
SHAP-EDITOR: Instruction-guided Latent 3D Editing in Seconds

Minghao Chen Junyu Xie Iro Laina Andrea Vedaldi
Visual Geometry Group, University of Oxford
{minghao, jyx, iro, vedaldi}@robots.ox.ac.uk

silent-chen.github.io/Shap-Editor

“Add a Santa hat to it”

“Make it wear a blue sweater ”

“Make its color look like rainbow”

“Make it look like a panda”

～1 sec

Figure 1. Given 3D assets as inputs, SHAP-EDITOR achieves fast 3D editing in just one second by learning a feed-forward mapping in the
latent space of a 3D asset generator.

Abstract

We propose a novel feed-forward 3D editing framework
called SHAP-EDITOR. Prior research on editing 3D objects
primarily concentrated on editing individual objects by
leveraging off-the-shelf 2D image editing networks, utiliz-
ing a process called 3D distillation, which transfers knowl-
edge from the 2D network to the 3D asset. Distillation ne-
cessitates at least tens of minutes per asset to attain sat-
isfactory editing results, thus it is not very practical. In
contrast, we ask whether 3D editing can be carried out di-
rectly by a feed-forward network, eschewing test-time op-
timization. In particular, we hypothesise that this process
can be greatly simplified by first encoding 3D objects into a
suitable latent space. We validate this hypothesis by build-
ing upon the latent space of Shap-E. We demonstrate that
direct 3D editing in this space is possible and efficient by
learning a feed-forward editor network that only requires
approximately one second per edit. Our experiments show
that SHAP-EDITOR generalises well to both in-distribution
and out-of-distribution 3D assets with different prompts and
achieves superior performance compared to methods that
carry out test-time optimisation for each edited instance.

1. Introduction
We consider the problem of generating and editing 3D ob-
jects based on instructions expressed in natural language.

With the advent of denoising diffusion models [20, 56, 62,
64], text-based image generation [56] and editing [3, 18, 49]
have witnessed remarkable progress. Many authors have
since attempted to transfer such capabilities to 3D via test-
time optimisation, where a 3D model is optimised from
scratch until its rendered 2D appearance satisfies an under-
lying prior captured by a pre-trained 2D models [17, 24, 59].

While optimisation-based methods obtain encouraging
results, they are not scalable — in fact, a single 3D gener-
ation or edit can take from minutes to hours. It is thus nat-
ural to seek more efficient generators and editors that can
directly work in 3D. We hypothesise that this can be greatly
facilitated by first learning a suitable latent space for 3D
models. Such an approach is exemplified by Shape-E [23],
a conditional generative model that learns an auto-encoder
mapping 3D objects into vectors (latents). For generation,
these vectors can be sampled directly by a diffusion model,
eschewing test-time optimisation entirely.

In this paper, we explore the capability of a 3D latent
space to not only facilitate 3D generation but also enable ef-
ficient 3D editing. To this end, we propose SHAP-EDITOR,
a method that enables semantic, text-driven edits directly
in the latent space of 3D asset generators. Because of the
properties of the latent space, once learned, the editor func-
tion is capable of applying the edit to any new object in just
one second, in contrast to the several minutes or even hours
required by optimisation-based approaches.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

26456

In more detail, our method starts from a 3D auto-
encoder — e.g., the off-the-shelf Shape-E encoder. It also
takes as input a 2D image editor that can understand instruc-
tions in natural language. For any such instruction, SHAP-
EDITOR learns a function that can map, in a feed-forward
manner, the latent of any 3D object into the latent of the cor-
responding edit — we call this a latent editor. The fact that
the latent editor can be learned relatively easily is a strong
indication that the 3D latent space has a useful structure for
this type of operations. Empirically, we further explore and
demonstrate the partial linearity of such edits when they are
carried out in this space.

SHAP-EDITOR has several interesting practical proper-
ties. First, we learn a single latent editor that works uni-
versally for any input object. This function lifts the knowl-
edge contained in the 2D image editor to the 3D space via
distillation losses. In fact, we show that we can distill si-
multaneously several different 2D editors of complemen-
tary strengths. In our student-teacher framework, the com-
bined knowledge of the editors is then transferred to the la-
tent editor.

Second, we note that the latent editor is able to cap-
ture certain semantic concepts, and in particular complex
compositions of concepts, better than the original text-to-
3D generator. Moreover, it allows the application of several
edits sequentially, with cumulative effects.

Third, while our method learns an editor function for
each type of edit, at test time it can be applied to any num-
ber of objects very quickly, which could be used to modify
libraries of thousands of 3D assets (e.g., to apply a style to
them). In this sense, it can be seen as an amortised coun-
terpart to methods that use test-time optimisation. We also
demonstrate that, by conditioning the latent editor on text,
several different edits can be learned successfully by a sin-
gle model. This suggests that, given sufficient training re-
sources, it might be possible to learn an open-ended editor.

To summarise, our contributions are: (1) We show that
3D latent representations of objects designed for generation
can also support semantic editing; (2) We propose a method
that can distill the knowledge of one or more 2D image gen-
erators/editors in a single latent editor function which can
apply an edit in seconds, significantly reducing the compu-
tational costs associated with test-time optimisation; (3) We
show that this latent function does better at compositional
tasks than the original 3D generator; (4) We further show
that it is possible to extend the latent editor to understand
multiple editing instructions simultaneously.

2. Related Work
Diffusion-based image manipulation. Recent advances
in text-guided diffusion models have greatly improved 2D
image generation. Yet, these models typically offer lim-
ited control over the generated content. To enable control-

