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Abstract

Despite significant progress in the field, it is still chal-
lenging to create personalized visual representations that
align closely with the desires and preferences of individ-
ual users. This process requires users to articulate their
ideas in words that are both comprehensible to the mod-
els and accurately capture their vision, posing difficul-
ties for many users. In this paper, we tackle this chal-
lenge by leveraging historical user interactions with the
system to enhance user prompts. We propose a novel ap-
proach that involves rewriting user prompts based on a
newly collected large-scale text-to-image dataset with over
300k prompts from 3115 users. Our rewriting model en-
hances the expressiveness and alignment of user prompts
with their intended visual outputs. Experimental results
demonstrate the superiority of our methods over baseline
approaches, as evidenced in our new offline evaluation
method and online tests. Our code and dataset are avail-
able at https://github.com/zzjchen/Tailored-Visions

1. Introduction

Increasingly large and powerful foundation models [1, 4,
20] are trained through self-supervised learning. These
large pretrained models (LPMs) serve as efficient com-
pressors [3], condensing vast amounts of internet data.
This compression enables the convenient extraction of the
knowledge encoded within these models via natural lan-
guage descriptions. Despite being in its infancy, this ap-
proach exhibits potentials to surpass traditional search en-
gines as a superior source for knowledge and information
acquisition.

Akin to refining queries for search engines, prompts
given to LPMs must also be carefully crafted. However,
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Figure 1. Comparison between our personalized prompt rewriting
method and the standard prompt rewriting method. Our technique
excels at incorporating user preferences, such as “oil paintings
by artists,” while methods that lack a historical context frequently
generate content that may not align with the user’s desires.

the complexity of prompts, the unpredictability of model
responses compared to traditional search engines present
unique challenges. Significant research efforts [10, 29]
have been made to comprehend how LPMs react to vari-
ous prompts, with some studies examining the feasibility of
rewriting prompts for specificity. However, without access
to users’ personal data and behavior, tailoring the prompt to
meet the user’s needs accurately remains challenging.

Our research addresses this issue by integrating user
preference information into prompt rewriting. The primary
obstacle in personalized query rewriting is the absence of
a dataset containing text-to-image prompts with personal-
ized information. To overcome this, we have assembled a
large dataset encompassing over 300k text-to-image histo-
ries from 3,115 users. We rewrite user prompts using their
query history, although we had limited access to personal
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information, leaving room for further research. Another
significant challenge is the evaluation of rewritten queries.
To evaluate their efficacy, we’ve developed a new offline
method that uses multiple metrics to measure how well our
rewriting models can recover the original user query from
the ChatGPT-shortened version.

Our paper’s contributions are threefold:
1. We have compiled a large Personalized Image Prompt

(PIP) dataset and made it publicly available to aid future
research in the field.

2. We experimented with two query rewriting techniques
and proposed a new query evaluation method to assess their
performance.

3. We propose a new benchmark for personalized text-
to-image generation, which promotes the standardization of
this field.

While there is still a considerable distance to cover be-
fore we can create a perfect prompt encapsulating both the
user’s requirements and the model’s capabilities, we believe
our research provides a critical stepping stone in this ongo-
ing exploration.

2. Related Work

This section provides an overview of prior work on text-
to-image generation, personalization for such generation,
and prompt rewriting. It’s important to note that our review
is aimed more at offering sufficient background knowledge
rather than exhaustive coverage of all related works.

2.1. Text-to-Image Generation

Large text-to-image generation models can generate high-
fidelity image synthesis and achieve a deep level of lan-
guage understanding. DALL-E [17] uses a VQ-VAE
transformer-based method to learn a visual codebook in
the first stage and then trains autoregressive transformers
on sequences of text tokens followed by image tokens in
the second stage. DALL-E2 [18] introduces latent diffu-
sion models to generate various images by conditioning on
CLIP text latents and CLIP image embeddings generated
by a prior model. Imagen [22] discovers that a larger lan-
guage model with more parameters trained on text-only data
improves the quality of text-to-image generation. Late de-
velopments like stable-diffusion (SD) [20] proposes to gen-
erate images effectively in latent space significantly lower-
ing computational costs. Furthermore, SD designs a con-
ditional mechanism to complete class-conditional, text-to-
image and layout-to-image models. Furthermore, Control-
Net [28] accomplishes certain function by conditioning on
multi-modal data, e.g., edge, sketching, pose, segmenta-
tion, depth etc., which unavoidably involving additional
condition-generation modalities.

