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Figure 1. Comparative results of SAM and RobustSAM under different degradations using unseen datasets: RobustSAM outper-
forms with precise boundaries and intact structures, where SAM falters with errors and fragmentation. Red star points and bounding boxes
are our examples’ input prompts.

Abstract

Segment Anything Model (SAM) has emerged as a trans-
formative approach in image segmentation, acclaimed for
its robust zero-shot segmentation capabilities and flexible
prompting system. Nonetheless, its performance is chal-
lenged by images with degraded quality. Addressing this
limitation, we propose the Robust Segment Anything Model
(RobustSAM), which enhances SAM’s performance on low-
quality images while preserving its promptability and zero-
shot generalization. Our method leverages the pre-trained
SAM model with only marginal parameter increments and
computational requirements. The additional parameters
of RobustSAM can be optimized within 30 hours on eight
GPUs, demonstrating its feasibility and practicality for typ-

ical research laboratories. We also introduce the Robust-
Seg dataset, a collection of 688K image-mask pairs with
different degradations designed to train and evaluate our
model optimally. Extensive experiments across various seg-
mentation tasks and datasets confirm RobustSAM’s supe-
rior performance, especially under zero-shot conditions,
underscoring its potential for extensive real-world applica-
tion. Additionally, our method has been shown to effectively
improve the performance of SAM-based downstream tasks
such as single image dehazing and deblurring.

Project Page: https://robustsam.github.io
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1. Introduction
Accurate image segmentation is crucial to various down-
stream applications such as robotics, augmented/virtual
reality, and content creation. Segment Anything Model
(SAM) [29] has opened a new chapter in image segmen-
tation in the wild: Utilizing the comprehensive SA-1B
dataset, which comprises over a billion annotated masks,
SAM generalizes to a huge variety of objects and can accu-
rately segment a scene given minimalistic prompts, ranging
from point annotations to bounding boxes. This innovative
approach revolutionizes zero-shot segmentation by seam-
lessly adapting to various applications.

As SAM demonstrates its versatility across diverse seg-
mentation tasks [21, 25, 52, 66, 66, 73, 88], attention has
turned to its robustness and scalability when confronting
complex and challenging scenarios. Specifically, enhanc-
ing its robustness on degraded images remains a frontier
to be explored. A body of literature [24, 58, 61, 71] has
pointed out that the performance of SAM decreases with
imaging degradations like low lighting, noise, blur, adverse
weather, and compression artifacts. These degradations sig-
nificantly impact the quality of the segmentation masks that
SAM generates, directly influencing downstream tasks re-
lying on these masks. Specifically, recent image restoration
works such as dehazing [26], deblurring [41], and super-
resolution [50] have been utilizing these masks or latent
features as a structure prior which generalizes to unseen
scenes. However, these works assume that SAM can pro-
duce reliable and accurate masks even in degraded condi-
tions. If the robustness of SAM is compromised in these
cases, the benefit of integrating prior knowledge becomes
constrained, limiting their applicability to real-world sce-
narios.

To address this challenge, one intuitive approach is to
utilize existing image restoration techniques [9, 31, 56] to
preprocess the images before feeding them into SAM. Al-
though these methods can improve the image quality to a
degree, there is no guarantee that the selected image restora-
tion techniques would be able to improve image segmenta-
tion [7, 12, 40, 64, 70]. This is because most image restora-
tion algorithms are optimized for human visual perception
rather than the specific demands of segmentation models
like SAM.

An alternative strategy involves directly fine-tuning
SAM on degraded images. However, direct adjustments
to the SAM decoder or integrating a new decoder module
can profoundly impair the model’s generalizability on zero-
shot tasks. Furthermore, blindly fine-tuning SAM with de-
graded images can lead to catastrophic forgetting, where the
network inadvertently loses its knowledge learned from the
original, clean images [16, 30].

To this end, we introduce RobustSAM, which achieves
robustness in handling degraded images while retaining

zero-shot functionality. Our method proposes two novel
modules: the Anti-Degradation Token Generation Module
and the Anti-Degradation Mask Feature Generation Mod-
ule. Supervised by consistency losses with features ex-
tracted from paired clear images by original SAM, these
modules are designed to extract degradation-invariant seg-
mentation features. We also fine-tuned the original output
token of SAM, adapting it to our robust segmentation ap-
proach. By freezing the original modules from SAM during
training, the proposed method enhanced its ability to pro-
cess degraded images while preserving its effectiveness on
zero-shot segmentation.