lable generation, researchers have explored concept person-
alisation [13, 31, 57], layout control [4, 6, 10, 37], and
other conditionings [86]. Other recent works [2, 18, 27,
42, 49, 52, 68] have extended text-guided diffusion models
to image-to-image translation tasks and image editing. In-
structPix2Pix (IP2P) [3] finetunes a diffusion model to ac-
cept image conditions and instructional prompts as inputs,
by training on a large-scale synthetic dataset. Subsequent
research [85, 87] has sought to further finetune Instruct-
Pix2Pix with manually annotated datasets.
Neural field manipulation. Several attempts have been
made to extend neural fields, such as NeRFs [46], with edit-
ing capabilities. EditNeRF [39] was the first approach to
edit the shape and color of a NeRF given user scribbles. Ap-
proaches that followed include 3D editing from just a single
edited view [1], or via 2D sketches [45], keypoints [88], at-
tributes [25], meshes [22, 53, 77, 79, 81] or point clouds [5].
Others focus on object removal with user-provided points
or masks [47, 66, 74], object repositioning [78], recolor-
ing [15, 30, 32] and style transfer [76, 84].
Text-to-3D generation. Given the success of diffusion-
based generation and vision-language models such as
CLIP [55], several methods have been proposed for gener-
ating 3D scenes using text prompts [21, 48]. A pioneering
work is DreamFusion [54], which proposes the Score Distil-
lation Sampling (SDS) loss. They use it to optimise a para-
metric model, such as NeRF, with the supervision of an off-
the-shelf 2D diffusion model. DreamFusion has since been
improved by follow-up work [7, 38, 43, 73], but these meth-
ods are generally not directly applicable to 3D editing tasks.
ATT3D [40] further reduces the inference time by amortis-
ing the distillation time to the training phase. Another direc-
tion is to train auto-encoders on explicit 3D representations,
such as point clouds [82] or voxel grids [58], or on implicit
functions, such as signed distance functions [11] or neural
radiance fields [29]. The generative models are typically
trained in the latent space [8, 50] and are conditioned on
text inputs. The most related work is Shap-E [23] which
trains on a very large-scale dataset (several millions). It en-
codes 3D assets into latents that are directly decoded to out-
put NeRF parameters, signed distance functions, or texture
fields [14, 61]. It also incorporates a diffusion model [20]
to facilitate conditional 3D asset generation.
Text-based 3D editing. Differently from text-to-3D gen-
eration, editing methods start from a given 3D object
or scene (usually represented by a NeRF [46] or voxel
grid [65]). Some authors leverage CLIP embeddings or
similar models [34, 35, 41] to perform text-driven se-
mantic editing/stylisation globally [33, 44, 70, 71] or lo-
cally [16, 28, 63, 72]. For instance, CLIP-NeRF [70]
learns a class-specific NeRF and latent spaces (e.g., for cars,
chairs) and encodes objects in latent space via optimisation.

Most recent and concurrent approaches leverage diffu-

26457

sion priors. Starting with Instruct-NeRF2NeRF [17], one
line of research employs pre-trained 2D models to edit im-
age renderings of the original model and uses these to grad-
ually update the underlying 3D representation [17, 69, 80].
Instead of editing images, others optimise the 3D repre-
sentation directly with different variants of score distilla-
tion sampling [9, 24, 36, 51, 59, 83, 89, 90]. They often
differ in their use of the diffusion prior; e.g., [17, 24] use
InstructPix2Pix [3], while most others rely on Stable Dif-
fusion [20]. Many existing methods edit scenes globally,
which may sometimes affect unintended regions. To ad-
dress this issue, approaches such as Vox-E [59] and Focal-
Dreamer [36], introduce mechanisms for local 3D editing.
We note, however, that, due to their inherent design, most
methods cannot handle global and local edits equally well.

In contrast, we show that we can train a single network
for both types of edits with a loss tailored to each edit type.
We also note that all these methods perform editing via test-
time optimisation, which does not allow interactive editing
in practice; [69, 80] focus on accelerating this process, but
they still use an optimisation-based approach. Instead, our
feed-forward network applies edits instantaneously.

3. Method
In order to generate or edit a 3D object, we must first choose
a suitable representation θ, specifying its shape and appear-
ance. Common choices for θ include textured meshes and
radiance fields, but these are often difficult to use directly in
semantic tasks such as text-driven 3D generation and edit-
ing. For images, analogous tasks are often simplified by
adopting a latent representation. In this paper, we thus ask
whether replacing θ with a corresponding latent code r can
result in similar benefits for 3D editing.

More formally, we consider the problem of constructing
an editor function f : (θs, y) 7→ θe which takes as input a
3D object θs (source) and produces as output a new version
of it θe (edit) according to natural-language instructions y.
For example, θs could be the 3D model of a corgi, y could
say “Give it a Christmas hat”, then θe would be the same
corgi but with the hat.

Learning the map f directly is challenging because inter-
preting natural language in an open-ended manner requires
large models trained on billions of data samples, which
are generally not available in 3D. Some authors have ap-
proached this problem by starting from existing 2D image
models, trained on billions of images. We can think of a 2D
editor as a conditional distribution p(xe |xs, y) of possible
edits xe given the source image xs. Then, one can obtain θe

by optimising the log-posterior Eπ [log p(R(θe, π) | xs, y)]
where R(θe, π) is the image obtained by rendering θe from
a random viewpoint π with a differentiable renderer R.
This, however, requires per-instance optimisation at test
time, so obtaining θe may take minutes to hours in practice.

Here, we thus study the problem of learning a much
faster feed-forward editor function f . To do so, we first
consider a pair of encoder-decoder functions h : θ 7→ r
and h∗ : r 7→ θ, mapping the 3D object θ to a correspond-
ing latent representation r. We then learn a latent editor
g : (rs, y) 7→ re which performs the edit directly in latent
space. Hence, we decompose the editor as f |y = h∗◦g|y◦h.
This can be advantageous if, by exploiting the compactness
and structure of the latent space, the latent editor g|y can be
fast, efficient, and easy to learn.

In the rest of the section, we review important back-
ground (Sec. 3.1), explain how we build and train the latent
editor (Sec. 3.2), and finally describe a combination of 2D
priors for global and local edits (Sec. 3.3).