Despite these models’ ability to generate high-fidelity
images, they often fail to meet the precise needs of the users.
Text-to-image generation is more like a game of chance.

2.2. Personalization for Text-to-Image Generation

Recently, personalization approaches based on text-to-
image models have taken a set of images of a concept
and generated variations of the concept. Specifically, some
methods optimize a set of text embeddings. For example,
[2] involves pseudo-word embeddings by a set encoder to
provide personalization and Textual inversion [4] composes
the concept into language sentences and performed as a per-
sonalized creation. Some methods finetune the diffusion
model. For example, DreamBooth [21] finetunes the text-
to-image diffusion model with shared parallel branches. To
speed up, CustomDiffusion [12] reduces the amount of fien-
tuned parameters, and Tewel et al. [25] locks the subject’s
cross-attention key to its superordinate category to align
with visual concepts. Moreover, an additional encoder is
trained to map concept images to its textual representation
by [5] and [24].

Existing studies have three key limitations: they de-
mand extra images and fine-tuning of text-to-image models
with limited scope for new concepts; they can’t learn from
user interaction history and need detailed user prompts; and
there’s a lack of public, personalized text-to-image datasets
that truly reflect user preferences.

2.3. Prompt Rewriting

Recently, researchers have found that optimizing prompts
can boost the performance of LLMs on several NLP tasks
and even search systems. For examples, Guo et al. [6] con-
nect the LLM with evolutionary algorithms to generate an
optimized prompt from parent prompts, without any gradi-
ent calculation. Yang et al. [27] propose to use LLM as
an optimizer by generating new prompts based on a trajec-
tory of previously generated prompts in each optimization
step with the objective of maximizing the accuracy of the
task. In the work [30], LLMs serve as models for engineer-
ing work like inference, scoring, and resampling. In search
systems, LLMs are used to generate query expansion terms
by [10], while they are used to reformulate query by Wang
et al. [26] instead.

For T2I generation, one relatively close work, SUR-
adapter [29] learns to align the representations between sim-
ple prompt and complex prompt by an adapter. [7] opti-
mize prompt through general rewriting. However, Neither
of above works utilized personalized information for im-
proving prompts.

3. Personalized Image-Prompt (PIP) Dataset

3.1. Dataset Collection

The Personalized Image-Prompt (PIP) dataset is the first
large-scale personalized generated image-text dataset. The
original data are collected from a public website
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Figure 2. Dataset creation process. We split our dataset into train-
ing and testing sets and summarize each prompts in the test set
using ChatGPT.

Figure 3. Dataset statistics and distribution. Left: Proportion of
users based on the varying number of historical prompts they have.
Note that each user has a minimum of 18 historical prompts, as we
have excluded those with fewer prompts from the dataset. Right:

Proportion of prompts based on their varying lengths. Best view
in color.

host to provide open-domain text-to-image generation to
users. PIP dataset includes 3115 users and 300,237 text-to-
image histories generated by these users using SD v1-5 [20]
and an internal fine-tuned version of SD v1-5. Each user in
PIP has created 18 or more images and provided at least 12
different prompts.

Figure 2 illustrates the process of creating the dataset.
For each individual user, we randomly choose two prompts
to serve as test prompts, with the remaining prompts allo-
cated as training prompts (historical user query). The pur-
pose of using random selection instead of the most recent
generated prompts is to enhance the diversity of our test
data. Subsequently, we employ ChatGPT to condense the
test prompts, ensuring they only include the primary object
or scene, as depicted in Figure 2. We shorten the prompts
into three scales, i.e., contain only nouns, noun phases or
short sentences respectively.