Moreover, the proposed additional modules in Robust-
SAM can be trained efficiently. In contrast to the original
SAM, which demands training on hundreds of GPUs, Ro-
bustSAM can be trained within 30 hours on eight A100s.
This marks the accessibility of RobustSAM, making it
ready to be integrated into various application scenar-
ios. Extensive experiments demonstrate that our Robust-
SAM performs well in clear and degraded scenarios. Fur-
thermore, we found that RobustSAM benefits SAM-based
downstream tasks in degraded scenarios, such as single im-
age dehazing and deblurring, by providing a more robust
prior, thereby enhancing their effectiveness.

To enhance the capabilities and robustness of Robust-
SAM, we introduce the Robust-Seg dataset. Robust-Seg
combines 43K meticulously annotated images from 7 ex-
isting datasets. Each image is subject to 15 different types
of carefully modeled synthetic degradation, resulting in a
comprehensive collection of 688K images in Robust-Seg.
This extensive dataset aims to push the boundaries of image
segmentation and serve as a valuable resource for future re-
search.

To summarize, our contributions are as follows:
• We propose RobustSAM, a zero-shot segmentation

model built upon the Segment Anything model, with
enhanced robustness against various image degrada-
tions. This enhanced robustness is shown to improve
the performance of downstream applications signifi-
cantly.

• We construct the Robust-Seg dataset, a collection of
688K image-mask pairs with different degradations.
We hope Robust-Seg will establish a new benchmark
for segmentation models on degraded images.

2. Related Work

2.1. Segment Anything Model

Segment Anything Model (SAM) [29] achieves unprece-
dented performance in image segmentation, advancing vari-
ous subdomains in computer vision [51]. SAM accepts intu-
itive prompts such as points or bounding boxes, demonstrat-
ing exceptional zero-shot transfer learning capability across
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diverse segmentation tasks and new image distributions. Its
adaptability is proven across various domains, including
medical imaging [91], [66], [18], [62], camouflaged object
detection [66], and salient object segmentation [51]. In ad-
dition to its segmentation capability, SAM plays a founda-
tional role in enhancing computer vision tasks, including
semantic segmentation [91], [62], [4], image editing [85],
and video object tracking [78], [11]. While SAM demon-
strates promising capabilities, its performance is challenged
by poor image quality [24, 58, 61, 71], affecting segmenta-
tion and downstream task accuracy.

2.2. Robust Segmentation

In the domains of autonomous driving and surveillance
analysis, a multitude of studies [14, 16, 59, 74, 81, 92] have
identified a decrease in CNN-based segmentation perfor-
mance when dealing with degraded images, which leads
to the development of various remedial approaches. For
instance, QualNet [28] explores quality-agnostic feature
extraction through a reversible encoding scheme, while
URIE [64] addresses multiple image impairments, enhanc-
ing segmentation stability through classification constraints.
Concurrently, FIFO [35] propels segmentation frameworks
to learn fog-resistant features via a fog pass filter mecha-
nism. However, these technologies primarily focus on a
single type of degradation, potentially lacking robustness
against multiple image degradations. Moreover, this strat-
egy of jointly training with downstream tasks may dilute the
zero-shot advantage of SAM.

2.3. Image Restoration

In the field of image restoration, methods targeting sin-
gle types of degradation such as SRCNN [13] pioneered
the application of convolutional neural networks to the en-
hancement of image quality. Subsequent innovations have
emerged across different domains, achieving notable suc-
cesses in super-resolution (SR) [34, 46, 90], denoising [1,
2, 53, 89], dehazing [8, 19, 36], deraining [57, 60, 79], un-
derwater enhancement [49, 77] and deblurring [15, 32, 33].
Attempts like MPRNet [87], and HINet [6] have been made
to address multiple degradations through a single network.
Recently, transformer-based methods have also gained trac-
tion in image restoration tasks [44, 72, 86]. Nonethe-
less, while multi-degradation approaches such as All-in-
One [39], IPT [3], and AirNet [37] offer greater flexibil-
ity and improved performance, they aim to enhance visual
quality for human perception, instead of improving the per-
formance of downstream tasks such as segmentation.