3.1. Background

Shap-E: an off-the-shelf 3D latent space. Instead of
learning a latent space from scratch, we turn to a pre-trained
off-the-shelf model, Shap-E [23], which is a conditional
generative model of 3D assets that utilises a latent space.
It comprises an auto-encoder that maps 3D objects to latent
codes as well as a diffusion-based text/image-conditioned
generator that operates in said space. In our work, we
mainly use the encoder/decoder components, denoted as h
and h∗, respectively, mapping the 3D object from/to a latent
vector r ∈ R1024×1024. In an application, the source latent
rs can be either obtained using h starting from a mesh, or
can be sampled from a textual description using the Shape-
E generator. For more details, please refer to the supp. mat.
Score Distillation Sampling (SDS). SDS [54] is a loss
useful for distilling diffusion probabilistic models (DPMs).
Recall that a DPM models a data distribution p(x) by learn-
ing a denoising function ϵ ≈ ϵ̂(xt; y, t), where xt = αtx+
σtϵ is a noised version of the data sample x. Here (αt, σt)
define the noise schedule, ϵ ∼ N (0, I) is normally dis-
tributed, and t = 0, 1, . . . , T are noising steps. The SDS en-
ergy function is given by LSDS(x) = Et,ϵ [−σt log p(xt)],
where p(xt) is the noised version of the data distribution
p(x) and the noise level is sampled according to a distri-
bution w(t). The reason for choosing this distribution is
that the denoising function is also an estimator of the gra-
dient of the log-posterior log p(xt; y, t), in the sense that
ϵ̂(xt; y, t) = −σt∇x log p(xt; y, t). Hence, one obtains the
(variance controlled) gradient estimator

∇xLSDS(x) = Et,ϵ

[
ϵ̂ (xt; y, t)− ϵ

]
(1)

For 3D distillation, x = R(θ, π), so the chain rule is used
to compute the gradient w.r.t. θ and the loss is also averaged
w.r.t. random viewpoints π.

3.2. 3D Editing in Latent Space

We now consider the problem of learning the latent editor
g (i.e., our SHAP-EDITOR), using the method summarised

26458

SDS
Loss

3D Object

3D
Encoder

Source NeRF

3D
Decoder

Render

Render

Source
Latent

SHAP-
EDITOR

Edited NeRF

3D
Decoder

Edited
Latent

Edited 2D view

Source 2D view Training only

“Add�a�party�hat�
to�it”

“Add�a�party�hat�
to�the�corgi”

“A�corgi�wearing�
a�party�hat”

for T2I SDS

for TI2I SDS

Figure 2. Latent 3D editing with SHAP-EDITOR. During training, we use the Shap-E encoder to map a 3D object into a latent space.
The source latent and a natural language instruction are then fed into an editing network that produces an edited latent. The edited latent
and original latent are decoded into NeRFs and we render a pair of views (RGB images and depth maps) with the same viewpoint for
the two different NeRFs. The paired views are used for distilling knowledge from pre-trained 2D generators (T2I) and editors (TI2I) into
SHAP-EDITOR. During inference, one only needs to pass the latent code to SHAP-EDITOR, resulting in fast, feed-forward editing.

in Fig. 2 and Algorithm 1. Learning such a function would
require suitable triplets (θs, θe, y) consisting of source and
target 3D objects and the instructions y, but there is no such
dataset available. Like prior works that use test-time opti-
misation, we start instead from an existing 2D editor imple-
menting the posterior distribution p(xe |xs, y), but we only
use it for supervising g at training time, not at test time. An
additional benefit is that this approach can fuse the knowl-
edge contained in different 2D priors into a single model,
which, as we show later, may be better suited for different
kinds of edits (e.g., local vs global).
Training the latent editor. Training starts from a dataset
Θ of source 3D objects θs which are then converted in cor-
responding latent codes rs = h(θs) by utilising the encoder
function h or sampling the text-to-3D generator p(rs | ys)
given source descriptions ys.

The latent editor re = g(rs, y) is tasked with mapping
the source latent rs to an edited latent re based on the in-
structions y. We supervise this function with a 2D editor
(or mixture of editors) providing the conditional distribu-
tion p(xe |xs, y) using the SDS loss, which in the case can
be written as:

LSDS-E(x
e |xs, y) = Et,ϵ [−σt log p(x

e
t | xs, y)] , (2)

where xe
t = αtx

e + σtϵ, and xs = R(h∗(rs), π) and
xe = R(h∗(re), π) are renders of the object latents rs

and re, respectively, from a randomly-sampled viewpoint
π. Importantly, the rendering functions are differentiable.

We choose this loss because its gradient can be computed
directly from any DPM implementation of the 2D editor
(Sec. 3.1). At every learning iteration, a new source latent
rs is considered, the edited image xe = R(g(rs, y), π) is
obtained, and the gradient ∇xeLSDS-E(x

e | xs, y) is back-
propagated to g to update it.

Algorithm 1 SHAP-EDITOR training
Input: Θ: training 3D objects
g: latent editor initialization (h, h∗): auto-encoder,
L: distillation loss Y: instruction set
Output: g: optimized editor
while not converged do

rs ← h(θs), θs ∈ Θ
re ← g(rs, y), y ∈ Y
▷ Render objects to RGB and depth
π ← random viewpoint
(xs,ds)←R(h∗(rs), π)
(xe,de)←R(h∗(re), π)
Update g using the gradient ∆gL(xs,xe,ds,de)

end while

In practice, we utilise a loss that combines gradients
from one or more 2D image editors, thus combining their
strengths. Likewise, we can incorporate in this loss addi-
tional regularisations to improve the quality of the solution.
Here we consider regularising the depth of the edited shape
and appearance of the rendered image. We discuss these in
detail in Sec. 3.3.
The choice of g. Rather than learning the editing function
g from scratch, we initialise g from Shap-E using the same
architecture and pre-trained weights. In particular, we note
that Shape-E provides a transformer-based denoising neural
network that maps a noised code rsτ = ατr

s + στϵ to an
estimate rs ≈ r̂SE(r

s
τ ; y, τ) of the original latent. We thus

set g(re | rs, y) = r̂SE(r, τ, y), as an initialisation, where
r = Concat(ατr

s + στϵ, r
s) is obtained by stacking the

noised input rsτ for a fixed noise level with the original la-
tent rs, since Shap-E originally expects a noisy input. We
note that the learned distribution in the original Shap-E is
very different from the desired editing distribution.

26459

3.3. 2D Editors

We consider two types of edits: (i) global edits (e.g., “Make
it look like a statue”), which change the style of the ob-
ject but preserve its overall structure, and (ii) local edits
(e.g., “Add a party hat to it”), which change the structure
of the object locally, but preserve the rest. To achieve these,
we learn our latent editor from a combination of comple-
mentary 2D editors and regularisation losses. For both edit
types, we adopt a text-guided image-to-image (TI2I) editor
for distillation and consider further edit-specific priors.