In the ensuing experiment, each test prompt in the test

set will be considered as the input prompt xt for every user
u, with the original prompts serving as the ground truth
that reflect the user’s authentic preferences. The remaining
prompts are utilized as training samples.

The PIP dataset consists of 300,237 image-prompt pairs,
personally categorized by 3,115 users. These pairs are di-
vided into 294,007 training samples and 6,230 test samples.

3.2. Dataset Statistics and Distribution

In this section, we showcase the data statistics that depict
the quality and diversity of PIP. We specifically illustrate
data distributions of the number of prompts and prompt
length for each user, and delve deeper into the content of
the prompt through a word cloud representation.

Each data sample contain a prompt, the generated im-
ages, UserID, Image size, and URL, as illustrated Figure 4.

Figure 4. Two examples from a user history, containing Image,
Prompt, User ID, Image size and URL.

Figure 5. Word cloud visualization of top 250 keywords sampled
from the PIP dataset.

In PIP dataset, each user contributes at least 18 images,
as depicted in the left section of Figure 3. This results in
a long-tail distribution. The prompts have an average word
count of 27.53. The length of the prompts, ranging from 1
to 284 words, also follows a long-tail distribution, as seen
in the right section of Figure 3. Despite the presence of
about 2500 prompts that exceed the 75-word limit of SD,
we retain them to maintain the integrity of user preferences.
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Figure 6. Text similarity between user histories and user prefer-
ences. There is a great deal of diversity in user preferences in the
PIP dataset. In the zoomed-in version of the similarity map on the
left, users’ history prompts are highly similar to their preferences.

Figure 5 presents the 250 most frequently used words
or phrases. The frequency of these words is determined by
the highest TF-IDF value across all users. The word cloud
reveals that these words describe various image attributes,
such as objects, styles, quality, and colors. This variety un-
derlines the high diversity present within the prompt content
of the PIP dataset.

In addition, we visualize the text similarities between the
histories and preferences of 100 users in Figure 6. For each
user u in PIP dataset, we summarize his preference Pu into
5 phrases from his history prompts using ChatGPT. For two
users u, v, the similarity of u’s histories and v’s preferences
is defined as the mean of text similarities between u’s his-
tory prompts and v’s preference Pv . The text similarity is
calculated using GTR-T5-large [14]. Furthermore, we vi-
sualize the text similarities between the history prompts of
a random user and 100 user preferences in the left part of
Figure 6. This shows that text-to-image users have different
preferences and the preference pu we summarized success-
fully captures the key feature the user prefers.

3.3. Evaluation Metrics

We present two metrics to evaluate prompt rewriting meth-
ods in terms of how the rewritten results are aligned
to users’ preferences, namely Preference Matching Score
(PMS) and Image-Align.
Preference Matching Score (PMS). PMS calculates the
CLIPScore [8] between generated image and user’s prefer-
ence Pu. It measures how the generated image aligns with
the user’s preference.

PMS =
w

N

NX

u=1

max (cos (Em (I 0u) ,Em (Pu)) , 0) (1)

where Pu is the user u’s preference, I 0u is the generated im-
age correspondingly, N is total user number (i.e. 3115).
Em means the embedding extracted by using CLIP. w =
2.5 is a scaling constant.

Image-Align. It measures the similarity between the gener-
ated image and the ground-truth image. Image-Align quan-
tifies how closely the current created image aligns with the
user’s truly saved image. The similarity between two im-
ages are calculated using CLIP [16].

Apart from these metrics, we also adopt ROUGE-L to
evaluate prompt rewriting methods in our experiment. Cal-
culating ROUGE-L between the rewritten prompt against
the original prompt measures the ability of prompt rewrit-
ing methods to recover the original prompt. We set � = 5
to emphasize the recall of generated prompts.