3. Proposed Method
3.1. Preliminary: Segment Anything Model

We provide a concise overview of the SAM framework [29].
As shown in the lower half of Figure 2, SAM incorporates
three key components: an image encoder, a prompt encoder,
and a mask decoder. The image encoder processes input
images using the Vision Transformer (ViT). The prompt en-
coder handles sparse prompt inputs (such as points, boxes,
and text) and dense inputs (masks), transforming them into
appropriate representations. The mask decoder is a mod-
ified Transformer decoder block [69]. It combines image
and prompt embeddings with an output token to generate
mask features. This process involves prompt self-attention
and bidirectional cross-attention between the prompts and
image embeddings. Notably, the mask decoder uses trans-
pose convolutions to create detailed mask features. The out-
put token per mask, derived from token-to-image attention,
is transformed by an MLP into a dynamic classifier. When
multiplied with the mask features, this classifier yields the
final segmentation mask.

3.2. Robust Segment Anything Model

We propose RobustSAM, which addresses image degrada-
tion while preserving the zero-shot learning capabilities of
SAM. Diverging from standard approaches that fine-tune
SAM or jointly train complex adaptation modules, Robust-
SAM employs a minimalistic yet deliberate enhancement.

3.2.1 Model Overview

Figure 2 gives an overview of the proposed Robust-
SAM. The key contribution of RobustSAM is the Anti-
Degradation Output Token Generation (AOTG) and Anti-
Degradation Mask Feature Generation (AMFG) modules,
which extract degradation-invariant information that is
aligned those extracted from clear images by the original
SAM. This is achieved by generating clear-degraded image
pairs through 15 types of synthetic degradation augmenta-
tion. Different losses are then applied to enforce the con-
sistency between clear and degraded features, as well as
the predicted segmentation and ground truth. Notice that
although supervised with synthetic degradations, Robust-
SAM generalizes well to real-world images, as shown in
Sec. 5.

Training. To train RobustSAM, we begin by applying a
degradation augmentation to a clear input image and then
feeding the resulting degraded image into RobustSAM. Ini-
tially, the model leverages its Image Encoder to extract fea-
tures from this degraded image. Unlike the original SAM
framework, we finetuned the output token, now called the
Robust Output Token (ROT). This ROT, along with the
prompt token and the features extracted by the Image En-
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Figure 2. Overview of our proposed RobustSAM. RobustSAM augments the original SAM by incorporating five essential components
(in purple). During training, clear images are fed through the original SAM modules (in gray) to produce features for clear scenes.
Subsequently, degraded images, generated through augmentation of clear inputs, are processed by RobustSAM, yielding features for
degraded scenarios. These are then refined via Anti-degradation modules, ensuring consistency with features from clear scenes. This
methodology, supported by a segmentation loss, achieves precise segmentation outcomes in both clear and degraded image conditions.
During inference, only RobustSAM is used to predict a segmentation mask from an input image. Note: The prompt encoder is excluded for
conciseness, and the padlock icons represent fixed components loaded from the original SAM model that are not updated during training.

coder, is processed through the original SAM layers to gen-
erate mask feature (degrade) FMFD and Robust Output To-
ken per mask TRO.

The AOTG block processes the TRO to extract informa-
tion resilient to degradation, transforming it into T̂RO. Si-
multaneously, the AMFG block refines the mask and com-
plementary features from the Image Encoder’s early and
final layers (FMFD and FCFD), removing degradation-
related information to produce refined features (F̂MFD and
F̂CFD). Following the architecture proposed in [27], a Fea-
ture Fusion block combines these refined features into our
final robust mask feature for improving the segmentation
quality.

In parallel, the original clear image is processed by stan-
dard SAM to extract clear versions of the complementary
feature (FCFC), mask feature (FMFC), and output token
(TOC). Consistency losses between these clear features and
refined features from RobustSAM ensure alignment with
undegraded image outputs. The segmentation results from
the degraded input are then compared against the ground
truth using a segmentation loss function.

In our degradation augmentation approach, we include
15 types of degradations and an identity mapping. This en-
sures that clear images retain their quality, avoiding perfor-
mance drops in non-degraded scenarios.

