle this problem. With the advancement of deep learn-
ing, numerous methods based on deep neural networks have
emerged and demonstrated remarkable outcomes. RNNs
[36] have been playing important roles in modeling and pre-
dicting human motion due to their outstanding performance
in dealing with temporal issues. A first class of works re-
lies on the combination of different types of RNNs struc-
tures [8, 10, 34, 36, 48] to achieve predictions. Primitively,
LSTM units are adopted in prediction, yielding classical
networks such as LSTM-3LR [34] and ERD [8]. Further,
DAE [10] combines ERD with a dropout auto-encoder to
model temporal and spatial structures. To overcome ac-
cumulated errors and discontinuity across frames, res-GRU
[34] is presented, which also incorporates the velocities of
joints in motion representation. Another class of works pro-
poses improvised RNN architectures. For instance, Liu et
al. [25, 28] design Hierarchical recurrent networks (HMR)
to model global and local motion contexts for long-term
prediction. Chopin et al. [6] and Zhao et al. [49] pro-
posed a method for human posture prediction based on ad-
versarial generative networks (GANs) [11], which involves
a discriminator and a generator. GANs [17, 26] facilitate
the learning of complex distributions through this adversar-
ial training strategy. Thereby, we attempt to utilize GANs to
construct our network to alleviate the complex distribution
among human motion data.

3. Our Approach

Problem formulation. Given an observed pose sequence
P = [p1, p2, . . . , pT ], we aim to predict its future pose se-
quence P̂ = [pT+1, pT+2, . . . , pT+N ], where T and N rep-
resent the number of observed and future frames, respec-
tively. Formally, we seek to learn a parameterized function
F(·) that extrapolates from the observed pose sequence to
predict the future P̂T+1:T+N = F(P1:T ).

To the best of our knowledge, the majority of existing
techniques depict human motions using the 3D coordinates
of body joints. However, the dynamics and the interactions
between joints are not explicitly captured by this represen-
tation, but rather expected to be learned by the model from
the complex, high-dimensional motion data. Inspired by
symplectic integral, we propose to disentangle a human mo-
tion sequence into distinct trajectories, each corresponding
to the tangent plane of an individual joint on the symplec-
tic manifold (hereinafter referred to as ”symplectic trajec-
tories”). Formally, let ζti denote the symplectic trajecto-
ries of the i-th joint at frame t. ζ comprises coordinates
where α, β correspond to the generalized notions of loca-
tion and momentum, respectively. Thereby, the Hamilto-
nian H(α, β, t), which defines the energy function of this
dynamical system, can be decomposed as:

H = K + V (1)

where K(α) is the kinetic energy, a function of the gen-
eralized momentum coordinates, and V (β) is the potential
energy, a function of the generalized position coordinates.
Thus, we model the Hamiltonian of each joint through a
learnable network function of the generalized momentum
and positions, which inherently takes into account the dy-
namics and constraints between joints to some extent.

Moreover, it is important to acknowledge that accurately
learning the interactions between joints from the high-
dimensional motion data itself poses a significant challenge.
Incorrect joint relations can be possibly learned due to data
limitation or model overfitting. Here we reduce the dimen-
sion of motion data by a factor of J (i.e., the number of
joints) by modeling joint trajectories individually. We em-
pirically observed that this dimension reduction effectively
reduces the risk of model overfitting where more robust cor-
relations can be learned from the observed data. Compared
to the performance gain, the information loss is negligible.

Method overview. The overall architecture of our pro-
posed framework is illustrated in Figure 2. Our framework
consists of two key components: a Symplectic Representa-
tion Encoder (SRE) (Sec.3.1) and a Symplectic Temporal
Aggregation module (STA) (Sec.3.2). Specifically, we first
utilize SRE to generate a novel low-dimensional symplec-
tic trajectory ζ to ensure numerical stability. Next, these
trajectories are learned by the symplectic operator in STA,
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Figure 2. The proposed Symplectic Integral Neural Network (SINN) architecture.

which is implemented with a robust symplectic structure
that is resistant to perturbations. The symplectic operator
is used only for accurate short-term prediction. Finally, we
leverage integrator in STA to achieve reliable long-term pre-
dictions through the aggregation of multiple accurate short-
term forecasts. The following sections elucidate our pro-
posed SRE and STA in detail.