3.3.1 Global Editing

TI2I loss. To distill a pre-trained TI2I editor (e.g., In-
structPix2Pix [3]) into g, we obtain the SDS gradient
∇xe

LSDS-TI2I(x
e | xs, y), where LSDS-TI2I follows Eq. (2),

from the TI2I denoising network ϵ̂TI2I(x
e
t ;x

s, y, t). Note
that ϵ̂TI2I is conditioned on the source image xs and the
editing instruction y. We also use classifier-free guidance
(CFG) [19] to enhance the signal of this network for distil-
lation purposes. Please refer to the supp. mat. for details.
Depth regularisation for global editing. Global edits are
expected to change the style or appearance of an object, but
to retain its overall shape. We further encourage this be-
haviour via an additional depth regularisation loss:

Lreg-global(d
e,ds) = Eπ

[
∥de − ds∥2

]
, (3)

where de and ds are the rendered depth maps from a view-
point π for the edited and source objects, respectively.
Overall loss. We train SHAP-EDITOR for global edits
using Lglobal, (x

s,xe,ds,de), a weighted combination of
LSDS-TI2I and Lreg-global.

3.3.2 Local Editing

For local edits, we use LSDS-TI2I as before, but also consider
additional inductive priors, as follows.
T2I loss. Current 2D editors such as InstructPix2Pix of-
ten struggle to edit images locally, sometimes failing to
apply the edit altogether. To encourage semantic adher-
ence to the edit instruction, we further exploit the seman-
tic priors in text-to-image (T2I) models, obtaining the SDS
gradient ∇xeLT2I(x

e | ye) from the denoising network
ϵ̂T2I(x

e
t ; y

e, t). Here, the text prompt ye contains a full de-
scription of the edited object (e.g., “A corgi wearing a party
hat”), instead of an instruction based on a reference image.
We use CFG for this gradient as well.
Masked regularisation for local editing. To further en-
hance the locality of the edits, we adopt a local regularisa-
tion loss inspired by the cross-attention guidance proposed
for controllable generation [6, 10]. Specifically, we extract
the cross-attention maps from the pre-trained TI2I model

during the SDS loss calculation. For instance, given a lo-
cal editing instruction “Add a party hat to the corgi”, we
compute the cross-attention maps between the image fea-
tures and the specific text embedding for the word “hat”.
These maps are then processed to yield a mask m, which
represents an estimation of the editing region.

We can then use the complement of the mask to encour-
age the appearance of the source and edited objects to stay
constant outside of the edited region:

Lreg-local(x
s,xe,ds,de,m) = Eπ

[
(1−m)

⊙
(
λphoto∥xe − xs∥2+λdepth∥de − ds∥2

)]
, (4)

where λphoto and λdepth denote corresponding weight factors
for the photometric loss ∥xe −xs∥2 and the depth map dif-
ferences ∥de − ds∥2 between source and edited views.
Overall loss. We train SHAP-EDITOR for local edits us-
ing Llocal(x

s,xe,ds,de,m), a weighted combination of
LSDS-TI2I, LSDS-T2I, and Lreg-local.

4. Experiments
In this section, we provide details of our implementation
and the evaluation dataset, compare different variants of
our approach to state-of-the-art instruction-based 3D edit-
ing methods, and study the effect of the various losses in
our approach via ablation.

4.1. Dataset and implementation details

Dataset. We construct our 3D object dataset from two
sources: (i) scanned 3D objects from OmniObject3D [75],
and (ii) 3D objects generated by Shap-E for specific ob-
ject categories. To ensure the high quality of synthetic 3D
objects, we apply additional filtering based on their CLIP
scores. The resultant training dataset encompasses approx-
imately 30 classes, each containing up to 10 instances. For
evaluation, we set up 20 instance-instruction pairs. These
pairs are composed of 5 editing instructions (3 for global
editing and 2 for local editing) and 15 high-quality 3D ob-
jects which are not included in the training set.
Evaluation metrics. Following common practice [36,
59], we assess edits by measuring the alignment between
the generated results and the editing instructions using CLIP
similarity (CLIPsim) and CLIP directional similarity [12]
(CLIPdir). CLIPsim is the cosine similarity between the
edited output and the target text prompts. CLIPdir first
calculates the editing directions (i.e., {target vectors minus
source vectors}) for both rendered images and text descrip-
tions, followed by the evaluation of the cosine similarity
between these two directions. Additionally, to assess struc-
tural consistency in global editing, we utilise the Structure
Distance proposed by [67]. This is the cosine similarity be-
tween the self-attention maps generated by two images.

26460

Model Per-instance
optimization

Local editing Global editing
Inference time ↓

CLIPsim ↑ CLIPdir ↑ CLIPsim ↑ CLIPdir ↑ Structure Dist. ↓

Text2Mesh [44] ✓ 0.239 0.058 0.248 0.057 0.073 ∼ 14 min
Instruct-NeRF2NeRF [17] ✓ 0.253 0.051 0.239 0.057 0.095 ∼ 36 min
Vox-E [59] ✓ 0.277 0.075 0.271 0.066 0.026 ∼ 40 min (+ 13 min)

Ours (Test-time Opt.) ✓ 0.290 0.087 0.268 0.072 0.013 ∼ 19 min
Ours (Single-prompt) ✗ 0.292 0.097 0.272 0.070 0.008 ∼ 1 sec
Ours (Multi-prompt) ✗ 0.279 0.085 0.255 0.062 0.009 ∼ 1 sec

Table 1. Quantitative comparison of our SHAP-EDITOR with other per-instance editing methods. The measured inference time
excludes both the rendering process and the encoding of 3D representations. The time inside the bracket indicates the extra time required
by Vox-E for its refinement step in local editing. Our method achieves superior results within one second on the evaluation dataset.

Vox-EIN2NText2Mesh
Ours

(Single-prompt)Source

“Add a Santa
hat to it ”

“Make its color
look like rainbow”

“Make it look like
made of gold”

Ours
(Test-time Opt.)

Ours
(Multi-prompt)

Figure 3. Qualitative comparison with text-guided 3D editing methods. Both the single-prompt and multi-prompt versions of our
method achieve superior local and global editing results. Our method can preserve the identity of the original assets, such as the appearance
and shape of the “penguin”, the fine geometric details of the “vase”, and the structure of the “chair”.

Implementation details. We train SHAP-EDITOR with a
fixed noise level (στ = 0.308). We use IP2P [3] as ϵ̂TI2I for
global editing. For local editing, we employ Stable Diffu-
sion v1-5 [56] for ϵ̂T2I and MagicBrush [85] (a fine-tuned
version of IP2P) for ϵ̂TI2I. All 3D objects used for evalua-
tion, including those in quantitative and qualitative results,
are “unseen”, i.e., not used to train the editor. This differs
from previous methods that perform test-time optimisation.
Further details are provided in the supp. mat.