4. Personalized Prompt Rewriting

The basic idea of our personalization method is to rewrite
the input prompt, considering user preferences gleaned
from past user interactions. The full pipeline of our Per-
sonalized Prompt Rewriting (Personalized PR) method is
depicted in the left part of Figure 7. If a user u input a
prompt xt, a retriever Ret (xt,Qt) retrieves prompts from
the user’s historical prompt set Qt, using xt as a query.
Based on the retrival result Rt = Ret (xt,Qt), the rewriter
Rew rewrites the input prompt to generate a personalized
prompt x0

t = Rew (xt,Rt). Finally, the text-to-image gen-
eration model G produces the image I 0t = G (x0

t, ✏) from
the rewritten prompt, where ✏ is a random noise vector

†
.

4.1. Retrieval and Ranking

In the retrieval stage, given the input prompt xt, the re-
triever Ret (xt,Qt) retrieves relevant prompts from histor-
ical prompt set Qt, using xt as a query.

By analyzing user prompts, we have noticed that users
tend to construct prompts that involve objects, their at-
tributes, and the relationships between objects. In the
works [23], [11], a query for image retrieval is defined to
include objects, attributes of objects, and relations between
objects. Inspired by this, we suspect users have the habit
of using attributes and some objects, such as background,
to express their preferences. To confirm this, we visual-
ize the word cloud of the top 250 frequent words in the
text prompts of all users, as shown in the right part of Fig-
ure 5. In Figure 5, we find some attributes, such as “cute”,
“golden”, and “beautiful” appear in prompts with high fre-
quency, as well as some objects, such as “mountain”, “sea,”
and “sky”. Intuitively, we can use the current prompt xt to
locate the relevant history prompts that include the same or
similar attributes or objects.

To locate relevant prompts, two retrieval methods are
used: dense and sparse. In dense retrieval, we choose the
prompt xt and calculate its textual embedding Em (xt) us-
ing CLIP’s text encoder, also the text encoder in Stable Dif-

†
The image generated from the prompt xt is denoted as It, where It =

G (xt, ✏).
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Figure 7. Left: Pipeline of Personalized Prompt Rewriting (Personalized PR), including Retriever, Rewriter and T2I model to generate
personalized images from user histories. Right: Illustration of context-dependent prompt rewriting. We present a specific example for
better understanding the procedure of context-dependent prompt rewriting.

fusion [20]. We suspect the prompts with similar visual at-
tributes and objects will be close to each other in the text
embedding space. To confirm this, we visualize some re-
trieval results in Figure 8. The three nearest neighbors of
Em (xt) are prompts that are semantically related. For ex-
ample, if the input prompt is “Hobbit homes”, the three
most relevant prompts would include the words “village”,
“city”, and “house”. This dense retrieval method is also re-
ferred to as embedding-based retrieval (EBR). In sparse re-
trieval, we use BM25 to locate relevant prompts that include
the same visual attributes and objects.

In the above retrival, we rank relevant prompts in EBR-
based or BM25-based ranking, depending on the retrieval
ways. In EBR-based ranking, we rank the relevant prompts
based on their embedding similarity with the query xt. For
similarity measuring, we choose cosine similarity as it is a
commonly used similarity measure in embedding learning.
In BM25-based ranking, BM25 scores are used for similar-
ity measures. Consequently, we obtain the top k relevant
user queries Rt = {r1, ..., rk}.

4.2. Rewriting

The procedure of context-independent rewriting leverages
pertinent queries Rt = {r1, ..., rk}, and employs ChatGPT
to encapsulate user preferences and rewrite the prompt di-
rectly. These queries Rt are organized based on their rele-
vance to xt.

In the context-dependent scenario, we initially create a
collection of demonstration examples E = {e1, ..., eL} us-
ing manual design. We then select a small subset of these
examples to serve as demonstrations for each rewriting task.