3.1. Symplectic Representation Encoder

As noted previously, conventional motion representation
suffers from two drawbacks: (i) Dependence solely on raw,
high-dimensional position information struggles to capture
the physical dynamics and characteristic relationships of
human motions; (ii) The presence of complex human struc-
tures and movements introduces high noise levels and in-
tricate data distributions. These factors compromise the ro-
bustness of conventional representations of human motions,
imposing a significant challenge on the network’s learning
capacity. Motivated by these observations and insights, we
present a novel symplectic representation encoder (SRE),
which addresses the above challenges through Hamiltonian
representation and symplectic spatial splitting algorithm.
The objective of SRE is to establish numerical stability in
the human motion data.

Hamiltonian representation. The typical input to
human motion prediction models is an T × J × 3 human
pose sequence P consisting of T frames, J joints, and 3D
coordinates of each joint. Here we propose to represent
each joint in the Hamiltonian mechanical system, denoted
as ζ =< α, β > where ζ is composed of the location α
(i.e., the 3D joint location of the last observed pose) and
the momentum β (i.e., the frame-wise joint displacement
viewed as joint instantaneous velocity). A naive representa-
tion of the 3D joint velocity can be a three-dimensional tu-
ple consisting of the magnitude projected onto the x, y, and
z axes. However, we empirically observe that this naive rep-
resentation tends to suffer from information loss. To solve
this issue, we present a new 3D joint velocity representa-
tion by introducing a little redundancy. Specifically, the
representation is a four-dimensional tuple, which consists

of one velocity magnitude M and three direction angles
Dx,y,z with respect to the coordinate hyperplanes xy-plane,
yz-plane, and xz-plane. As shown in Figure 1, the displace-
ments in the Hamiltonian system exhibit stability and sim-
ilarity. As a result, our representation can be considered as
displacements in a multidimensional space, which not only
improves the numerical stability of data but also minimizes
the loss of raw information. In this way, the momentum β
can be expressed as:

β = (M,Dx,Dy,Dz) (2)

Symplectic spatial splitting algorithm. Based on the
findings on the negative effect of high dimension as shown
in Figure 1, we design a symplectic spatial splitting algo-
rithm for human motion prediction. To be specific, our pro-
posed representation captures the physical dynamics of each
joint along each axis. Then, we propose to predict the sym-
plectic trajectories ζ1:Tx,y,z along the three directions (x, y, z)
parallelly. The process is given by:

ζ1:T
Reduce−−−−−→ [ζ1:Tx , ζ1:Ty , ζ1:Tz ] (3)

As the location α is the initial quantity, the future se-
quence of which can be reconstructed from the current lo-
cation and the predicted future velocities, the output dimen-
sion of our model is further reduced to T × 2. Taking the
x-axis direction as an example,

ζ1:Tx = (M1:T ,D1:T
x ) (4)

Pose integration via velocity controls. Let ζ̂1:Ti =

(M̂1:T
i , D̂1:T

i ) denote the predicted velocity along direction
i where i ∈ x, y, z. We first reconstruct the 3D velocity
ζ̂1:T = (M̂1:T , D̂1:T

x , D̂1:T
y , D̂1:T

z ) by computing M̂1:T as

M̂1:T = (M̂1:T
x + M̂1:T

y + M̂1:T
z )/3 (5)

Next, starting from an initial joint location α in the last
observed pose, we reconstruct the joint future locations
based on ζ̂1:T , and further recover the pose P 1:T consist-
ing of J joints by stacking back individual joint trajec-
tories. This whole reconstruction process is denoted as
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P 1:T = Rec(ζ̂1:Tx , ζ̂1:Ty , ζ̂1:Tz , α) where we revert the pre-
dicted 3D velocity to the raw position without information
loss. Next, we will introduce how to accurately predict the
velocities ζ̂1:T based on our proposed model.

