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Abstract

Recently, transformer-based methods have achieved
state-of-the-art prediction quality on human pose esti-
mation(HPE). Nonetheless, most of these top-performing
transformer-based models are too computation-consuming
and storage-demanding to deploy on edge computing plat-
forms. Those transformer-based models that require fewer
resources are prone to under-fitting due to their smaller
scale and thus perform notably worse than their larger
counterparts. Given this conundrum, we introduce SD-
Pose, a new self-distillation method for improving the per-
formance of small transformer-based models. To miti-
gate the problem of under-fitting, we design a transformer
module named Multi-Cycled Transformer(MCT) based on
multiple-cycled forwards to more fully exploit the poten-
tial of small model parameters. Further, in order to pre-
vent the additional inference compute-consuming brought
by MCT, we introduce a self-distillation scheme, extracting
the knowledge from the MCT module to a naive forward
model. Specifically, on the MSCOCO validation dataset,
SDPose-T obtains 69.7% mAP with 4.4M parameters and
1.8 GFLOPs. Furthermore, SDPose-S-V2 obtains 73.5%
mAP on the MSCOCO validation dataset with 6.2M pa-
rameters and 4.7 GFLOPs, achieving a new state-of-the-art
among predominant tiny neural network methods.

1. Introduction

Human Pose Estimation (HPE) aims to estimate the posi-
tion of each joint point of the human body in a given im-
age. HPE tasks support a wide range of downstream tasks
such as activity recognition[ ], motion capture[2], etc. Re-
cently with the ViT model being proven effective on many
visual tasks, many transformer-based methods[3-5] have
achieved excellent performance on HPE tasks. Compared
with past CNN-based methods[6], transformer-based mod-
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Figure 1. Comparsions between other small models and our meth-
ods on MSCOCO validation dataset. Compared to other methods,
our approach can significantly reduce the scale while maintaining
the same performance, or greatly improve performance under the
same scale.

els are much more powerful in capturing the relationship
between visual elements. However, most of them are large
and computationally expensive. The state-of-the-art(SOTA)
transformer-based model[5] has 632 million parameters and
requires 122.9 billion floating-point operations. Such a
large-scale model is difficult to deploy on edge computing
devices and cannot accommodate the growing development
of embodied intelligence. However, when the CNN or ViT
used as a backbone is not of sufficient scale, transformer-
based models are not able to learn the relationship between
keypoints and visual elements well resulting in poor per-
formance. Stacking more transformer layers is a viable
approach[4], but this also increases the scale of the network
resulting in larger parameters and the difficulty of edge de-
ployment.

To help small models learn better, one possible way is
to distill knowledge from big model to small model[7, &].
However, previous distillation methods have the following
drawbacks: (1) To align the vector space, an additional
manipulation is required during feature distillation[9] and
leads to a potential performance decrease. (2) A huge extra

1082



Transformer Layer #12

TokenPose
SDPose

5
L

Density

w
L

oA
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Parameter Value

Figure 2. Visualization of parameter distributions for transformer
layer # 12. The blue represents TokenPose-S-V1[3] and the green
represents SDPose-S-V1. There are fewer parameters close to 0
in our method, which proves that the parameters are more fully
learned.

training cost is required to train the powerful teacher net-
work.

In this paper, we introduce a cyclic forwarding scheme,
for which we further design a self-distillation method. This
framework, termed SDPose, mitigated the conflicts between
scale and performance for HPE. The key insight guiding our
designs is that for a deep HPE method, its performance can
improve proportionally to what we define as the model’s
latent depth. Latent depth is the transformer layers depth
involved in the complete inference process. Adding layers
to the model is the straightforward way to increase latent
depth, but it also incurs extra parameters. To increase the
latent depth without adding extra parameters, we design the
Multi-Cycled Transformer(MCT) module, which passes the
tokenized features through the transformer layers in multi-
ple cycles during inference and uses the last output as the
result. As shown in Fig. 2, compared to the transformer-
based models, the parameters of the MCT-based models
have higher variance and lower density near zero, which
proves that it has been better trained. In this way, utilizing
the MCT module can help small transformer-based models
to be considered as a transformer-based model with greater
latent depth, and break free from under-fitting to achieve a
better performance.