Inference. During inference, only the RobustSAM (Fig-
ure 2, top half) is used to generate the segmentation mask.

In the following, we give a detailed discussion on the
proposed Anti-Degradation Output Token Generation and
Anti-Degradation Mask Feature Generation modules.

3.2.2 Anti-Degradation Mask Feature Generation

As shown in Figure 3, the input features are first pro-
cessed by Instance Normalization (IN). Inspired by previ-
ous work [23, 64, 68], the purpose of IN is to standardize the
variations associated with image degradation. Intuitively,
this removes the style attributes while preserving the core
content. This step is essential to mitigate the influence of
individual image distortions, ensuring the content’s stabil-
ity under diverse degradation conditions. Parallel to this, in-
spired by [64], we include another branch that applies Batch
Normalization (BN). BN is crucial as it addresses the poten-
tial loss of detail resulting from the IN process, as indicated
by [55, 64].

We then merge the features generated by BN and IN in-
dividually. An attention mechanism scrutinizes the merged
features to generate attention maps, which dynamically
weigh the importance of each feature type, thus synthesiz-
ing a feature set that encapsulates the advantages of both
normalization techniques [64]. To compensate for any se-
mantic information that may have been lost, this enhanced
feature set is concatenated with the original input features
along the channel dimension. Additionally, we integrate
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Figure 3. Overview of the proposed Anti-degradation Mask Feature Generation (AMFG) and Anti-degradation Output Token
Generation (AOTG). SEC denotes Squeeze-and-Excitation Channel attention.

channel attention, akin to the squeeze-and-excitation ap-
proach (SEC) [20, 43], to refine the feature integration adap-
tively.

Inspired by [22, 75, 80, 82, 84], we introduced the
Fourier Degradation Suppression module to enhance the in-
tegrated features by transforming them from the spatial to
the frequency domain using the Fourier transform. This
technique leverages the amplitude components to capture
style information about image degradation. By applying a
1×1 convolution, we focus on isolating and removing degra-
dation elements. Meanwhile, the phase components are pre-
served to maintain the structural integrity. Following this,
an inverse Fourier transform brings the refined features back
to the spatial domain. This process treats degradations as
image styles and generates degradation-invariant features
for robust segmentation.

This module is applied to two features generated by
preceding modules: the complementary feature (degrade)
FCFD and the mask feature (degrade) FMFD. To ensure
that these refined features maintain consistency with the
corresponding features extracted by the SAM model (i.e.,
FCFC and FMFC) when using clear images as input, we
employ the Mask Feature Consistency Loss (LMFC).

LMFC = ∥F̂CFD − FCFC∥2 + ∥F̂MFD − FMFC∥2 (1)

By minimizing each part of LMFC, we ensure that the refined
features remain consistent with those extracted under clear
image conditions, thus guaranteeing the robustness and con-
sistency of the features across different degradations.

3.2.3 Anti-Degradation Output Token Generation

The Anti-Degradation Output Token Generation module is
dedicated to refining Robust Output Token per mask (TRO)
to remove degradation-related information. Unlike con-
ventional mask features, TRO primarily functions to en-
sure the clarity of classification boundaries, thus containing
less texture information. Therefore, we found that using a
lightweight module to filter information sensitive to degra-
dation is sufficient. As depicted on the right side of Figure

3, this module utilizes multiple layers of Instance Normal-
ization followed by a single MLP layer. This strategy aims
to maintain computational efficiency while ensuring that the
model can recover robust mask information from inputs af-
fected by degradation. The refined token T̂RO is then com-
pared with the output token TOC extracted under clear input
conditions by the original SAM to calculate Token Consis-
tency Loss LTC,

LTC = ∥T̂RO − TOC∥2 (2)

This loss ensures that the refined token remains consistent
with those extracted under clear image conditions. After
processing through the MLP, the output is combined with
the Robust Mask Feature to generate the final mask.

3.2.4 Overall Loss

The overall loss function integrates the Mask Feature Con-
sistency Loss (LMFC), Token Consistency Loss (LTC), and
the Segmentation Loss (LSeg) to form a comprehensive
penalty for the model. The overall loss is expressed as:

LOverall = LMFC + λ1LTC + λ2LSeg (3)

Here, LSeg is a combined segmentation loss that incorpo-
rates both Dice [47] and Focal losses [65]:

LSeg = LDice(P,G) + λ3LFocal(P,G) (4)

where P is the predicted mask, G is the ground truth
mask, and λ1–λ3 are hyperparameters for weighting dif-
ferent losses. This composite loss function is designed to
ensure enhancement in segmentation quality while bolster-
ing the robustness of the model against degradation.