3.2. Symplectic Temporal Aggregation

While the SRE reduces the high dimension of human poses
and high noise in data, it is still highly challenging to
achieve accurate long-term prediction results. Therefore,
we need to pursue not only numerical stability but also sta-
ble and effective parametric models to maintain long-term
and accurate predictions. Generally, Euler’s integrator starts
from the initial state z0 at time t0 and estimates the function
z(t) at uniformly spaced time points tn = t0 + n∆t with
the recursive expression

zn+1 = zn +∆tf(zn, tn) (6)

However, using Euler’s method could easily lead to un-
stable solutions unless the time-step is chosen to be very
small [18]. Here we can consider fθ to be the paramet-
ric equation of our network. z0 is the last observed joint
location, while z1, . . . , zn form the future joint trajectory,
which can be generated based on our choice of the integrator
Rec(·) as introduced in the previous section. Subsequently,
a more general form is given as,

{zi}Ti=1 = Integrator(z0, fθ, {ti}Ti=1) (7)

Thus, our goal here is to optimize our model fθ based on
the dynamics control (i.e., velocity) of the joint trajectory,
which is equivalent to minimize the MSE loss between the
ground-truth trajectory {ζi}Ti=0 and the predicted trajectory
{ζ̂i}Ti=0 in conventional methods. Inspired by the symplec-
tic integral, we designed a symplectic temporal aggregation
(STA) module as shown in Figure. 2. It consists of two
components: a symplectic temporal splitting algorithm and
a Temporal aggregation and finetune module.

Symplectic temporal splitting algorithm. The main
idea of the symplectic integral is that numerical integra-
tions are first performed in each subinterval, which are next
summed to determine an approximation of the whole inte-
gral. Thus, we employ a symplectic temporal splitting algo-
rithm (STS) for the purpose of long-term prediction by split-
ting the long-term prediction into multiple accurate short-
term predictions. The process is given by:

ST S({ti}Ti=1) =

T/t−1⋃
n=0

{ti}(n+1)∗t
i=n∗t+1

(8)

where n = 0, 1, 2, . . . , T/t − 1, t is short-term duration.
The exact length of t is determined by the implementation
of the symplectic operator. As shown in Eq. 7, the aim of

symplectic operator is to obtain a stable parametric sub-
model {f i

so, ti}
(n+1)∗t
i=n∗t+1. The symplectic operator takes the

observed symplectic trajectories ζ as input and predicts the
future trajectories ζ̂ = SO(ζ). Importantly, to maintain
the stable symplectic nature, we design the symplectic op-
erator as a pre-trained network to ensure stability in com-
putations. Since this approach is model-agnostic, we tenta-
tively design a succinct model to verify this structure. This
pre-trained network uses multiple GRUs to perform predic-
tion, as illustrated in Figure 2. This pre-trained symplectic
operator can effectively control the perceptual field of the
network, so that the network will not be affected by the per-
ceptual field due to changes in the prediction term.

Temporal aggregation and finetune. Our model has
been trained to perform relatively short-term motion pre-
dictions. Now we concatenate and fine-tune its replica in a
temporal fashion to perform long-term predictions.

{fθ, ti}Ti=1 = [{f i
so, ti}ti=1, . . . , {f i

so, ti}
(n+1)∗t
i=n∗t+1] (9)

When information is transmitted in a long-term tempo-
ral sequence, we design a forget unit which can keep in-
puts real-time by dropping earlier n frames in the input se-
quence and supplementing the newly generated n frames
to the sequence. Considering the complex distribution of
motion data, we therefore employ a GAN architecture, fea-
turing a symplectic operator as a generator and a three-layer
fully connected network as a critic to finetune the long-term
prediction by adversarial training. Notably, GAN does not
increase the parameters of the model by adding the critic.

3.3. Training Objectives

Our training process takes place in symplectic space, so the
objective is to minimize the error between predicted ζ̂ and
target ζ. There are mainly three loss functions utilized in
our method: generator loss Lg , critic loss Lc, and symplec-
tic operator loss. For short-term prediction, to supervise
the output of the symplectic operator (t frames), we employ
symplectic operator loss Lso.

