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Figure 1. We introduce SceneTex, a text-driven texture synthesis architecture for 3D indoor scenes. Given scene geometries and text
prompts as input, SceneTex generates high-quality and style-consistent textures via depth-to-image diffusion priors.

Abstract

We propose SceneTex, a novel method for effectively gen-
erating high-quality and style-consistent textures for indoor
scenes using depth-to-image diffusion priors. Unlike pre-
vious methods that either iteratively warp 2D views onto
a mesh surface or distillate diffusion latent features with-
out accurate geometric and style cues, SceneTex formulates
the texture synthesis task as an optimization problem in the
RGB space where style and geometry consistency are prop-
erly reflected. At its core, SceneTex proposes a multires-
olution texture field to implicitly encode the mesh appear-
ance. We optimize the target texture via a score-distillation-
based objective function in respective RGB renderings. To
further secure the style consistency across views, we intro-
duce a cross-attention decoder to predict the RGB values
by cross-attending to the pre-sampled reference locations
in each instance. SceneTex enables various and accurate
texture synthesis for 3D-FRONT scenes, demonstrating sig-
nificant improvements in visual quality and prompt fidelity
over the prior texture generation methods.

1. Introduction

Synthesizing high-quality 3D contents is an essential yet
highly demanding task for numerous applications, includ-
ing gaming, film making, robotic simulation, autonomous
driving, and upcoming VR/AR scenarios. With an increas-
ing number of 3D content datasets, the computer vision and
graphics community has witnessed a soaring research inter-
est in the field of 3D geometry generation [2, 12, 36, 38, 40,
60, 68, 73]. Despite achieving a remarkable success in 3D
geometry modeling, generating the object appearance, i.e.
textures, is still bottlenecked by laborious human efforts.
It typically requires a substantially long time for designing
and adjustment, and immense 3D modelling expertise with
tools such as Blender. As such, automatic designing and
augmenting the textures has not yet been fully industrial-
ized due to a huge demand for human expertise and finan-
cial expenses.

Leveraging the recent advances of 2D diffusion mod-
els, tremendous progress has been made for text-to-3D
generation, especially for synthesizing textures of given
shapes [8, 39, 50]. Seminal work such as Text2Tex [8] and
Latent-Paint [39] have achieved great success in generat-
ing high-quality appearances for objects, facilitating high-
fidelity texture synthesis from input prompts. Despite the
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fascinating results on objects, upscaling these methods to
generating textures for an entire scene still confronts sev-
eral challenges. On one hand, methods that autoregressively
project 2D views to 3D object surface [8, 50] usually suffer
from texture seams, accumulated artifacts, and loop closure
issues. It is also quite difficult to maintain style consistency
in the scene if every object is textured individually. On
the other hand, score-distillation-based approaches [39] per-
form texture optimization in the low-resolution latent space,
often resulting in blurry RGB textures and incorrect geom-
etry details. As such, previous text-driven attempts fail to
deliver high-quality textures for 3D scenes.

To address the aforementioned challenges, we propose
SceneTex, a novel architecture to generate high-quality and
style-consistent texture for indoor scene meshes by lever-
aging depth-to-image diffusion priors. Unlike previous
methodologies that iteratively warp 2D views onto mesh
surfaces, we take a different approach by framing the tex-
ture synthesis as a texture optimization task in RGB space
via diffusion priors. At its core, we introduce a multires-
olution texture field to implicitly represent the appearance
of the mesh. To faithfully represent the texture details, we
adopt a multiresolution texture to store texture features at
multiple scales. This enables our architecture to flexibly
learn both low and high frequency appearance information.
To secure the style consistency of the generated texture,
we incorporate a cross-attention decoder to reduce style in-
coherence introduced by self-occlusion. Concretely, each
decoded RGB values are produced by cross-attending to
the pre-sampled reference surface locations scattered across
each object. This way, we further secure the global style
consistency within each instance, as every visible location
receives a global reference to the whole instance appear-
ance.