Nevertheless, the MCT module still adds extra compu-
tational effort. In order to avoid additional computational
consumption, we come up with a quite simple but effective
self-distillation paradigm. Specifically, during the training
phase, we send the tokenized features into the MCT mod-
ule, and because the input and output are in the same vector
space for each cycle in the MCT module, previous results
can be distilled from the latter outputs without any addi-
tional operations. At inference time, we perform one sin-

gle pass to maintain the original computation consumption.

With this design, we extract the knowledge of the MCT

module into a naive forward model in one training, resulting

in a better-trained model. Overall, our method achieved im-

proved performance while maintaining the computational

consumption.

We designed several SDPose models based on
TokenPose[3] and DistilPose[8]: SDPose-T, SDPose-
S-V1, SDPose-S-V2, SDPose-B and SDPose-Reg. As
evident in Fig. 1, our MCT-based models achieved
improved performance under the same compute consump-
tion as their base models. They also achieved similar
performance compared to other much larger models.

Our contribution can be summarized as follows:

e We are the first to find that looping the token through
the transformer layers can increase the latent depth of
the transformer layers without adding extra parameters.
Based on this finding, we design Multi-Cycled Trans-
former(MCT) module.

e We design a self-distillation paradigm SDPose that ex-
tracts the knowledge in the MCT module into one sin-
gle pass model, achieving a balance between performance
and resource consumption. To the best of our knowledge,
we are the first to explore how self-distillation can be ap-
plied to the transformer-based HPE task.

e We have conducted extensive experiments and analyses
to demonstrate the effectiveness and broad applicability
of our approach on multiple tasks.

2. Related Works
2.1. Human Pose Estimation

Deep learning based methods dominate the HPE tasks.
Deep learning based human pose estimators can be clas-
sified into regression-based and heatmap-based.

Regression-based methods directly estimate the coordi-
nates for each keypoint. Toshev et al. [10] first leveraged
a convolutional network to predict the image coordinates
of 2D human joints, followed by numerous innovations in
network architecture. Notably, transformer-based networks
such as Poseur [11] have achieved good prediction qual-
ity. Besides seeking better network architectures, works
like RLE [12] improved the regressor learning framework
by quantifying the uncertainty of the regressed coordinates.

Heatmap-based methods estimate a 2D image or 3D vol-
ume of likelihood and decode it into coordinates. Since the
seminal work by Tompson et al.[13], heatmap has become
the predominant output representation, as its dimensional-
ity better aligns with the input image space and thus reduces
the learning complexity for neural networks.

For both the output representations, transformer has
proven to be an effective module for feature extraction and
processing for human pose estimators. Yang et al. [4] uti-
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Figure 3. Overall architecture of SDPose used twice cycles. During training, The visual tokens and keypoint tokens will pass through
the transformer layers twice. The tokens and heatmaps obtained during the second time will serve as the teacher to distill the tokens and

heatmaps obtained during the first time.

lizes transformer encoder to further encode the feature map
produced by a convolutional neural network into keypoint
representations. Xu et al. [5], on the other hand, designs
a pure-transformer architecture for initial image feature ex-
traction as well as feature processing. Li et al. [3] designs
token representation of keypoint information and feeds the
learnable keypoint tokens as input to the transformer mod-
ules. While accurate, these transformer-based models tend
to be complex.

Several works have proposed more lightweight
transformer-based HPE models. Ye et al. [8] designed
DistilPose with a novel simulated heatmap loss to en-
able knowledge transfer from a heatmap-based teacher
network to a regression-based student network. While it
achieved SOTA performance, DistilPose requires training
a teacher network for the separate distillation process. In
comparison, Ma et al. proposed PPT [14] that finds and
discards the less attended image token in TokenPose to
reduce computational complexity. Although PPT reduced
computation without extra hassles, it comes with the cost
of performance drops compared to TokenPose. Previous
works failed to reduce computation complexity while
achieving SOTA results through an integral process, and
our work is to our knowledge the first success towards this
goal for HPE.