Lso =

t∑
i=1

||ζi − ζ̂i||2 (10)

We first pre-train the symplectic operator based on Lso, next
we optimize the end-to-end SINN (T frames) based on Lg

+ Lc. The generator loss Lg is given by

Lg =
1

T

T∑
i=1

|ζi − ζ̂i|2 (11)

The critic loss Lc is defined as:

Lc = ED(ζ1:T )− ED(ζ̂1:T ) (12)

where ED(·) is the mean critic score.
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Time (ms) 80 160 320 400 1,000 80 160 320 400 1,000 80 160 320 400 1,000 80 160 320 400 1,000
Directions Greeting Phoning Posing

res-GRU [34] 36.4 56.6 80.3 98.1 126.3 36.8 73.3 138.2 155.6 189.5 24.3 42.3 72.6 82.3 124.2 26.7 52.4 129.5 159.4 181.7
HPGAN [1] 80.9 101.3 148.6 168.8 234.6 81.5 118.8 178.4 200.1 258.6 78.8 100.3 152.7 179.0 244.2 75.5 107.4 168.3 178.0 250.1
BiGAN [17] 22.0 37.5 58.9 72.0 114.7 24.6 45.8 89.9 103.0 148.1 17.0 29.7 54.1 62.1 112.0 16.8 35.0 86.4 105.6 187.0
HMR [25] 23.3 25.0 47.2 61.5 116.9 12.9 31.9 55.6 82.5 123.2 12.5 21.3 39.3 58.6 112.8 13.6 23.5 62.5 114.1 143.6
LTD [32] 9.2 20.6 46.9 58.8 105.8 16.7 33.9 67.5 81.6 140.2 10.2 20.2 40.9 50.9 105.1 12.5 27.5 62.5 79.6 171.7

DMGNN [21] 12.3 23.8 46.2 55.5 90.3 14.0 29.8 74.0 89.1 140.2 10.2 14.0 32.8 40.0 104.1 9.2 23.5 65.0 82.8 170.2
HRI [33] 7.4 18.4 44.5 56.5 106.5 13.7 30.1 63.8 78.1 138.8 8.6 18.3 39.0 49.2 105.0 10.2 24.4 58.5 75.8 178.2

MSR-GCN [22] 8.6 19.7 43.3 53.8 - 16.5 37.0 77.3 93.4 - 10.1 20.7 41.5 51.3 - 12.8 29.4 67.0 85.0 -
FDU&FAU [9] 6.6 16.4 39.6 50.1 97.2 13.0 30.7 63.1 78.2 141.8 7.8 17.2 37.5 47.3 96.7 7.5 19.3 47.1 62.0 149.5

Ours 5.4 10.3 21.6 27.3 62.0 12.7 23.2 45.3 55.5 106.7 6.2 11.7 30.4 37.2 82.0 8.7 16.0 32.7 41.2 94.6
Waiting Eating Smoking Discussion

res-GRU [34] 20.5 39.8 78.2 90.3 120.1 17.5 34.3 71.1 87.5 117.6 22.4 39.9 80.2 92.5 119.2 25.8 43.4 83.5 95.8 129.1
HPGAN [1] 70.1 89.6 98.2 121.0 145.2 64.1 78.4 99.9 113.7 136.2 67.2 88.6 100.1 123.9 140.4 71.4 91.3 105.2 129.7 150.4
BiGAN [17] 17.5 31.3 53.9 61.4 128.5 13.6 26.1 51.4 63.1 84.1 11.0 21.0 33.1 38.2 88.1 19.2 39.0 67.7 75.3 122.5
HMR [25] 17.2 31.4 53.5 61.1 99.0 13.2 26.0 51.1 62.6 74.0 10.3 20.5 33.0 37.2 69.1 19.0 38.8 67.3 75.0 121.5
LTD [32] 10.5 21.6 45.9 57.1 106.9 7.7 15.8 30.5 37.6 74.1 8.4 16.8 32.5 39.5 73.6 12.2 25.8 53.9 66.7 118.6