We show that SceneTex has the capacity to facilitate ver-
satile and accurate texture synthesis for indoor scenes with
given language cues. We demonstrate in extensive experi-
ments that SceneTex places a strong emphasis on both style
and geometry consistency. The proposed method performs
favorably against other text-driven texture synthesis meth-
ods in terms of 2D metrics such as CLIP score [48] and
Inception Score [60], and user study on a subset of the 3D-
FRONT dataset [20].

We summarize our technical contributions as follows:
• We design a novel framework for generating high-quality

scene textures in high resolution using depth-to-image
diffusion priors.

• We propose an implicit texture field to encode the object
appearance at multiple scales, leveraging a multiresolu-
tion texture to faithfully represent rich texture details.

• We incorporate a cross-attention texture decoder to secure
the global style-consistency for each instance, producing
more visually appealing and style-consistent textures for

3D-FRONT scenes compared against previous synthesis
methods.

2. Related work
Feed-forward 3D Generation. The advancement of 3D
generation has adhered to the progress of 2D generative
models. Adopting different backbone techniques, from
variational autoencoders [34], generative adversarial net-
works [24], autoregressive transformers [64], to the recent
diffusion models [19, 27], 3D models have been trained on
3D data of various representations, including voxels [10, 36,
55, 60, 68], point clouds [2, 38, 74], meshes [46, 73], signed
distance functions [12, 14, 15, 17, 40], and more. However,
unlike the ubiquity of 2D images and videos, 3D data is in-
herently scarce and poses significant challenges in terms of
acquisition and annotation. Recent efforts have sought to
address this issue by utilizing differentiable rendering tech-
niques to learn from 2D images [1, 3, 4, 21, 25, 41, 44, 53,
54, 56, 59, 69, 70]. Although these models typically demon-
strate proficiency in specific shape categories, they are inca-
pable of handling 3D generation from free-form texts.
3D Generation with 2D diffusion models. Recently,
significant strides have been made in the field of vision-
language integration [5–7, 13, 31, 48, 57, 66] The ad-
vancements in text-to-image generation, particularly diffu-
sion models trained on large-scale image collections [19,
27, 28, 43, 52], have prompted the integration of pretrained
2D diffusion models as priors to facilitate 3D generation.
Two main streams of work have emerged. The first branch
directly incorporates the output of the 2D diffusion mod-
els along with the depth information. TEXTure [50] and
Text2Tex [8] perform texturing on given meshes with a
depth-aware variation of diffusion models. Other meth-
ods generate 3D scenes, where the geometry information
is either jointly predicted [61] or obtained from off-the-
shelf depth estimator [30]. The second branch of meth-
ods [9, 35, 39, 47, 65, 67] attempt to distill knowledge
from pretrained 2D diffusion models with the Score Dis-
tillation Sampling (SDS) [47] technique and its subsequent
improved variations in a per-prompt optimization manner.
In contrast, we take advantages of the distilled knowledge
from the depth-conditioned 2D diffusion priors to enable
high-quality 3D texture synthesis.
3D Scene Texturing. In this work, we focus on generat-
ing high-quality textures for 3D scenes. 3D scene textur-
ing has been studied by applying the 2D style transfer tech-
niques [22, 23, 33] to 3D domain [11, 16, 26, 29, 32, 71].
However, these methods often emphasize low-level styles
without semantic understanding. While existing 3D gen-
eration methods leveraging 2D diffusion models can theo-
retically be applied to 3D scene texturing, those based on
inpainting [8, 50] suffer from visible seams and accumu-
lated artifacts, while distillation-based methods [39] often
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Figure 2. Texture synthesis pipeline. The target mesh is first projected to a given viewpoint via a rasterizer [37]. Then, we render an RGB
image with the proposed multiresolution texture field module. Specifically, each rasterized UV coordinate is taken as input to sample the
UV embeddings from a multiresoultion texture. Afterward, the UV embeddings are mapped to an RGB image of shape 768× 768× 3 via
a cross-attention texture decoder. We use a pre-trained VAE encoder to compress the input RGB image to a 96 × 96 × 4 latent feature.
Finally, the Variational Score Distillation loss [67] is computed from the latent feature to update the texture field.

produce blurry textures with incorrect geometry details. In
contrast, we optimize the target scene texture with accu-
rate geometric cues and decode the high-resolution scene
appearance via the proposed multiresolution texture field
module, facilitating 3D scene texture synthesis with much
better visual quality.