2.2. Knowledge Distillation

To reduce the cost of training and deploying deep learn-
ing models, several techniques have been proposed, among
which knowledge distillation is the most relevant to our
method.

Originally proposed by Hinton et.al [15] as a model com-
pression technique, knowledge distillation transfers knowl-
edge from a teacher model to a student model. Recent
works explored knowledge distillation within one model,
namely self-distillation. Be Your Own Teacher [16] dis-
till knowledge in deeper layers into shallower layers within
one model. Born-Again Neural Network [17] applies self-
distillation along the temporal dimension, distilling knowl-
edge from the model in previous iterations to supervise
model learning in the current iteration. Our work furthered
this line of work by making the first effort to apply self-
distillation on transformer-based HPE models.

3. Methods

In this section, we propose the Multi-Cycled trans-
former(MCT) module for our cyclic forwarding scheme.
Further, we propose a self-distillation human pose estima-
tion framework SDPose for our MCT module. During train-
ing, the model passes tokens through the MCT module for
several cycles, where the output from the previous cycle is
used as the input to the next cycle. Then, we use the out-
put of each cycle in the MCT module to distill the output
of the previous cycle, thus extracting the knowledge from
the complete inference of the MCT module into one single
pass. During inference, the model maintains its original in-
ference pipeline, without incurring additional computation
but achieving stronger performance. The overall framework
is shown in Fig. 3.

3.1. Multi-Cycled Transformer Module

To better improve small transformer-based models, we first
investigated how to go about increasing the latent depth
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Figure 4. Visualization of the attention maps between nose keypoint token and visual tokens in different layers of MCT module. The lower

one is from the first cycle, The top one is from the second cycle.

of small transformer-based models. We propose the MCT
module, which loops tokenized features multiple cycles
through the transformer layers and makes the performance
of the transformer network equivalent to that of a deeper
transformer network.

Specifically, we followed the scheme of TokenPose[3].
for an input image I, we extract feature F' from the back-
bone and then divide F' into a grid of patches. Then we
flatten them and use a linear projection function to form
them as visual tokens V7. And we use extra K learnable
tokens KT to represent K keypoints. Then we concatenated
keypoint tokens with visual tokens and sent them to trans-
former encoder layers. For a MCT module that of cycled
N times, we denote the output keypoint tokens and visual
tokens of each cycle as V1T'y, KT,..VT n, KTy, respec-
tively. For the ith cycle, we take VT';_1 and KT;_1 as
inputs and the outputs is VT'; and KT';. At last, we use
VTN and KT as the transformer layers’ output to make
the prediction. The MCT module we designed has higher
latent depth compared with transformer model which has
the same number of transformer layers, and allows the pa-
rameters to be learned more fully for better performance.
We further interpret this conclusion in Sec. 4.3.

3.2. Self-Distillation On MCT Module

The MCT module incurs additional computation, which we
want to avoid without sacrificing model performance.

A seemingly promising approach is to use the result of
the first cycle in the MCT directly, but this will drastically

reduce performance. As shown in Fig. 4, during the first cy-
cle through the transformer layers, the attention of the key-
point tokens is consistently focused on a smaller area and
gradually contracts to a single location. However, during
the second cycle through the transformer layers, the atten-
tion of the keypoint tokens expands to a larger area across
all layers. This demonstrates that each cycle carries rich in-
formation, and naively ignoring outputs from latter cycles
lead to information loss and thus performance degradation.

Inspired by works in self-distillation, we use the com-
plete inference in the MCT module as a teacher and extract
the knowledge of it into one single pass in the MCT module,
which we used as a student. Since the input and output to-
kens are in the same vector space in the transformer layers,
we can distill between output tokens from different cycles
with minimized information loss.

Specifically, for an MCT module cycled N times, we use
the output V'T'; and K'T'; to distill the the output V'I';_; and
KT, _; in the previous cycle. During training, with each
inference we distill all the cycles, thus gradually distilling
the knowledge to the first cycle.