4. Implementation Details
4.1. Dataset

To train and evaluate RobustSAM, we constructed a com-
prehensive Robust-Seg dataset, featuring 688,000 image-
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Training Inference

Learnable
Params

# GPU
Batch
Size

Time
(h)

FPS Mem.

SAM 1250 MB 256 256 N/A 2.90 9.63G
RobustSAM 403 MB 8 8 30 2.80 10.08G

Table 1. Comparative computational requirements for SAM
and RobustSAM.

mask pairs. This dataset is composed of images from sev-
eral existing datasets, specifically LVIS [17], ThinObject-
5k [45], MSRA10K [10], NDD20 [67], STREETS [63],
FSS-1000 [42], and COCO [48]. In this dataset, we incor-
porate original clear images and versions augmented with
15 types of synthetic degradations, including blur, noise,
low light, adverse weather conditions, and so on. This ap-
proach ensures the model is extensively trained and robust
to various image qualities.

During training, we utilize the entire training sets (and
their augmentations) of MSRA10K, ThinObject-5k, and
LVIS. The test sets (and their augmentations) of MSRA10k
and LVIS are used to validate the segmentation accuracy of
the model. To challenge the zero-shot generalization of the
model, we test it against the full range of images (and their
augmentations) from the NDD20, STREETS, FSS-1000,
and COCO datasets.

In addition, we conduct extensive testing using the com-
plete BDD-100k [83] and LIS [5, 76] datasets, which in-
clude a variety of real-world degradations such as low-light,
blur, rain, and snow. This approach ensures a thorough eval-
uation of RobustSAM’s performance in realistic scenarios
and its robustness to adverse environmental conditions typ-
ically encountered in real-world applications.

4.2. Training Detail

During the training phase of RobustSAM, we keep the pre-
trained SAM parameters frozen, focusing only on optimiz-
ing the proposed modules for robustness. We train Robust-
SAM using point-based prompts.

RobustSAM significantly enhances segmentation qual-
ity and is designed for fast and efficient training. With a
learning rate of 0.0005 for 40 epochs, the training is com-
pleted in 30 hours for 130,000 iterations on 8 Nvidia A100
GPUs. Table 1 details the training and inference perfor-
mance of RobustSAM compared to SAM. RobustSAM not
only delivers improved segmentation outcomes but does so
with remarkable training efficiency compared to SAM.

4.3. Evaluation Protocol

To evaluate the performance of RobustSAM, we employ
several metrics: Intersection over Union (IoU), Dice Coef-
ficient (Dice), Pixel Accuracy (PA), and Average Precision
(AP) at various threshold levels.

Method Degrade Clear Average

IoU PA IoU PA IoU PA

SAM 0.8194 0.9108 0.8402 0.9235 0.8207 0.9116
HQ-SAM 0.8358 0.9202 0.8604 0.9328 0.8373 0.9210

AirNet+SAM 0.8157 0.9193 0.8236 0.9294 0.8162 0.9199
URIE+SAM 0.8217 0.9125 0.8450 0.9245 0.8231 0.9132
RobustSAM 0.8609 0.9640 0.8726 0.9649 0.8616 0.9641

Table 2. Performance Comparison on test set of MSRA10k [10]
datasets (seen datasets with synthetic degradations) in Robust-
Seg dataset using point prompts for “Degrade”, “Clear”, and
“Average” scenarios. “Degrade” refers to the set of images
subjected to 15 different types of degradation, “Clear” refers to
the original, undegraded images, and “Average” represents the
weighted sum average of the “Degrade” and “Clear” scenarios.
The words with boldface indicate the best results, and those with
underline indicate the second-best results.