3. Method
The objective of our work is to texture an entire 3D scene
with diffusion priors as the critic. In this section, we be-
gin by introducing a Multiresolution Texture Field module
to produce high-quality RGB textures, which consists of
two key components: Multiresolution Texture and Cross-
attention Texture Decoder. The Multiresolution Texture is
integrated to faithfully represent both the low- and high-
frequency texture details at various scales (Sec. 3.1). Sub-
sequently, to tackle the style-inconsistency issue brought by
limited field of view and self-occlusion, the Cross-attention
Texture Decoder module is incorporated to enforce a global
style-awareness for each object in the scene (Sec. 3.2). Fi-
nally, we adopt a pretrained diffusion model as training
critic to dynamically distillate realistic scene appearance
from the 2D depth-conditioned diffusion priors. (Sec. 3.3).
The entire synthesis architecture is presented in Fig. 2.

3.1. Multiresolution Texture Field

The core of texture synthesis with 2D priors lies in gener-
ating RGB values visible to a series of pre-defined view-
points. Previous methods maintain a 64 × 64 × 4 latent
map and operate directly on it with the SDS loss [39, 47].
This latent map is decoded via the variational autoencoder
of the pre-trained diffusion model after convergence. The

Figure 3. Multiresolution Texture. We use a multiresolution fea-
ture grid to encode positional features at different scale in the UV
space. For a query UV coordinate, we interpolate the grid features
at respective resolutions. The interpolated grid features are con-
catenated as the final UV embedding for the query UV coordinate.

optimization process is technically view-consistent, as the
diffusion priors are leveraged from numerous perspectives.
Notwithstanding, we observe that the decoded RGB tex-
tures often carry patch-like artifacts and are subsequently
inconsistent with the given geometry. This is caused by
the mismatches between the low-resolution latent map and
high-resolution RGB images, and the lack of perspective
transformation of the same latent code in different views.

To tackle those inherent disadvantages of representing
the target texture via a low-resolution latent map, we adopt
an implicit texture field that queries the texture features with
given UV coordinates. At its core, we integrate a multires-
olution texture to prevent oversimplified appearance with-
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Figure 4. Cross-attention Texture Decoder. For each rasterized
UV coordinate, we apply a UV instance mask to mask out the
corresponding instance texture features. Then, we obtain the ren-
dering UV embeddings for the rasterized locations in the view. At
the same time, we extract the texture features for the pre-sampled
UVs scattered across this instance as the reference UV embed-
dings. We deploy a multi-head cross-attention module to produce
the instance-aware UV embeddings. Here, we treat the rendering
UV embeddings as the Query, and the reference UV embeddings
as the Key and Value. Finally, a shared MLP maps the instance-
aware UV embeddings to RGB values in the rendered view.

out any texture details. In particular, as shown in Fig. 3,
we encode texture features for all query locations q at each
scale, and concatenate those features as the output UV em-
beddings E(q) to faithfully represent all texture details. The
UV embeddings are then decoded to the final RGB texture
by the cross-attention texture decoder introduced in the next
section.