Meanwhile, in order to constrain the correct-
ness of the tokens, we send all the output tokens
VI, KT,.VTny,KTyN through the same predic-
tion head to get predicted result Py, P,...Py respectively
and constrain the predictions with the ground-truth.
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Method Params(M) GFLOPs AP AP AP APM  APL AR

SimpleBaseline-Res50[ 18] 34.0 8.9 70.4 88.6 78.3 67.1 772 763
SimpleBaseline-Res101[18] | 53.0 12.4 71.4 803 793  68.1 78.1 771
SimpleBaseline-Res152[18] | 68.6 15.7 72.0 803 798 687 789 778
TokenPose-S-V1*[3] 6.61 2.4% 69.5% 877 771 657 766 749
TokenPose-S-V2*#[3] 6.2 4.7 71.8% 887 790 683 785 770
TokenPose-B*[3] 13.2 5.2 73.28 895 802  70.1 79.8  78.7
OKDHP-2HG[7] 13.0 25.5 72.8 915 795 699 771 756
OKDHP-4HG[7] 24.0 47.0 74.8 925 816 721 785 774
PPT-S*[14] 6.6 2.0 69.8 877 768  66.1 76.7 751
PPT-B*[14] 13.2 4.7 73.4 895 808 703 79.8 78.8
SDPose-T(Ours) 4.47(1 33.3%) | 1.8(] 25.0%) | 69.7t(1 0.2%) 881 773 661  76.6 752
SDPose-S-V1(Ours) 6.6 2.4 72.37(12.8%) 892 796 688 791 777
SDPose-S-V2(Ours) 6.2 4.7 73.51(11.7%) 89.5 804 701  80.3 78.7
SDPose-B(Ours) 13.2 5.2 73.78(1 0.5%) 89.6 804 703 80.5 79.1

Table 1. Results of heatmap-based methods on MSCOCO validation dataset. the input size is 256X 192. * means we re-train and evaluate
the models on mmpose[19]. T, I and § represents the data pair for comparison.

Methods \ Backbone \ Input Size \ Params(M) \ GFLOPs \ FPS \ AP

PRTR[20] ResNet-50 384x288 | 41.5 11.0 33.8 | 68.2
PRTR[20] ResNet-50 512x384 | 41.5 18.8 327 | 71.0
Poseur[11] MobileNetV2 | 256x192 | 11.4 0.5 12.1 | 71.9
Poseur[11] ResNet-50 256x192 | 33.3 4.6 12.0 | 754
RLE[12] ResNet-50 256x192 | 23.6 4.0 51.5 | 70.5
DistilPose-S[8] Stemnet 256x192 | 54 2.4 39.2 | 71.6
SDPose-Reg(Ours) | Stement 256x192 | 5.4 2.4 | 38.3 | 73.0

Table 2. Results of regression-based methods on MSCOCO validation dataset.

3.3. Loss Function

For the tokens of each cycle, we use the output tokens as
teachers to distill the input tokens, respectively. Specifi-
cally, our loss is designed as:

N-—1

Lyt = Z MSE (KT;,KT;1) 1)
=1
N—-1

Ly =Y MSE(VT;,VTi;1) )

i=1
where M SE refers to the Mean Squared Error Loss which
has been shown to be effective in measuring differences be-
tween tokens.
Meanwhile, in order to ensure that the results of both
cycle predictions are correct, we compute the loss of both
predicted heatmaps with the ground truth:

N
Lpose = »_ MSE (P;,GT) 3)
=1

where GT represents the ground truth.

In summary, The overall loss function of our self-
distillation framework is as follows:

L= Lpose + oy Ly + a2Lvt7 “4)

where a1, oo are hyper-parameters.

4. Experiments

We evaluated the proposed SDPose models and performed
abundant ablation studies on MSCOCO as well as Crowd-
pose dataset[21, 22]. For fairness, all our experiments are
conducted using MMPose[19] framework.