Method Degrade Clear Average

IoU PA IoU PA IoU PA

SAM 0.7341 0.9181 0.7415 0.9282 0.7346 0.9187
HQ-SAM 0.7405 0.9242 0.7502 0.9319 0.7411 0.9246

AirNet+SAM 0.7352 0.9198 0.7419 0.9293 0.7356 0.9204
URIE+SAM 0.7336 0.9182 0.7406 0.9277 0.7340 0.9188
RobustSAM 0.7506 0.9327 0.7592 0.9339 0.7511 0.9328

Table 3. Performance comparison on the test set of LVIS [17]
dataset (a seen dataset with synthetic degradations) in Robust-
Seg dataset using Bounding Box prompts.

Method Degrade Clear Average

IoU PA IoU PA IoU PA

SAM 0.7981 0.9555 0.8295 0.9707 0.8000 0.9565
HQ-SAM 0.8079 0.9617 0.8448 0.9756 0.8102 0.9625

AirNet+SAM 0.7988 0.9629 0.8312 0.9752 0.8008 0.9637
URIE+SAM 0.7904 0.9593 0.8288 0.9740 0.7928 0.9602
RobustSAM 0.8195 0.9778 0.8529 0.9817 0.8216 0.9780

Table 4. Zero-shot segmentation comparison on the whole
NDD20 [67], STREETS [63], and FSS-1000 [42] (unseen
datasets with synthetic degradations) in Robust-Seg dataset
using point prompts.

Method Performance Metrics

AP APS APM APL

SAM 0.5002 0.3168 0.4292 0.5243
HQ-SAM 0.5052 0.2920 0.4267 0.5517

AirNet+SAM 0.4926 0.3068 0.4263 0.5187
URIE+SAM 0.4980 0.3186 0.4319 0.5215
RobustSAM 0.5130 0.3192 0.4416 0.5518

Table 5. Zero-shot segmentation comparison on the whole
COCO [48] (unseen datasets with synthetic degradations) in
Robust-Seg dataset using Bounding Box prompts.

5. Experimental Results

In this section, we present the evaluation results of the pro-
posed RobustSAM.
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Input SAM HQ-SAM AirNet+SAM URIE+SAM RobustSAM

Figure 4. Qualitative Analysis of Segmentation: A visual comparison on unseen datasets highlighting the performance improvements of
the RobustSAM over existing strategies.

Method Point Bounding Box

IoU Dice IoU Dice

SAM 0.3056 0.3837 0.8808 0.9171
HQ-SAM 0.2943 0.3712 0.8877 0.9245

AirNet+SAM 0.3245 0.4550 0.8776 0.9129
URIE+SAM 0.3042 0.3828 0.8799 0.9165
RobustSAM 0.3717 0.8926 0.8958 0.9416

Table 6. Zero-shot segmentation comparison on the whole
BDD-100k [83] and LIS [5, 76] datasets (unseen datasets with
real-world degradations) using point prompts.

5.1. Performance Evaluation

In the landscape of image segmentation under challenging
conditions, our RobustSAM framework is compared with
several existing methods to establish its efficacy. We bench-
mark against the foundational SAM model and a strate-
gic two-stage methodology where images are first passed
through universal image restoration techniques to refine in-
put quality, subsequently followed by SAM-driven segmen-
tation. To that end, we incorporate AirNet [37], a state-
of-the-art general visual quality enhancement method tai-
lored for unknown degradation. Furthermore, we integrate
URIE [64], an image restoration approach optimized to set
the stage for more effective segmentation. Additionally, we
compare with HQ-SAM [27], which is a high-quality itera-
tion of the original SAM.

Comparison on Seen Datasets. We evaluate the per-
formance of our proposed methods within the frame-
work of Robust-Seg on seen datasets: LVIS [17] and
MSRA10K [10]. Specifically, we assess the methods on
the test sets of these datasets. The results show that our
approach yields superior performance, effectively handling
the varied challenges posed by these diverse scenes. Ad-
ditionally, RobustSAM demonstrates its strength in signifi-
cantly improving segmentation in degraded scenarios while
maintaining or enhancing performance in clear scenes. De-
tailed results are presented in Table 2 and Table 3, demon-
strating our method’s efficacy across different segmentation
scenarios.
Zero-shot Segmentation Comparison. We first assessed
our methods on the entire NDD20 [67], STREETS [63], and
FSS-1000 [42] and COCO [48] datasets, all of which are
synthesized degradations designed to challenge segmenta-
tion models. These test sets’ results, which highlight our
approaches’ adaptability and accuracy, are detailed in Ta-
ble 4 and Table 5. Moreover, to validate our methods’ capa-
bilities against real-world degradations, we expanded our
evaluation to include the entire BDD-100k [83] and LIS
datasets [5, 76]. These datasets are particularly challeng-
ing due to their wide variety of real-world degradations,
ranging from weather conditions to noise and variable light-
ing. The results of these assessments are provided in Ta-
ble 6. In addition, we present the qualitative comparison of
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Figure 5. Enhancing SAM-based applications: A qualitative
demonstration of RobustSAM’s superiority in refining SAM-based
single image dehazing and deblurring.