4.2. Comparison to the state of the art

We compare our method to other text-driven 3D editors
such as Instruct-NeRF2NeRF (IN2N) [17], Vox-E [60], and
Text2Mesh [44]. Specifically, IN2N iteratively edits images
rendered from a NeRF with a TI2I editor (IP2P) and uses
the edited images to gradually update the NeRF. Vox-E op-
timises a grid-based representation [26] by distilling knowl-
edge from a T2I model (Stable Diffusion) with volumetric
regularisation; a refinement stage is added for localised ed-
its. Text2Mesh optimises meshes with CLIP similarity be-
tween the mesh and the target prompt. Since different meth-
ods receive different input formats (NeRF, mesh, and voxel
grid), we provide many (200) rendered images at 512 × 512
resolution for initialising their 3D representations.

We consider two variants of SHAP-EDITOR: (i) Ours
(Single-prompt): SHAP-EDITOR trained with a single
prompt at a time and multiple classes (this is the default
setting in our experiments), and (ii) Ours (Multi-prompt):
SHAP-EDITOR trained with multiple prompts and multiple
classes. Finally, we also consider a test-time optimisation
baseline (Ours (Test-time Optimisation)), where, instead
of learning an editor function, the Shape-E latent is opti-
mised directly to minimise the same set of losses.

Quantitative comparison. Table 1 compares methods
quantitatively. Both the single-prompt and multi-prompt
variants of our approach are superior to optimisation-based
3D editing methods, despite addressing a harder problem,
i.e., the test 3D assets are not seen during training. The in-
ference of SHAP-EDITOR is near-instantaneous (within one
second) since editing requires only a single forward pass.

Qualitative comparison. Figure 3 compares methods
qualitatively. All prior works struggle with global edits.
Text2Mesh results in noisy outputs and undesired structural
changes. IN2N is able to preserve the shape and identity of
the original objects but fails to converge for some prompts,
such as “Make its color look like rainbow”. The reason is
that edited images produced by IP2P under this prompt have
almost no consistency and, as a result, they cannot be inte-

26461

Seen categories Unseen categories

“Make it look
like a statue”

“Make it look
like a tiger”

“Make it wear
a blue sweater”

“Add a party
hat to it”

Figure 4. Generalisation to unseen categories. “Seen categories” refer to object classes included in the training dataset; the specific
instances shown were not used for training. “Unseen categories” represent the object classes that were never encountered during training.

grated coherently into 3D. On the other hand, Vox-E suc-
cessfully changes the appearance of the objects, but due to
distillation from a T2I model rather than a TI2I model, it
fails to preserve the geometry of the objects.

When local edits are desired, such as “Add a Santa hat
to it” (Figure 3, bottom row), Text2Mesh and IN2N do not
produce meaningful changes. Text2Mesh mainly changes
the texture, and IN2N ignores the instruction entirely. This
can be attributed to the inability of their underlying 2D mod-
els to add or remove objects. Vox-E adds the hat to the
penguin, but other regions (e.g., nose) also change uninten-
tionally, despite their spatial refinement stage.

The combination of training objectives in our approach
leverages the complementary aspects of different 2D dif-
fusion priors, overcoming these problems even while us-
ing feed-forward prediction. Furthermore, the learned ed-
itor also improves over test-time optimisation results with
the same prompt and optimisation objectives. We hypoth-
esise that this is because learning an editor can regularise
the editing process too. Finally, while a single-prompt ed-
itor achieves the best results, we show that it is possible to
train an editor with multiple prompts (last column) without
significantly compromising fidelity or structure.

Figure 4 provides additional results for various instruc-
tions, each associated with a single-prompt editor. Our
trained editors are capable of performing consistent edits
across diverse objects, and, importantly, generalise to un-
seen categories not included in the training dataset.

4.3. Ablation study

Quantitative analysis. Table 2a presents the quantitative
results for global editing, where the omission of depth regu-

Model CLIPsim ↑ CLIPdir ↑ Structure Dist. ↓

Ours w/o Lreg-global 0.218 0.058 0.138

Ours 0.272 0.070 0.008

(a) Ablation study for global editing.

Model CLIPsim ↑ CLIPdir ↑

Ours w/o cross-attn masks 0.261 0.064
Ours w/o Lreg-local 0.282 0.092
Ours w/o LSDS-T2I 0.263 0.067
Ours w/o LSDS-TI2I 0.278 0.096

Ours 0.292 0.097

(b) Ablation study for local editing.

Table 2. Quantitative ablation study on loss components.

larisation leads to a noticeable degradation in performance,
reflected by high Structure Dist. Likewise, the removal of
loss components for local editing impairs the model to vary-
ing extents (Table 2b), which we analyse next.

Qualitative analysis. In Figure 5, we illustrate the ef-
fect of the different model components. For global edit-
ing, eliminating the depth regularisation term (i.e., Ours w/o
Lreg-global) can lead to significant alterations of the source
shape. For local editing, we observe the following: (i) the
cross-attn masks specify the editable region where regu-
larisation is not applied. If such a region is not defined,
the depth and photometric regularisers would be applied to
the whole object, thereby forbidding the formation of lo-
cal shapes (in this case, the Santa hat); (ii) the regular-
isation loss (Lreg-local) helps the model to maintain the ob-
ject’s identity (both appearance and shape); (iii) the T2I loss
(LSDS-T2I) significantly improves the quality of local edit-
ing. When omitted (i.e., Ours w/o LSDS-T2I), only the TI2I

26462

Ours
w/o reg-glo

“Make it look
like a tiger”

“Add a
Santa hat

to it”

Ours Source Ours
w/o reg-glob

Ours w/o
cross-attn Source

“Make its color
look like rainbow”

Ours Ours
w/o g-gl

Ours
w/o g-gl

Figure 5. Qualitative ablation results, where the left and right parts correspond to global and local editing, respectively.