4.1. Implementation Details
4.1.1 Datasets

We conducted experiments on 2 datasets, the MSCOCO
dataset[21] and the Crowdpose dataset [22]. MSCOCO
contains over 200K human body images, with each human
body having 17 pre-annotated keypoints. We use MSCOCO
train2017 with 57K images to train our models and compare
methods. We evaluated them on both MSCOCO val2017
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Methods | Input Size | Params(M) | GFLOPs | AP AP® AP™ APM AP
heatmap based methods

TokenPose-S-V1*[3] | 256 x 192 | 6.6 24 68.6 89.9 76.1 65.1 74.5
TokenPose-S-V2*[3] | 256 x 192 | 6.6 4.7 71.1 904  78.7 67.7 77.1
PPT-S*#[14] 256 x 192 | 6.6 2.0 69.2  90.1 76.8 65.8 75.2
SDPose-T(Ours) 256 x 192 | 4.4 1.8 69.2 90.2  76.8 65.7 75.2
SDPose-S-V1(Ours) | 256 x 192 | 6.6 24 71.7 91.1 79.5 68.3 71.5
SDPose-S-V2(Ours) | 256 x 192 | 6.2 4.7 727 912 803 69.3 78.5
regression based methods

PRTR-Res101[20] 512 x 384 | 60.4 334 72.0 89.3 794 673 79.7
RLE-Res50%[12] 256 x 192 | 23.6 4.0 69.8 90.1 77.5 67.2 74.3
DistilPose-S*[8] 256 x 192 | 5.4 24 71.0 91.0 789 675 76.8
SDPose-Reg(Ours) | 256 x 192 | 5.4 24 721 912 795  68.6 78.0

Table 3. Result on MSCOCO test-dev dataset. * means we re-train and evaluate the models on MMPose[19].

Methods | AP | AR
TokenPose-S-V1[3] 55.7% 65.2
TokenPose-S-V2[3] 62.31 71.3

SDPose-S-V1(Ours)
SDPose-S-V2(Ours)

57.31 (1 1.6%) | 66.8
64.51 (1 2.2%) | 73.7

Table 4. Results of heatmap-based methods on Crowdpose test
dataset. T and I represents the data pair for comparison.

with 5K images and dev2017 with 20K images, individu-
ally. We also evaluated our methods in the more challeng-
ing crowded scene using Crowdpose. This dataset consists
of 20K human body images containing about 80K persons
with overlaps of body parts, with 14 pre-annotated key-
points per person.

The bounding box and evaluation metrics used for our
evaluations are consistent with previous works[3, 12, 22].

4.1.2 Settings And Training

We applied our method to TokenPose-S-V1, TokenPose-S-
V2, and TokenPose-B. We substitute the naive transformer
module with our MCT module and all other model configu-
rations remain consistent with those in TokenPose[3] paper.
We name the MCT-based models SDPose-S-V 1, SDPose-S-
V2, and SDPose-B. To demonstrate that our method can im-
prove the latent depth, we set up a smaller model SDPose-
T which changes TokenPose-S-V1 to six transformer lay-
ers and inference three cycles during training, using the
latter cycle to distill the former. Meanwhile, we also de-
signed a regression-based model SDPose-Reg, which uses
the regression-based head named TokenReg in Distilpose[8]
with an RLE loss[12], and used our method to train. For our
method, we train the models on a machine with 8 NVIDIA
Tesla V100 GPUs, allocating 64 samples per GPU. We use

the Adam optimizer for 300 epochs of training. The initial
learning rate was set to le-3 and decayed by a factor of ten
at epochs 200 and 260, respectively. For our loss function,
we set the hyper-parameters to a; = as = be — 6.

4.2. Main Results

Compared with heatmap-based methods. As Tab. 1
shown, our proposed SDPose achieves competitive per-
formance compared with the other small-scale models.
We mainly compare our methods with TokenPose[3],
OKDHP[7], and PPT[14]. Specifically, SDPose-S-V1
achieves 72.3% AP with 6.6M params and 2.4 GFLOPs,
Which under the same parameter and computational com-
plexity as TokenPose-S-V1, and makes a 2.8% AP im-
provement. Similarly, SDPose-S-V2 and SDPose-B achieve
1.7% and 0.5% AP improvement with the same param-
eter and GFLOPs as TokenPose-S-V2 and TokenPose-B,
respectively. Furthermore, SDPose-T slightly improves
performance(1 0.2%) with a significantly lower number of
parameters(] 33.3%) and GFLOPs(]. 25.0%) compared to
TokenPose-S-V1. Compared to other lightweight methods,
our approach achieved higher performance with fewer pa-
rameters in most cases. Specifically, SDPose-T reduces
more number of parameters and computation without de-
grading the performance compared to PPT-S. Also, Tab. 3
shows the results of our method and those of the other small
models on the MSCOCO test-dev set. We see that SDPose-
S-V2 achieved SOTA performance among the small mod-
els. In addition, our method can be applied to PPT to get
better performance. Detail results are presented in Sec. 4.5.
Compared with regression-based methods. As shown in
Tab. 2 and Tab. 3, our proposed SDPose achieves competi-
tive performance compared with the other regression mod-
els. Compared with PRTR[20], which is also a transformer-
based model, our method achieved a 1.5% AP improve-
ment with a significant reduction in the number of parame-
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Lyose E;itluaz(;? AP Improv.
55.4% -