Module Metric

IoU PA

Baseline
SAM 0.3056 0.8911
SAM-Finetune 0.1871 0.7691
SAM-Finetune Decoder 0.2476 0.8691
SAM-Finetune Output Token 0.3194 0.9036

RobustSAM
w AMFG 0.3455 0.9059
w AMFG-F 0.3535 0.9120
w AMFG-F+AOTG 0.3651 0.9193
w AMFG-F+AOTG+ROT (ALL) 0.3717 0.9226

Table 7. Efficacy of Proposed Modules: An evaluation on the
BDD-100k [83] and LIS [5, 76] datasets reveals that each of the
proposed modules enhances the performance of RobustSAM. (We
use point prompts in this comparison.)

Prior Dehazing Deblurring

PSNR SSIM PSNR SSIM

SAM 21.677 0.8451 27.491 0.9066
RobustSAM 23.159 0.8685 29.351 0.9229

Table 8. Quantitative evaluation for Dehazing [26] and Deblur-
ring [41] tasks using different priors.

segmentation in Figure 4. These results indicate that Ro-
bustSAM possesses significant robustness in zero-shot seg-
mentation, maintaining high performance across different
degradations.

5.2. Ablation Study

To further understand the impact of our contributions, we
conducted an ablation study. All experiments were per-
formed on the BDD-100k [83] and LIS [5, 76] datasets.
Fine-tune SAM? We fine-tuned the SAM model in various
configurations: fine-tuning the entire model, the decoder,
and the output token. The results are presented in Table 7.
It was observed that fine-tuning the entire SAM model or its
decoder drastically reduces its zero-shot capabilities, lead-
ing to a significant drop in performance. Fine-tuning only
output token resulted in performance improvements; how-
ever, they were still inferior compared to RobustSAM.
Effectiveness of Proposed Modules. Furthermore, we val-
idated the effectiveness of each proposed module, includ-
ing the Anti-degradation Mask Feature Generation Mod-
ule (AMFG), ADM with Fourier Degradation Suppression
module (AMFG-F), Anti-degradation Output Token Gen-
eration (AOTG), and Robust Output Token (ROT). The
findings presented in Table 7 show that each introduced
module positively influences RobustSAM’s overall perfor-
mance, with the AMFG module demonstrating the most sig-
nificant enhancement.

5.3. Improving SAM-prior Tasks

To validate whether our RobustSAM can enhance the per-
formance of applications based on SAM priors under de-
graded image conditions, we selected single image dehaz-
ing [26] and single image deblurring [41] as test cases.
Following the original papers’ settings for these tasks, we
utilized SAM and RobustSAM as their priors and evalu-
ated their performance on SOTS dataset [38] for dehazing
and GoPro dataset [54] for deblurring. The findings, pre-
sented in Table 8 and Figure 5, demonstrate that employing
RobustSAM yields superior performance on downstream
tasks. This enhancement can be attributed to RobustSAM’s
improved segmentation accuracy on degraded images, pro-
viding a more robust prior for these tasks.

6. Conclusion
This paper introduces RobustSAM, which excels in seg-
menting images under diverse degradations. The model’s
strength is rooted in its components—particularly the
Anti-degradation Mask Feature Generation Module, Anti-
degradation Output Token Generation, and Robust Output
Token modules. To verify the effectiveness of RobustSAM,
we proposed a large-scale dataset called Robust-Seg. Fur-
thermore, we prove RobustSAM’s superiority extends to
improving SAM-based tasks such as dehazing and deblur-
ring, confirming its value as a dependable tool for image
processing under degraded conditions. Its performance sets
a new standard for robustness in zero-shot segmentation, of-
fering a promising direction for future research.
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