Given the issue of order sensitivity in in-context learning, as
highlighted in the study [13], we arrange the demonstration
examples in a descending sequence based on their proxim-
ity to the input prompt xt. The in-context rewriting process
we employ is illustrated in the right section of Figure 7.

5. Experiment

We carried out experiments for prompt rewriting methods
on our PIP dataset. We validate our method through both
offline and online evaluation. And we further analyze the
number of historical prompts for best extracting the users’
preference by ablating top retrieval. For offline evaluation,
we use the aforementioned three metrics: PMS, Image-
Align, and ROUGE-L.

For online evaluation, we carried out single blind exper-
iment for recently active users on our website. Real user
feedback is collected to evaluate our method.

5.1. Implementation Details

Details of our Personalized PR method are as follows. In re-
trieval, we choose the relevant text prompt number as k = 3.
We use ChatGPT [15] as our rewriter. An input example for
context-independent rewriting

†
is shown in Table 1. For in-

context rewriting, we set L = 5 and randomly select one
demonstration example for each rewriting task, unless oth-
erwise specified.

Unless other specified, all the experiments use EBR to

†
The input for in-context rewriting is only different from context-

independent rewriting in terms of the presence of demonstration example.
See supplementary for detail.
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Figure 8. Qualitative analysis of personalized retrieval and rewriting.

retrieve historical prompts, and one-shot in-context learning
to rewrite the shortened prompt.

ChatGPT Input Template for Context-independent Rewriting

Prompt in text-to-image generation describes the detailed at-
tributes of the object user plans to draw. User’s preference in text-
to-image generation is shown in history prompts.
Given 3 history prompts, your task is to rewrite the current prompt
so that it matches the user’s preference. The rewritten prompt
should retain primary objects in the original prompt and conform
to the user’s preference. Please avoid being too diffused and re-
strict your output within 70 words.
The history prompts are: {Rt}
The current prompt is: {xt}
The rewritten prompt (one sentence less than 70 words) is:

Table 1. Input template for context-independent rewriting.

We use Stable Diffusion (SD) v1-5 [19] as our text-to-
image generation model for all methods. SD v1-5 is sam-
pled using PNDM scheduler in 50 steps and setting the
classifier-free guidance scale to 7.0.

5.2. Comparison Baselines

We compare our method with two baseline methods,
namely Promptist [7] and General Prompt Rewriting (Gen-
eral PR). Both are general text-to-image prompt rewriting
methods completely overlooking users’ preferences.
Promptist [7]. Promptist uses the GPT-2 as the base model
and has trained it on a self-collected text-to-image prompt
dataset with 360K prompts, by using supervised fine-tuing
method and reinforcement learning.
General PR. We prompt ChatGPT [15] to perform general
prompt rewriting in a normal manner. In practice, we input
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ChatGPT with the current prompt xt without any user his-
torical information. Apart from the absence of histories, ev-
erything else of the prompt template for ChatGPT remains
the same as the template in Table 1.

5.3. Qualitative Analysis

To illustrate the effectiveness of our retrieval methods,
we provide visualizations of the retrieved relevant image-
prompt pairs in the left section of Figure 8. These examples
are drawn from the experimental results of three different
test prompts from three users. The retrieved histories ex-
hibit a high degree of similarity with their corresponding
queries in terms of objects, attributes, as well as the overall
style or mood of the image.

This effectively demonstrates the proficiency of our re-
triever in sourcing relevant user histories, thereby providing
a robust reference for our rewriter to carry out personalized
prompt rewriting.

In the right section of Figure 8, we display the generation
outcomes of both “Shortened Prompt” and “Personalized
Prompt”. The “Shortened Prompt” column exhibits the re-
sults produced from the shortened prompts, while the “Per-
sonalized Prompt” column features the rewritten prompts
of our method along with their corresponding generated
images. It’s evident from these displays that images our
method generates are more inclined towards user prefer-
ences based on their histories, a testament to the expres-
sive power of our rewritten prompt. For instance, when the
query “Hobbit homes” is used (as seen in the first row), we
observe the user’s preferred style across three images, all
capturing the mood of mountainous scenery and depicting
the Hobbit homes within a consistent landscape.