3.2. Cross-attention Texture Decoder

Since the texture is optimized in image space, instance tex-
tures are often constrained by limited field of view and self-
occlusion. As a result, the optimized texture often suffers
from style-inconsistency. Therefore, we propose a simple
yet effective rendering module with global instance aware-
ness to predict RGB values from UV embeddings. This is
done by incorporating a multi-head cross-attention module
to the texture features. As Fig 4 illustrates, for each raster-
ized UV coordinate, we apply a UV instance mask to mask
out the corresponding instance texture features. Then, we
obtain the rendering UV embeddings for the rasterized lo-
cations in the view. At the same time, we extract the texture
features for the pre-sampled UVs scattered across this in-
stance as the reference UV embeddings. We deploy a multi-
head cross-attention module to produce the instance-aware
UV embeddings. Here, we treat the rendering UV embed-
dings as the Query, and the reference UV embeddings as

the Key and Value. Finally, a shared MLP maps the global-
aware UV embeddings to RGB values in the rendered view.
We denote the whole rendering process as C = f(E(q); θ),
where C represents an RGB image at arbitrary resolution,
f(θ) is a differentiable function resembles the entire texture
field with trainable parameters θ.

3.3. Texture Field Optimization via VSD

We adopt a pre-trained ControlNet model as a critic to op-
timize the texturing module f(θ) following the strategy of
Latent-Paint [39], as shown in Fig. 2. Here, the UNet of
a pre-trained latent diffusion model (LDM) [51] applied to
calculate the gradients based on a low-resolution 96 × 96
latent map. We observe that such low-resolution render-
ing often lead to broken visual quality and unsatisfactory
view consistency. This is primarily due to the size mis-
matches between the 96 × 96 optimization target and the
final 768 × 768 RGB output. Additionally, prior work ex-
clude geometric cues from the diffusion priors, resulting in
poor consistency between the generated textures and tar-
get geometry. To address those issues, we directly render
an 768 × 768 RGB image via querying the texture field
C = f(E(q); θ). In each iteration, we first optimize C
via the VSD objective [67] with a pre-trained frozen depth-
conditioned diffusion prior ϕpre and a trainable LoRA mod-
ule ϕ:

∇θLVSD(θ) ≈ Et,ϵ[w(t)(ϵϕpre − ϵϕ)
∂f(θ)

∂θ
] (1)

where ϵϕpre = ϕpre(f(θ); y, d, t) and ϵϕ = ϕ(f(θ); y, d, t)).
We draw time step randomly by t ∼ U(0.02, 0.98). The
injected noise is ϵ ∼ N (0, 1). d is the depth map in the cur-
rent viewpoint produced by the rasterizer. y is the noised
input to the UNet. The weighting function w(t) is empiri-

cally set as w(t) =
√
1−

∏t
s=1 αs. Note that ϕpre and ϕ

are kept frozen when updating the parameters of the texture
field θ. After C = f(E(q); θ) is updated via the gradients of
VSD, we unfreeze and update the LoRA module ϕ:

LLoRA(ϕ) = min
ϕ

n∑
i=1

Et,ϵ[||ϵϕ(f(θ); y, d, t)− ϵ||22] (2)

3.4. Inference

Since the texture field f(θ) only receives the UV coordi-
nates as input, producing the final RGB texture is straight-
forward. For each position qi in UV space, the correspond-
ing pixel value ci of the output RGB texture C can be simply
queried by ci = f(E(qi); θ). Thanks to the multiresolu-
tion grid encoding, it is worth mentioning that there is no
specification for the size of the final RGB texture, i.e. the
resolution of the texture can be adjusted according to the
computational resources.
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4. Results
4.1. Implementation Details