DMGNN [21] 12.2 24.1 60.0 77.5 128.0 11.0 21.4 36.1 43.9 57.0 9.0 17.6 25.1 40.3 - 17.3 34.8 61.0 70.0 -
HRI [33] 8.7 19.2 43.4 54.9 108.2 8.7 18.7 39.5 47.1 57.0 7.0 14.9 29.9 36.4 69.5 10.2 23.4 52.1 65.4 119.8

MSR-GCN [22] 10.7 23.1 48.3 59.2 - 8.4 17.1 33.0 40.0 - 8.0 16.3 31.3 38.2 - 12.0 26.8 57.1 70.0 -
FDU&FAU [9] 8.2 18.4 41.3 52.1 101.2 6.3 13.7 29.1 36.3 71.1 5.1 9.1 21.3 29.9 59.3 7.4 17.1 42.9 50.4 149.5

Ours 7.2 13.8 28.7 36.2 80.1 5.7 10.1 19.2 23.7 52.2 5.3 9.0 19.3 24.4 58.0 7.3 14.2 30.0 37.4 79.9
Purchases Sitting Walking Takingphoto

res-GRU [34] 38.5 70.1 101.0 102.3 131.2 34.1 53.2 110.4 115.0 150.1 29.5 60.4 118.1 138.5 165.3 23.1 47.0 92.3 110.1 149.2
HPGAN [1] 42.4 88.9 95.0 120.2 170.2 36.3 60.0 120.0 123.1 168.2 65.2 98.1 148.3 168.2 199.9 38.0 49.3 79.9 83.8 160.4
BiGAN [17] 29.0 54.1 82.2 92.4 139.0 19.9 41.0 76.3 88.2 120.5 17.8 36.4 74.4 90.2 188.9 14.2 27.1 53.5 66.1 128.0
HMR [25] 15.3 30.6 64.7 73.9 122.7 12.6 25.6 44.7 60.7 118.4 12.8 24.5 45.2 85.1 101.9 7.9 19.0 31.5 57.3 108.5
LTD [32] 15.5 32.3 64.9 78.1 135.9 10.7 24.6 50.6 62.0 115.7 12.6 23.6 39.4 44.5 60.9 9.9 20.5 43.8 55.2 120.2

DMGNN [21] 21.4 38.7 75.7 92.7 - 11.9 25.1 44.6 50.2 - 9.6 21.8 56.9 71.9 - 13.6 29.0 46.0 58.8 -
HRI [33] 13.0 29.2 60.4 73.9 134.2 9.3 20.1 44.3 56.0 115.9 10.0 19.5 34.2 39.8 58.1 8.3 18.4 40.7 51.5 115.9

MSR-GCN [22] 14.8 32.4 66.1 79.6 - 10.3 22.0 46.3 57.8 - 8.9 14.9 29.0 33.1 - 9.9 21.0 44.6 56.3 -
FDU&FAU [9] 11.8 27.2 56.4 63.9 130.7 8.7 18.9 42.1 53.2 114.5 8.8 16.9 31.5 37.0 50.3 8.1 18.0 39.2 50.6 116.1

Ours 9.2 17.3 34.5 42.6 87.5 5.8 11.0 22.7 40.4 68.3 8.4 14.5 28.2 33.0 65.4 5.8 11.0 22.9 41.4 70.8
Sittingdown Walkingdog Walkingtogether Average

res-GRU [34] 28.6 55.2 85.6 115.8 180.0 59.8 78.6 152.3 178.3 200.1 25.4 53.2 89.8 99.6 183.4 29.9 53.3 98.8 114.7 151.1
HPGAN [1] 39.9 65.9 92.1 130.0 200.2 83.1 92.1 170.0 198.4 238.8 68.6 79.9 95.3 108.4 188.1 64.2 87.3 122.1 143.0 192.3
BiGAN [17] 17.0 34.8 66.5 76.9 152.0 41.2 78.3 116.2 130.1 210.5 14.8 30.1 54.2 65.1 150.2 19.7 37.8 67.9 79.3 138.3
HMR [25] 9.6 18.6 41.1 57.7 148.3 38.2 63.6 109.3 125.6 190.0 12.2 25.2 46.2 50.2 134.1 15.4 28.4 52.8 70.9 119.6
LTD [32] 17.0 33.4 61.6 74.4 144.1 22.9 43.5 74.5 86.4 142.2 10.8 21.7 39.6 47.0 69.6 12.5 25.5 46.3 61.3 112.3