5.4. Quantitative Comparison

To further examine the effectiveness of our Personalized PR
method, we conduct offline and online quantitative evalua-
tion, comparing different settings to the baseline methods
without enhanced prompt rewritten on the test samples we
created.

Method Retriever PMS " Image-Align" ROUGE-L"
Shortened Prompt - 0.5567 0.6272 0.3268

Promptist [7] - 0.5858 0.6481 0.2947
General PR - 0.5996 0.5912 0.2082

Personalized PR BM25 0.6125 0.6581 0.3942
EBR 0.6083 0.6485 0.4137

Personalized PR+ ICL BM25 0.6253 0.6456 0.4417
EBR 0.6179 0.6796 0.4686

Table 2. Comparison results of different variants of our method
with the baseline. Evidently, our method using EBR retriever (top-
3 retrieval) and 1-shot ICL can achieve most best results.

Offline Test. Table 2 showcases the numerical results com-
paring various retrieval and rewriting configurations with
shortened prompts. We can see that Promptist [7] and Gen-
eral PR are slightly better than ‘Shortened Prompt’ in terms

of PMS and Image-Align. Without the users’ histories,
these large language models perform prompt rewriting in
arbitrary pathways. Thus, the rewritten prompts these base-
line methods generate could totally deviate from the users’
preferences. Such hallucination scenarios result in the de-
crease in terms of ROUGE-L for both Promptist [7] and
General PR. This indicates that although general prompt
rewriting methods appear to be refining the prompts, their
results do not align with users’ preferences well. Our
method outperforms all baseline methods, i.e. Promptist [7]
and General PR, on all metrics.

A comparison between BM25 and EBR reveals that
dense retrieval generally outperforms sparse retrieval, al-
though the difference is relatively small, indicating that both
methods can produce satisfactory results.

Further, when contrasting context-independent rewriting
with in-context rewriting, it’s evident that ICL produces su-
perior outcomes. By integrating ICL with EBR, we achieve
absolute improvements of 14.2%, 6.9% and 5.6% in terms
of ROUGE-L, PMS and Text-Align metrics respectively.
This underscores the exceptional performance of personal-
ized prompting.

To check how sensitive our prompt rewriting methods
with respect to the length of the prompts before rewriting.
we assess our rewriting method using two additional types
of prompts with shorter lengths, namely “Noun Phrase” and
“Noun”, as detailed in Table 3.

Prompt Type Method PMS " Image-Align" ROUGE-L"

Noun Original 0.5537 0.6087 0.1770
Personalized PR 0.6142 0.6478 0.2804

Noun Phrase Original 0.5554 0.6146 0.2459
Personalized PR 0.6168 0.6534 0.3387

Short Sentence Original 0.5567 0.6272 0.3268
Personalized PR 0.6179 0.6796 0.4686

Table 3. Performance with respect to different prompt lengths, i.e.
Noun, Noun Phrase and Short Sentence. Our “Personalized PR”
equipped with top-3 dense retriever, and 1-shot ICL consistently
enhances results, even with only nouns or noun phrases.

These two prompts are derived using spaCy [9] from our
dataset, adhering to the principle of minimizing word count
while maintaining the main entities. The results displayed
in Table 3 show that across all three shortened scale, “Per-
sonalized PR” outperforms the baseline across all metrics,
demonstrating the effectiveness of our methods in recover-
ing user preferences.
Online Test. To further validate our approach, we have car-
ried out a single-blinded online evaluation on our website
mentioned above. Active users recently in the website are
randomly selected to participate in the online test. Upon
each prompt input by a participant, there’s an equal chance
of generating an image using either “Original Prompt”
or our method’s “Personalized Prompt”. Participants can
choose to “Save” or “Delete” each generated image based
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Figure 9. Illustration of our online evaluation methods and the
improvement of Save Rate from personalized Prompt.