We apply the ControlNet Depth model [72] for VSD op-
timization. The multiresolution texture is implemented by
multiresolution hash encoding [42]. During each optimiza-
tion iteration, we randomly pick 1 viewpoint from all per-
spective points scattered across the scene. We set the learn-
ing as 0.001 for optimizing the texture field and 0.0001
for fine-tuning the LoRA module. The entire optimiza-
tion uses 5, 000 viewpoints and takes 30, 000 iterations to
converge. To generate a more visually appealing appear-
ance via VSD, We adopt the time annealing scheme fol-
lowing ProlificDreamer [67], where we sample time steps
t ∼ U(0.02, 0.98) for the first 5, 000 steps and then an-
neal into t ∼ U(0.02, 0.50) for the rest of the optimization.
For the proposed cross-attention decoder, we pre-sampled
4, 096 UV coordinates scattered across each instance. To
enable cross-attention in such a long context, we implement
the cross-attention module with Flash Attention v2 [18].
Each synthesis process takes around 20 hours to converge
on an NVIDIA RTX A6000. After convergence, we gener-
ate a high-resolution 4, 096×4, 096 RGB image as the final
scene texture. Our implementation uses the PyTorch [45]
framework, with PyTorch3D [49] for rendering and texture
projection.

4.2. Quantitative Analysis

We compare our method against texture synthesis methods
appeared recently in Tab. 1, including Latent-Paint [39],
MVDiffusion [63], and Text2Tex [8]. We experiment all
methods on 10 3D-FRONT [20] scenes with 2 different text
prompts for each scene. Here, we calculate CLIP score
(CLIP) [48] and Inception Score (IS) [60] to measure the
fidelity with input prompts and texture quality, respectively.
Our method outperforms all baselines on the 2D automated
metrics by a significant margin. We additionally report the
User Study results from 75 participants about the Visual
Quality (VQ) and Prompt Fidelity (PF) on a scale of 1-5.
Our method is shown to be more favored by human users.

4.3. Qualitative Results

We show the qualitative comparisons in Fig. 5. Latent-Paint
suffers from the over-saturation issue and hallucinates non-
existing objects, such as the huge frame on the wall (see
the first example in the first row in Fig. 5). Those unre-
alistic texture components are produced by the inaccurate
geometric cues and the mismatch between the optimized la-
tent representation and final texture. MVDiffusion [63] pro-
duces overall smooth but blurry and dimmed texture. It also
fails to reflect the iconic properties in the prompts, such as
“baroque” and “luxury”. Text2Tex [8] generates plausible
textures for individual objects, but fails to achieve global

Method 2D Metrics User Study

CLIP ↑ IS ↑ VQ ↑ PF ↑
Latent-Paint [39] 18.37 1.96 1.57 2.11
MVDiffusion [63] 18.47 2.83 3.09 3.12
Text2Tex [8] 20.83 2.87 2.62 3.04

SceneTex (Ours) w/o texture field 15.77 1.56 1.23 1.11
SceneTex (Ours) w/o multires. tex. 19.87 2.79 2.11 2.39
SceneTex (Ours) w/ cross-attn. 20.94 3.29 3.94 4.05
SceneTex (Ours) 22.18 3.33 4.40 4.29

Table 1. Quantitative comparisons. We report the 2D metrics
and User Study results for quantitative comparisons, including:
CLIP score (CLIP) [48], Inception Score (IS) [60], Visual Qual-
ity (Visual Quality), and Prompt Fidelity (PF). We show that our
method produces textures with the highest quality.

style consistency across objects. In contrast, our method
synthesizes high-quality with overall coherent styles within
and across objects, reflecting the representative traits in the
prompts with high-fidelity (see the baroque paintings above
and the golden pillows below). We additionally visualize
our texture synthesis results for different 3D-FRONT [20]
scenes and input prompts in top-down views and close-up
renderings in Fig. 6, further demonstrating the supreme tex-
ture quality and fidelity produced by our method.