DMGNN [21] 15.0 32.9 77.1 93.0 - 47.1 93.3 160.1 171.2 - 14.3 26.7 50.1 63.2 - 15.2 30.4 60.7 73.3 -
HRI [33] 14.9 30.7 59.1 72.0 143.6 20.1 40.3 73.3 86.3 142.2 8.0 15.4 35.1 41.6 64.9 10.5 22.7 47.9 59.0 110.9

MSR-GCN [22] 16.1 31.6 62.5 76.8 - 20.6 42.9 80.4 93.3 - 10.6 20.9 37.4 43.9 - 11.9 25.1 51.0 62.1 -
FDU&FAU [9] 13.9 25.6 54.2 67.2 145.3 14.5 32.7 63.8 76.0 123.1 7.4 15.2 30.0 36.4 58.7 9.0 19.8 42.6 52.7 107.0

Ours 7.6 13.8 27.8 35.1 84.6 13.7 25.2 49.0 59.8 114.5 7.3 14.8 29.5 35.8 76.4 7.8 14.4 29.0 37.0 80.1

Table 1. Comparisons of prediction on H3.6M. Results at 80 ms, 160 ms, 320 ms, 400 ms, and 1,000 ms in the future are shown. The best
results are highlighted in bold.

4. Experiments

4.1. Experimental Settings

Datasets. We evaluate our proposed method on three
benchmark datasets, namely Human3.6m (H3.6M), CMU
Motion Capture (CMU Mocap), and 3D Poses in the Wild
(3DPW). The H3.6M dataset [15] contains 3.6 million hu-
man images recorded by a Vicon motion capture system.
7 subjects perform 15 different classes of actions. Follow-
ing the evaluation protocol of previous works [13, 16], du-
plicate points in the human pose are removed and down-
sampled to 25 FPS (frames per second). Subject 5 is uti-
lized as the test set. The CMU Mocap dataset is released
by researchers from Carnegie Mellon University. 12 in-
frared cameras are utilized to capture human poses. Fol-
lowing previous works [32], we adopt the same training/test
splits. The 3DPW dataset [39] is proposed primarily for
wild scenes that are recorded by a handheld smartphone
camera or IMU. It contains 60 video sequences with more
than 51,000 indoor or outdoor poses.

Evaluation metric. We evaluate our proposed ap-
proach on H3.6M, CMU Mocap, and 3DPW datasets by
measuring the mean per joint position error (MPJPE) af-
ter the alignment of the root joint. In these experiments,
we consider three kinds of prediction: short-term predic-
tion (less than 400 ms), long-term prediction (400-1,000
ms), and longer-term prediction (2,000 ms). Experimental
results at 80 ms, 160 ms, 320 ms, 400 ms, and 1,000 ms
in the future are shown for comparisons.

Implementation details. We utilize Python 3.8 to im-
plement our method. The experiments are performed with
an NVIDIA 3090 GPU. For the symplectic operator, the
length of the observed sequence is 25 frames (1,000 ms)
and the length of the predicted sequence is 5 frames (200
ms). The symplectic operator is multiple GRUs with 256
units each. The GAN consists of two components, namely
256-unit GRUs and a three-layer FCN with 256 units (i.e.,
the critic). The Adam Optimizer with a 0.001 learning rate
is used. Note that different datasets and different actions are
trained independently in our method.
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4.2. Comparisons with State-of-the-art Approaches

We compare our proposed approach against the following
human motion prediction methods: res-GRU [13], HPGAN
[1], BiGAN [17], HMR [25], LTD [32], DMGNN [21], HRI
[33], MSR-GCN [22], and FDU&FAU [9]. These methods
are representative state-of-the-art (SOTA) methods cover-
ing a diverse set of technologies. In the following section,
we analyze their prediction performance with comprehen-
sive quantitative and qualitative comparisons. The results
on H3.6M, CMU Mocap, and 3DPW are reported in Tables
1, 2, and 3, respectively. The empirical results demonstrate
that our method significantly outperforms current SOTA ap-
proaches on all three datasets, which reveals the feasibility
of tackling the human motion prediction problem with the
symplectic integral.