Effect Strength

“Make it look like made of steel ”

“Make it wooden”

Network Output

“Make it look like made of gold ” “Add a Santa hat to it”

“A golden deer wearing a Santa hat”“A golden deer”“A deer”

“A deer”

Figure 6. Top: the strength of the editing effects can be controlled
via linear interpolation and extrapolation in latent space. Bottom:
the examples in the first row are directly generated by Shap-E and
the second row is generated by progressively adding multiple ef-
fects to the unseen category “deer”.

prior is used, which struggles with localised edits (same is-
sues that [17, 24] exhibit); (iv) the TI2I loss (LSDS-TI2I) uses
source images as references, which greatly helps with un-
derstanding the layout of edits. Thus, Ours w/o LSDS-TI2I
leads to spatial inaccuracy in editing (same as [59]).

4.4. Discussion

In Figure 6 (top), we observe that the latent space of Shap-
E is partially linear. After training the editor to produce the
desired effects, we can further control the strength of the
effects. This could be done by scaling the residual between
the updated latent and source latent by a factor η. The edi-
tor’s output corresponds to η = 1. Increasing (decreasing)
η weakens (strengthens) the effects. In Figure 6 (bottom),
we show that edits can be accumulated progressively until
the desired effect is achieved. Furthermore, as noted in [23]

Figure 7. Unified editing vector. The editing effects can be trans-
ferred via simple vector arithmetic operations in latent space.

and shown in the figure, Shap-E (the first row of the bottom
part) itself fails at compositional object generation, but our
approach can largely remedy that by decomposing complex
prompts into a series of edits. Finally, in Figure 7, we also
show that some of the edits, once expressed in latent space,
are quite linear. By this, we mean that we can find a single
vector for effects like “Make its color look like rainbow”
or “Turn it into pink” that can be used to edit any object by
mere addition regardless of the input latent. This is a strong
indication that the latent space is well structured and useful
for semantic tasks like editing. For general remarks on the
research ethics, please see the supp. mat.
Limitations. Our work is based on the latent space of
Shap-E and pre-trained 2D editors, which pose an upper
bound on quality and performance. Further, while we show
that we can learn a latent editor that understands multiple in-
structions, we could not yet achieve a fully open-ended edi-
tor. We conjecture that this might require training at a much
larger scale than we can afford (i.e., hundreds of GPUs).

5. Conclusion
We have introduced SHAP-EDITOR, a 3D editor that oper-
ates in latent space. It eschews costly test-time optimisa-
tion and runs in a feed-forward fashion within one second
for any object. SHAP-EDITOR is trained from multiple 2D
diffusion priors and thus combines their strengths, achiev-
ing compelling results for both global and local edits, even
when compared to slower optimisation-based 3D editors.
Acknowledgements. This research is supported by
ERC-CoG UNION 101001212 and EPSRC VisualAI
EP/T028572/1.

26463

References
[1] Chong Bao, Yinda Zhang, Bangbang Yang, Tianxing Fan,

Zesong Yang, Hujun Bao, Guofeng Zhang, and Zhaopeng
Cui. Sine: Semantic-driven image-based nerf editing with
prior-guided editing field. In CVPR, pages 20919–20929,
2023. 2

[2] Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kas-
ten, and Tali Dekel. Text2live: Text-driven layered image
and video editing. In ECCV, 2022. 2

[3] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-
structpix2pix: Learning to follow image editing instructions.
In CVPR, pages 18392–18402, 2023. 1, 2, 3, 5, 6

[4] Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and
Daniel Cohen-Or. Attend-and-excite: Attention-based se-
mantic guidance for text-to-image diffusion models. In SIG-
GRAPH, 2023. 2

[5] Jun-Kun Chen, Jipeng Lyu, and Yu-Xiong Wang. Neuraled-
itor: Editing neural radiance fields via manipulating point
clouds. In CVPR, pages 12439–12448, 2023. 2

[6] Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-
free layout control with cross-attention guidance. In WACV,
2023. 2, 5

[7] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia.
Fantasia3d: Disentangling geometry and appearance for
high-quality text-to-3d content creation. arXiv preprint
arXiv:2303.13873, 2023. 2

[8] Yinbo Chen and Xiaolong Wang. Transformers as meta-
learners for implicit neural representations. In ECCV, pages
170–187. Springer, 2022. 2

[9] Xinhua Cheng, Tianyu Yang, Jianan Wang, Yu Li, Lei
Zhang, Jian Zhang, and Li Yuan. Progressive3d: Progres-
sively local editing for text-to-3d content creation with com-
plex semantic prompts. arXiv preprint arXiv:2310.11784,
2023. 3

[10] Dave Epstein, Allan Jabri, Ben Poole, Alexei A. Efros, and
Aleksander Holynski. Diffusion self-guidance for control-
lable image generation. In NeurIPS, 2023. 2, 5

[11] Rao Fu, Xiao Zhan, Yiwen Chen, Daniel Ritchie, and Srinath
Sridhar. Shapecrafter: A recursive text-conditioned 3d shape
generation model. NeurIPS, 35:8882–8895, 2022. 2

[12] Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, and
Daniel Cohen-Or. Stylegan-nada: Clip-guided domain adap-
tation of image generators. In SIGGRAPH, 2021. 5

[13] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik,
Amit H. Bermano, Gal Chechik, and Daniel Cohen-Or. An
image is worth one word: Personalizing text-to-image gen-
eration using textual inversion. In ICLR, 2023. 2

[14] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. NeurIPS, 35:31841–
31854, 2022. 2

[15] Bingchen Gong, Yuehao Wang, Xiaoguang Han, and Qi
Dou. Recolornerf: Layer decomposed radiance field
for efficient color editing of 3d scenes. arXiv preprint
arXiv:2301.07958, 2023. 2

[16] Ori Gordon, Omri Avrahami, and Dani Lischinski. Blended-
nerf: Zero-shot object generation and blending in existing
neural radiance fields. ICCV, 2023. 2

[17] Ayaan Haque, Matthew Tancik, Alexei Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Edit-
ing 3d scenes with instructions. In ICCV, 2023. 1, 3, 6, 8

[18] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-or. Prompt-to-prompt image
editing with cross-attention control. In ICLR, 2023. 1, 2

[19] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS, 2021. 5

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. NeurIPS, 33:6840–6851, 2020. 1,
2, 3

[21] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object gen-
eration with dream fields. In CVPR, pages 867–876, 2022.
2

[22] Clément Jambon, Bernhard Kerbl, Georgios Kopanas,
Stavros Diolatzis, George Drettakis, and Thomas
Leimkühler. Nerfshop: Interactive editing of neural
radiance fields. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 6(1), 2023. 2