on their preference. We use their “Save” actions to assess
our method’s effectiveness. In the online test, 247 users
generated 905 images, with 433 from “Original Prompt”
and 472 from “Personalized Prompt”. The results of the on-
line evaluation, as shown in Figure 9, indicate that users pre-
fer images generated using the “Personalized Prompt” over
the “Original Prompt”, with a 17.1% increase in “Save” ac-
tions. This suggests that our method aligns better with user
preferences, affirming its effectiveness. We anticipate even
better results in real-world scenarios with more user infor-
mation and an improved text-to-image generation method.

5.5. Ablation Study

In this section, we ablate k relevant historical prompts used
to rewrite personalized prompts and the number of demon-
stration examples used for in-context learning. We evaluate
each experiment on the same setup as in Section 5.1.

Method Retrieval Top-k PMS " Image-Align " ROUGE-L "

Personalized PR + ICL

1 0.6057 0.6751 0.4539
3 0.6179 0.6796 0.4686

5 0.6204 0.6748 0.4474
7 0.6265 0.6651 0.4592

Table 4. Ablation for Retrieval Top-k. We empirically conduct
experiments with respect to k 2 {1, 3, 5, 7}, keeping the configu-
ration of DENSE retriever and 1-shot ICL.

Retrieval Top-k Ablation. As shown in Table 4, when
using 3 most relevant historical prompts for rewriting, we
can obtain most best results among all evaluation metrics.
We analyze that too more historical prompts could provide
redundant information and also too long prompt input to
ChatGPT worsens the rewriting performance. Therefore,
we choose 3 as the number of retrieval results, a balanced
manner between performance and efficiency.
Number of ICL Demonstrations Ablation. Table 5 shows
that 1-shot setting, i.e., given 1 demonstration example for
in-context learning, can achieve the best results in general
among all the four evaluation metrics regarding both BM25
and EBR. This demonstrates that our prompt rewriting tem-

Method (Retrieval) ICL Shot PMS " Image-Align " ROUGE-L "

Personalized PR (BM25)
1 0.6253 0.6456 0.4417
3 0.6289 0.6580 0.4381
5 0.6236 0.6571 0.4226

Personalized PR (EBR)
1 0.6179 0.6796 0.4686

3 0.6274 0.6708 0.4354
5 0.6242 0.6724 0.4439

Table 5. Ablation for Number of ICL Demonstrations. We ex-
periment with consistent top-3 retrieval both on BM25 and EBR.
When we set ICL shot as 1 and use EBR retriever, we observe
more superior results appearing.

plate is efficient and effective enough for extracting the per-
sonalized preference from numerous historical data of each
user.

6. Conclusion and Future Work

In conclusion, this study has underscored the significance
of harnessing historical user behaviors to construct person-
alized AI content generation. Our strategy aims to refine
user prompts by capitalizing on previous user interactions
with the system. We have introduced an innovative tech-
nique that entails reconfiguring user prompts based on a
newly developed, large-scale text-to-image dataset encom-
passing over 300,000 prompts from 3,115 distinct users.
This methodology has proven to augment the expressive-
ness of user prompts and ensure their alignment with the de-
sired visual outputs. Our empirical results have underscored
the supremacy of our techniques over conventional meth-
ods. This superiority was corroborated through our novel
offline evaluation method and online tests, thereby affirm-
ing the efficacy of our approach.

Although the outcomes are encouraging, considerable
research still lies ahead in this domain. In the realm of
personalized text-to-image generation, the incorporation of
more personal details like a user’s age and gender could
bolster performance. The methodologies used could be ex-
tended to other LPMs, including LLMs. Additionally, tech-
niques for enhancing search engines, e.g. data source purifi-
cation and ranking optimization, could be assimilated into
these models.

We are confident that our contributions represent ad-
vancements towards a more personalized and user-focused
artificial intelligence.
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