Starting from the experimental results on the H3.6M
dataset, the current SOTA methods obtain short- and long-
term results of 52.7 and 107.0, respectively. Our SINN fur-
ther pushes forward the performance boundary to 37.0 (↑
15.7) and 80.1 (↑ 19.9), which is a quantum leap in perfor-
mance. Moreover, we observe that existing methods tend
to work well on regular motions (e.g., walking). However,
they do not perform well on non-regular and complex mo-
tions (e.g., discussion). The long-term predicted average
performance for discussion is at 129.8. Our method im-
proves the performance to 79.9 (↑ 49.8). We believe our
method benefits from the proposed motion representation
for the following two reasons. First, the symplectic rep-
resentation encoder provides a stable data system for pre-
diction, which aids prediction, and in our experiments, we
achieved such promising results with just a concise model.
Second, our approach does not introduce excessive human-
defined skeletal constraints, which might lead to human bias
and limit the generalization ability of the model.

For long-term prediction, we observe that the prediction
errors of all methods increase as the predicted sequence
gets longer. This confirms that long-term prediction is more
challenging. Quantitative results in Table 1 suggest that our
approach outperforms existing methods in long-term mo-
tion prediction with a 20.1% accuracy increase. We believe
that this mainly benefits from our proposed SINN because
that 1) The symplectic operator exploits the strengths of
prediction networks in short-term forecasting, it gains 30%
increase. This ensures stable implementation of long-term
integration; and 2) our proposed STA involves performing
a definite integration of a function over a given interval,
which ensures that the mean squared error over the entire
interval is minimized. With respect to human motion pre-
diction tasks, human motion is complex and rife with un-
certainties, and can be considered a non-smooth and even
steeply varying function from a data standpoint. Therefore,
symplectic integration is particularly meaningful for han-
dling human motion prediction tasks.

Time (ms) 80 160 320 400 560 1000
DMGNN [21] 13.6 24.1 47.0 58.8 77.4 112.6

MSR-GCN [22] 8.1 15.2 30.6 38.6 53.7 83.0
FDU&FAU [9] 6.4 13.9 27.9 36.0 50.1 75.4

Ours 5.8 11.5 21.8 30.3 42.2 62.8

Table 2. Comparisons of average prediction errors on CMU Mo-
cap at 80 ms, 160 ms, 320 ms, 400 ms, 560 ms, and 1,000 ms.

Time (ms) 200 400 600 800 1000
DMGNN [21] 37.3 67.8 94.5 109.7 123.6

MSR-GCN [22] 37.8 71.3 93.9 110.8 121.5
FDU&FAU [9] 26.1 54.2 72.3 87.2 94.5

Ours 19.9 46.5 65.8 80.3 88.2

Table 3. Comparisons of average prediction errors on 3DPW at
200 ms, 400 ms, 600 ms, 800 ms, and 1,000 ms.

The results on the other two datasets show a similar pat-
tern as that on the H3.6M dataset. The CMU Mocap dataset
has a much higher frame rate than the H3.6M dataset. After
downsampling to 25 frames, Table 2 shows that our method
still performs better than existing methods, which validates
the robustness of our method. A comparison of the average
results shows that our method improves the performance
by 16.7%. Finally, the 3DPW dataset is more challenging
as it collects human motion data in the wild with a hand-
held smartphone, as shown in Table 3. Our method sets the
new SOTA performance and achieves a 10.2% accuracy im-
provement over the current SOTA approach. The empirical
results on three different datasets verify the efficacy of the
proposed method.