[23] Heewoo Jun and Alex Nichol. Shap-e: Generat-
ing conditional 3d implicit functions. arXiv preprint
arXiv:2305.02463, 2023. 1, 2, 3, 8

[24] Hiromichi Kamata, Yuiko Sakuma, Akio Hayakawa, Masato
Ishii, and Takuya Narihira. Instruct 3d-to-3d: Text in-
struction guided 3d-to-3d conversion. arXiv preprint
arXiv:2303.15780, 2023. 1, 3, 8

[25] Kacper Kania, Kwang Moo Yi, Marek Kowalski, Tomasz
Trzciński, and Andrea Tagliasacchi. Conerf: Controllable
neural radiance fields. In CVPR, pages 18623–18632, 2022.
2

[26] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy
Mitra. Relu fields: The little non-linearity that could. In
ACM SIGGRAPH 2022 Conference Proceedings, pages 1–9,
2022. 6

[27] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen
Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models. In
CVPR, 2023. 2

[28] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field dis-
tillation. NeurIPS, 35:23311–23330, 2022. 2

[29] Adam R Kosiorek, Heiko Strathmann, Daniel Zo-
ran, Pol Moreno, Rosalia Schneider, Sona Mokrá, and
Danilo Jimenez Rezende. Nerf-vae: A geometry aware 3d
scene generative model. In ICML, pages 5742–5752. PMLR,
2021. 2

[30] Zhengfei Kuang, Fujun Luan, Sai Bi, Zhixin Shu, Gordon
Wetzstein, and Kalyan Sunkavalli. Palettenerf: Palette-based
appearance editing of neural radiance fields. In CVPR, pages
20691–20700, 2023. 2

[31] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli
Shechtman, and Jun-Yan Zhu. Multi-concept customization
of text-to-image diffusion. In CVPR, 2023. 2

26464

[32] Jae-Hyeok Lee and Dae-Shik Kim. Ice-nerf: Interactive
color editing of nerfs via decomposition-aware weight op-
timization. In ICCV, pages 3491–3501, 2023. 2

[33] Jiabao Lei, Yabin Zhang, Kui Jia, et al. Tango: Text-driven
photorealistic and robust 3d stylization via lighting decom-
position. NeurIPS, 35:30923–30936, 2022. 2

[34] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen
Koltun, and Rene Ranftl. Language-driven semantic seg-
mentation. In ICLR, 2022. 2

[35] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jian-
wei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu
Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded
language-image pre-training. In CVPR, pages 10965–10975,
2022. 2

[36] Yuhan Li, Yishun Dou, Yue Shi, Yu Lei, Xuanhong Chen, Yi
Zhang, Peng Zhou, and Bingbing Ni. Focaldreamer: Text-
driven 3d editing via focal-fusion assembly. arXiv preprint
arXiv:2308.10608, 2023. 3, 5

[37] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jian-
wei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee.
Gligen: Open-set grounded text-to-image generation. In
CVPR, 2023. 2

[38] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler,
Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution
text-to-3d content creation. In CVPR, pages 300–309, 2023.
2

[39] Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard
Zhang, Jun-Yan Zhu, and Bryan Russell. Editing conditional
radiance fields. In ICCV, pages 5773–5783, 2021. 2

[40] Jonathan Lorraine, Kevin Xie, Xiaohui Zeng, Chen-Hsuan
Lin, Towaki Takikawa, Nicholas Sharp, Tsung-Yi Lin, Ming-
Yu Liu, Sanja Fidler, and James Lucas. ATT3D: amortized
text-to-3D object synthesis. In ICCV, 2023. 2

[41] Timo Lüddecke and Alexander Ecker. Image segmentation
using text and image prompts. In CVPR, pages 7086–7096,
2022. 2

[42] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-
jun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided
image synthesis and editing with stochastic differential equa-
tions. In ICLR, 2022. 2

[43] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and
Daniel Cohen-Or. Latent-nerf for shape-guided generation of
3d shapes and textures. In CVPR, pages 12663–12673, 2023.
2

[44] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and
Rana Hanocka. Text2mesh: Text-driven neural stylization
for meshes. In CVPR, pages 13492–13502, 2022. 2, 6

[45] Aryan Mikaeili, Or Perel, Mehdi Safaee, Daniel Cohen-Or,
and Ali Mahdavi-Amiri. Sked: Sketch-guided text-based 3d
editing. In ICCV, pages 14607–14619, 2023. 2

[46] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
2

[47] Ashkan Mirzaei, Tristan Aumentado-Armstrong, Konstanti-
nos G Derpanis, Jonathan Kelly, Marcus A Brubaker, Igor
Gilitschenski, and Alex Levinshtein. Spin-nerf: Multiview
segmentation and perceptual inpainting with neural radiance
fields. In CVPR, pages 20669–20679, 2023. 2

[48] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky,
and Tiberiu Popa. Clip-mesh: Generating textured meshes
from text using pretrained image-text models. In SIGGRAPH
Asia 2022 conference papers, pages 1–8, 2022. 2

[49] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and
Daniel Cohen-Or. Null-text inversion for editing real images
using guided diffusion models. In CVPR, pages 6038–6047,
2023. 1, 2

[50] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. Point-e: A system for generat-
ing 3d point clouds from complex prompts. arXiv preprint
arXiv:2212.08751, 2022. 2

[51] Jangho Park, Gihyun Kwon, and Jong Chul Ye. Ed-nerf:
Efficient text-guided editing of 3d scene using latent space
nerf. arXiv preprint arXiv:2310.02712, 2023. 3

[52] Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun
Li, Jingwan Lu, and Jun-Yan Zhu. Zero-shot image-to-image
translation. In SIGGRAPH, 2023. 2

[53] Yicong Peng, Yichao Yan, Shengqi Liu, Yuhao Cheng,
Shanyan Guan, Bowen Pan, Guangtao Zhai, and Xiaokang
Yang. Cagenerf: Cage-based neural radiance field for gener-
alized 3d deformation and animation. NeurIPS, 35:31402–
31415, 2022. 2

[54] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. In ICLR,
2023. 2, 3

[55] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, pages 8748–8763. PMLR, 2021. 2