v 702% 1 14.8%

v v 69.6% 1 14.2%

v v 71.7% 1 16.3%

v v 582% 1 2.8%

v | v vV | 723% 116.9%

Table 5. Ablation studies for different distillation types. All ab-
lation experiments are based on SDPose-S-V1, The combination
of all distillation loss brings the best performance, which is our
method. L,,se Means use the results predicted by each cycle to
calculate the loss or use only the last cycle. Improv. = Improve-
ment.

ters and GFLOPs. Compared with the smaller Poseur[11],
our method has a 0.6% AP improvement with a signifi-
cant FPS improvement(? 26.2). Compared with DistilPose-
S[8], 1.4% AP improvement was also obtained using our
method. Also, as Tab. 3 shown, SDPose-Reg makes a
1.1% AP improvement compared with DistilPose-S[8] on
the MSCOCO test-dev set.

Evaluation on Crowdpose dataset. To verify our model’s
generalizability and to challenge our models to a harder sce-
nario, we trained and evaluated our models on the Crowd-
pose dataset. As shown in Tab. 4, all of our MCT-based
models outperform their corresponding naive transformer-
based baselines.

4.3. Visualization

To explore the reasons for the performance improvement of
our method, we first visualized the attention map between
keypoint tokens and visual tokens in different transformer
layers of the MCT module. As shown in Fig. 4, each cycle
carries a lot of information with it. We also visualized the
attention maps between keypoint tokens in different trans-
former layers. As shown in Fig. 5, during the first cycle
through the transformer layers, similar to the ordinary base-
line method, the attention of the keypoint tokens gradually
concentrates on themselves. However, during the second
cycle through the transformer layers, the attention of the
keypoint tokens is redistributed to all other keypoint tokens,
which we think represented obtaining more global informa-
tion. Overall, this global information in the MCT module
enables better learning of the parameters.

Furthermore, we visualized the distribution of trans-
former parameters. As shown in Fig. 2, TokenPose[3] has
more near-zero parameters in each transformer layer, which
are commonly considered to be insufficiently trained pa-
rameters. Our approach has significantly fewer near-zero
parameters than TokenPose[3], indicating that our network

low layer# to high layer#

Figure 5. Visualization of the attention maps between nose key-
point token and visual tokens in different layers of MCT module.
(a) (c) refer to layers #1-#6, (b) (d) refer to layers #7-#12 and (a)
(b) refer to the first time, (c) (d) refer to the second time.
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Backbone Layers Cycle \ AP
Stemnet 12 1 69.5
Stemnet 12 2 73.3(1 3.8%)
Stemnet 12 3 72.4(1 2.9%)
Stemnet 4 2 69.4(] 0.1%)
Stemnet 4 3 70.8(1 1.3%)

Table 6. Ablation studies for different cycle networks without
distillation. Layers means the transformer layer number. Cycle
means the number of times that token through transformer layers.

Backbone Layers Cycle Distil. | AP
Stemnet 12 1 - 69.5
Stemnet 12 2 2—1 72.3(1 2.8%)
Stemnet 12 3 352,21 | 71.7(1 2.2%)

Table 7. Ablation studies for different distillation settings. Layers
means the transformer layer number. Cycle means the number of
times that token through transformer layers. Distil. = distillation
method, which means the type of distillation method. 2—1 means
distillation second times result to first times result.

is more adequately trained. This also demonstrates that the
more global information contained in the MCT module al-
lows for more adequate parameter learning.