Visualization results. We visualize the results of
our method and current state-of-the-art methods HRI [33],
MSR-GCN [22] and FDU&FAU [9] in Figure 3, where the
results for ”Smoking” activity on H3.6M dataset. Existing
methods for highly stochastic actions often suffer from a
significant issue where the predicted motions tend to con-
verge to static and motionless states. Our proposed SINN
overcomes this problem by providing richer and smoother
individualized motion contexts, which are easier to model
compared to traditional pose representations. Figure 4 fur-
ther visualizes the results of current state-of-the-art MSR-
GCN [22], FDU&FAU [9], and our method for the longer-
term prediction (2,000 ms). Prominently, most existing
methods are shown to have plausible predictions within
1,000 ms. However, they usually converge to stationary or
unnatural poses in the longer-term prediction (2,000 ms).
Our method is able to maintain a natural motion and trend
in the longer-term prediction.

4.3. Ablation Studies

To quantitatively analyze the effect of different components,
we compare our method to two variations by removing the
Symplectic Representation Encoder (SRE) or by removing
the Symplectic Temporal Aggregation (STA) from our pro-
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Figure 3. Result visualizations on H3.6M dataset up to 1,000 ms.
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Conventional prediction category （less than 1,000 ms） Longer-term prediction （1,000 ms - 2,000 ms）

Figure 4. Result visualizations on H3.6M dataset for longer-term prediction (2,000 ms).

SRE STA 80 160 320 400 1000
Eating on H3.6M

✓ × 10.2 19.5 35.6 45.2 65.1
× ✓ 18.9 34.2 45.1 55.3 80.5
✓ ✓ 5.7 10.1 19.2 23.7 52.2

Baketball on CMU Mocap
✓ × 11.2 19.5 35.6 48.2 95.1
× ✓ 19.6 41.0 58.1 85.3 108.5
✓ ✓ 10.0 18.3 34.5 45.2 88.1

Table 4. Ablation studies on the impact of different components.

posed method. The empirical results are reported in Table 4.
From the results, we observe that 1) the SRE can largely im-
prove the prediction power of the method. 2) the SRE rep-
resentation is more helpful for short-term predictions. and
3) SINN can effectively improve the method and contribute
to both the long-term and short-term predictions.

4.4. Studies on Model-agnostic Learning

Our proposed SINN is a model-agnostic framework, which
can be easily integrated with existing methods. To demon-
strate its effectiveness, we conduct experiments by utilizing
various well-established methods such as res-GRU [34], Bi-
GAN [17], LTD [32], DMGNN [21], MSR-GCN [22], and
FDU&FAU [9]. These methods represent different types
of networks including RNNs [34], GCNs [21], and GANs
[17], thereby covering a wide range of network classes. The
results, as shown in Table 5, clearly indicate that SINN sig-
nificantly improves the prediction accuracy of these existing
methods. This empirical evidence demonstrates the useful-

Current methods Current methods + SINN
Time (ms) 80 160 320 400 1,000 80 160 320 400 1,000

res-GRU [34] 17.5 34.3 71.1 87.5 117.6 16.5 38.8 68.0 85.1 114.3
BiGAN [17] 13.6 26.1 51.4 63.1 84.1 12.5 24.5 48.2 59.8 82.5

LTD [32] 7.7 15.8 30.5 37.6 74.1 7.1 14.9 31.8 36.0 72.9
DMGNN [21] 11.0 21.4 36.1 43.9 57.0 10.1 20.0 35.2 42.3 55.5

MSR-GCN [22] 8.4 17.1 33.0 40.0 - 8.0 16.5 32.2 35.7 -
FDU&FAU [9] 6.3 13.7 29.1 36.3 59.3 6.0 12.5 27.2 35.7 57.1

Table 5. Studies on model-agnostic learning.

ness and extendability of our proposed SINN to other mo-
tion prediction approaches.

5. Conclusion
In this paper, we propose a novel human motion prediction
approach that models human motion based on symplectic
integral. We try to tackle the motion prediction problem
from two aspects: (1) represent 3D human poses on sym-
plectic representation to gain numerical stability, and (2)
propose a network named symplectic integral network to
construct the stable structure for modeling context. Our
method provides a new perspective for this research area
and contributes a reproducible research toward more accu-
rate and longer human motion prediction.
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