[56] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 1, 6

[57] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In CVPR, 2023. 2

[58] Aditya Sanghi, Rao Fu, Vivian Liu, Karl DD Willis, Hooman
Shayani, Amir H Khasahmadi, Srinath Sridhar, and Daniel
Ritchie. Clip-sculptor: Zero-shot generation of high-fidelity
and diverse shapes from natural language. In CVPR, pages
18339–18348, 2023. 2

[59] Etai Sella, Gal Fiebelman, Peter Hedman, and Hadar
Averbuch-Elor. Vox-e: Text-guided voxel editing of 3d ob-
jects. In ICCV, 2023. 1, 3, 5, 6, 8

[60] Etai Sella, Gal Fiebelman, Peter Hedman, and Hadar
Averbuch-Elor. Vox-e: Text-guided voxel editing of 3d ob-
jects. In ICCV, pages 430–440, 2023. 6

[61] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid represen-

26465

tation for high-resolution 3d shape synthesis. NeurIPS, 34:
6087–6101, 2021. 2

[62] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, pages 2256–
2265. PMLR, 2015. 1

[63] Hyeonseop Song, Seokhun Choi, Hoseok Do, Chul Lee, and
Taehyeong Kim. Blending-nerf: Text-driven localized edit-
ing in neural radiance fields. In ICCV, pages 14383–14393,
2023. 2

[64] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2021. 1

[65] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, pages 5459–5469, 2022. 2

[66] Vadim Tschernezki, Iro Laina, Diane Larlus, and Andrea
Vedaldi. Neural feature fusion fields: 3d distillation of
self-supervised 2d image representations. In 2022 Inter-
national Conference on 3D Vision (3DV), pages 443–453.
IEEE, 2022. 2

[67] Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali
Dekel. Splicing vit features for semantic appearance transfer.
In CVPR, 2022. 5

[68] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali
Dekel. Plug-and-play diffusion features for text-driven
image-to-image translation. In CVPR, 2023. 2

[69] Binglun Wang, Niladri Shekhar Dutt, and Niloy J Mitra. Pro-
teusnerf: Fast lightweight nerf editing using 3d-aware image
context. arXiv preprint arXiv:2310.09965, 2023. 3

[70] Can Wang, Menglei Chai, Mingming He, Dongdong Chen,
and Jing Liao. Clip-nerf: Text-and-image driven manipula-
tion of neural radiance fields. In CVPR, pages 3835–3844,
2022. 2

[71] Can Wang, Ruixiang Jiang, Menglei Chai, Mingming He,
Dongdong Chen, and Jing Liao. Nerf-art: Text-driven neural
radiance fields stylization. IEEE TVCG, 2023. 2

[72] Dongqing Wang, Tong Zhang, Alaa Abboud, and Sabine
Süsstrunk. Inpaintnerf360: Text-guided 3d inpainting
on unbounded neural radiance fields. arXiv preprint
arXiv:2305.15094, 2023. 2

[73] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and
diverse text-to-3d generation with variational score distilla-
tion. arXiv preprint arXiv:2305.16213, 2023. 2

[74] Silvan Weder, Guillermo Garcia-Hernando, Aron Monsz-
part, Marc Pollefeys, Gabriel J Brostow, Michael Firman,
and Sara Vicente. Removing objects from neural radiance
fields. In CVPR, pages 16528–16538, 2023. 2

[75] Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei Ren,
Liang Pan, Wayne Wu, Lei Yang, Jiaqi Wang, Chen Qian,
Dahua Lin, and Ziwei Liu. Omniobject3d: Large-vocabulary
3d object dataset for realistic perception, reconstruction and
generation. In CVPR, 2023. 5

[76] Shiyao Xu, Lingzhi Li, Li Shen, and Zhouhui Lian. Desrf:
Deformable stylized radiance field. In CVPR, pages 709–
718, 2023. 2

[77] Tianhan Xu and Tatsuya Harada. Deforming radiance fields
with cages. In ECCV, pages 159–175. Springer, 2022. 2

[78] Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han
Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui.
Learning object-compositional neural radiance field for ed-
itable scene rendering. In ICCV, pages 13779–13788, 2021.
2

[79] Bangbang Yang, Chong Bao, Junyi Zeng, Hujun Bao, Yinda
Zhang, Zhaopeng Cui, and Guofeng Zhang. Neumesh:
Learning disentangled neural mesh-based implicit field for
geometry and texture editing. In ECCV, pages 597–614.
Springer, 2022. 2

[80] Lu Yu, Wei Xiang, and Kang Han. Edit-diffnerf: Editing
3d neural radiance fields using 2d diffusion model. arXiv
preprint arXiv:2306.09551, 2023. 3

[81] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. Nerf-editing: geometry editing of
neural radiance fields. In CVPR, pages 18353–18364, 2022.
2

[82] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Goj-
cic, Or Litany, Sanja Fidler, and Karsten Kreis. Lion: La-
tent point diffusion models for 3d shape generation. arXiv
preprint arXiv:2210.06978, 2022. 2

[83] Hao Zhang, Yao Feng, Peter Kulits, Yandong Wen, Jus-
tus Thies, and Michael J Black. Text-guided generation
and editing of compositional 3d avatars. arXiv preprint
arXiv:2309.07125, 2023. 3

[84] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu,
Eli Shechtman, and Noah Snavely. Arf: Artistic radiance
fields. In ECCV, pages 717–733. Springer, 2022. 2

[85] Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su.
Magicbrush: A manually annotated dataset for instruction-
guided image editing. In NeurIPS, 2023. 2, 6

[86] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
ICCV, 2023. 2

[87] Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih
Chen, Ning Yu, Zeyuan Chen, Huan Wang, Silvio Savarese,
Stefano Ermon, Caiming Xiong, and Ran Xu. Hive: Har-
nessing human feedback for instructional visual editing.
arXiv preprint arXiv:2303.09618, 2023. 2

[88] Chengwei Zheng, Wenbin Lin, and Feng Xu. EditableNeRF:
Editing topologically varying neural radiance fields by key
points. In CVPR, 2023. 2

[89] Xingchen Zhou, Ying He, F Richard Yu, Jianqiang Li, and
You Li. Repaint-nerf: Nerf editting via semantic masks and
diffusion models. arXiv preprint arXiv:2306.05668, 2023. 3

[90] Jingyu Zhuang, Chen Wang, Lingjie Liu, Liang Lin, and
Guanbin Li. Dreameditor: Text-driven 3d scene editing with
neural fields. arXiv preprint arXiv:2306.13455, 2023. 3

26466