4.4. Ablation Studies

We conduct ablation experiments on the key components
of our method, including multiresolution texture (Sec. 3.1),
and cross-attention decoder (Sec. 3.2). All comparisons are
shown in Tab. 1 and Fig. 7.
Does texture field produce better textures than RGB ten-
sors? Since only a few UVs are sampled by the rasterizer
during each iteration, directly optimizing an RGB tensor as
the output texture leads to noisy artifacts, as shown in the
first column in Fig. 7. Additionally, the optimization is of-
ten difficult to converge with different gradient scales across
the whole RGB tensor. As a result, the optimized texture ap-
pears to be broken and unrealistic. In contrast, the MLP in
the proposed texture field module effectively smoothens the
back-propagated gradients, producing much smoother and
detailed textures.
Does multiresolution texture improve the visual qual-
ity? As previous studies indicate, implicit representations
via MLPs tend to learn low-frequency information [58,
62]. As such, the texture field with single resolution pro-
duces an over-simplified appearance without texture details.
Such texture lacks the characteristic properties of the input
prompt, and carries noisy bubble artifacts, as shown in the
second column in Fig. 7. We show that the multiresolu-
tion texture is capable of producing a visually appealing and
highly detailed mesh appearance.
Does cross-attention strengthen the style consistency?
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Figure 5. Qualitative comparisons. Latent-Paint [39] suffers from over-saturation and hallucinates scene components. MVDiffusion [63]
delivers blurry textures and fails to reflect the input prompts. Text2Tex [8] struggles to keep all instances style-consistent. In contrast, our
method produces high-quality textures and maintains overall style-consistency across instances in the scenes. Ceilings and back-facing
walls are excluded for better visualizations. Images best viewed in color.

Replacing the cross-attention decoder module with a sim-
ple MLP also produces plausible textures. However, such
replacement exposes global style inconsistency issue. Due
to limited field of view and self-occlusion, the appearance
of the same object can be synthesized differently. As shown
in Fig. 7, big objects such as the carpet do not share a coher-
ent pattern. It is difficult for the big objects to maintain style

consistency during optimization, if there is no global infor-
mation shared across views. The proposed cross-attention
decoder effectively tackles this issue by globally sharing
the style features within each object. This enforces the in-
stance style awareness, and therefore produces more style-
consistent textures for all instances across the scene.
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Figure 6. Synthesized textures for 3D-FRONT scenes. Our method generates high-quality style-coherent textures, and reflects the iconic
traits in the prompts. Ceilings and back-facing walls are excluded for better visualizations. Images best viewed in color.
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Figure 7. Ablation studies on the key components. Optimizing an RGB texture directly without the proposed texture field results in
extreme noisy and unrealistic textures. A single-resolution texture fails to capture texture details and produces bubble artifacts. Removing
the cross-attention decoder leads to style inconsistency, especially for big instances such carpet, as shown in the yellow boxes. In contrast,
our full method produces high-quality and style-consistent textures without aforementioned artifacts.

4.5. Limitations

Although our method enables high-quality texture synthe-
sis for indoor scenes, we still notice that our method tends
to generate textures with shading effects. This phenomenon
becomes more obvious when the scene structure indicates
the existence of lighting such as lamp, window, or even
mirror. We believe this issue can be properly addressed by
carefully fine-tuning the diffusion priors on the indoor scene
images without shading effects. We acknowledge this chal-
lenge and leave it to future research.

5. Conclusion
We introduce SceneTex, a novel method for effectively gen-
erating high-quality and style-consistent textures for indoor
scenes using depth-to-image diffusion priors. At its core,
SceneTex proposes a multiresolution texture field to im-
plicitly encode the mesh appearance. We optimize the tar-
get texture via a score-distillation-based objective function
in respective RGB renderings. To further secure the style
consistency across views, we introduce a cross-attention

decoder to predict the RGB values by cross-attending to
the pre-sampled UV coordinates within each instance. We
show that the proposed texture field with multiresolution
texture is capable of generating visually appealing high-
quality texture. Moreover, the proposed cross-attention de-
coder further strengthens the global style awareness for each
instance, resulting in style-coherent appearance in the target
scene. Extensive analysis show that SceneTex enables vari-
ous and accurate texture synthesis for 3D-FRONT scenes,
demonstrating significant improvements in visual quality
and prompt fidelity over the prior texture generation meth-
ods. Overall, we hope our work can inspire more future
research in the area of text-to-3D generation.
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