4.4. Ablation Studies
4.4.1 Losses

In this section, we investigated the contribution of distilla-
tion losses from different parts to the performance of our
method. As shown in Tab. 5, we set different distillation

1088



losses in various experiments. When not using distillation
and directly predicting results from the tokens obtained in
the first cycle, the network only has the constraint from the
second cycle’s final output. In this case, the tokens output
from the first cycle are equivalent to intermediate results.
The direct use of its predictions loses the information em-
bedded in the later cycles, so the performance is poor. When
we use distillation loss, the model performance can be im-
proved, which proves that the keypoint tokens learn more
information through the MCT module and thus interact bet-
ter with the model parameters. As we gradually add distil-
lation losses, the performance of the first cycle prediction
gradually improves. When all three parts of the distillation
loss are added, the performance reaches its best.

4.4.2 Network Scale

In this section, We evaluated the effectiveness of our
method under different network configurations and sizes.
As shown in Tab. 6, We first investigated the effective-
ness of our network augment method. We set different
MCT module cycle numbers based on TokenPose-S-V1 and
trained without using self-distillation, predicting the output
from the last cycle. When we increase the number of cycles,
the performance is improved compared to using only a sin-
gle pass. This fully demonstrates that our augment method
enables the transformer layers to learn more information,
and effectively augment the original network to a deeper
transformer network. To demonstrate the importance of in-
troducing global information, we also designed a network
with fewer layers but using three cycles. It is equivalent
to going through 12 layers of transformer layers but gets
better performance than the baseline. Furthermore, we no-
ticed that the performance of the 12 transformer layers net-
work with three cycles is lower than that of the network
with two cycles. We believe that although multiple cycles
can help tokens pay attention to more global information,
too many cycles may cause the network to forget the more
critical local information of keypoints. As shown in Tab. 7,
We designed a distillation experiment with a three-cycled
MCT module. The test performance was lower than that
of the distillation experiment with a two-cycled MCT mod-
ule. This also proves that excessive augment of the network
structure to learn global knowledge is not entirely benefi-
cial.

4.5. Extensibility Study

In this section, we further investigate the extensibility of our
approach. As shown in Tab. 8, we show the performance of
our method when combined with PPT[14]. For training, we
pruned the tokens using PPT[14] in the first cycle of SD-
Pose. Ultimately, the performance maintained the level of
SDPose-S-V1 while reducing the computation to the same

Methods | Params(M) GFLOPs | AP
TokenPose-S-V1*[3] 6.6 2.4 69.5
PPT-S*[14] 6.6 2.0 69.8
SDPose-S-V1+PPT[14] 6.6 2.0 72.3

Table 8. Result of combined method on MSCOCO valida-
tion dataset. *means we re-train and evaluate the models on
mmpose[19].

Deit-Tiny[23] | AP
72.2
+2 Cycle 73.4
+ SDPose (Ours) | 72.7(1 0.5%)

Table 9. Results on Imagenet 1K dataset. Cycle means we apply
different cycle networks without distillation on the Deit-Tiny.

of PPT-S. This proves that our method works well in con-
junction with other lightweight methods.

We also migrated SDPose to the classification task. We
used Deit-Tiny[23] as our baseline. As shown in Tab. 9,
when we applied the MCT module on Deit-Tiny[23], the
performance of the network was significantly improved.
When we trained the baseline using our SDPose, the perfor-
mance of the network was also slightly improved without
additional parameters and computations. This demonstrates
the ability of our method to be extended to various tasks of
the transformer-based model.

5. Conclusion

In this work, we proposed a novel human pose estima-
tion framework, termed SDPose, which includes a Multi-
Cycled Transformer(MCT) module and a self-distillation
paradigm. Through our design, we have enabled the small
transformer-based model to be dramatically improved with-
out increasing the amount of computation and the number
of parameters, and achieved new state-of-the-art in the same
scale models. Meanwhile, we also extend our method to
other models, proving the generality of our method.

In short, SDPose achieved state-of-the-art performance
among the same scale models.
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