
Text-to-3D using Gaussian Splatting

Zilong Chen, Feng Wang, Yikai Wang, Huaping Liu†

Beijing National Research Center for Information Science and Technology (BNRist),
Department of Computer Science and Technology, Tsinghua University

chenzl22@mails.tsinghua.edu.cn, hpliu@tsinghua.edu.cn

Project Page: gsgen3d.github.io

Figure 1. Delicate 3D assets generated by the proposed GSGEN. See the project page for videos.

Abstract

Automatic text-to-3D generation that combines Score Dis-
tillation Sampling (SDS) with the optimization of volume
rendering has achieved remarkable progress in synthesizing
realistic 3D objects. Yet most existing text-to-3D methods by
SDS and volume rendering suffer from inaccurate geometry,
e.g., the Janus issue, since it is hard to explicitly integrate 3D
priors into implicit 3D representations. Besides, it is usually
time-consuming for them to generate elaborate 3D models
with rich colors. In response, this paper proposes GSGEN, a
novel method that adopts Gaussian Splatting, a recent state-
of-the-art representation, to text-to-3D generation. GSGEN
aims at generating high-quality 3D objects and address-
ing existing shortcomings by exploiting the explicit nature
of Gaussian Splatting that enables the incorporation of 3D
prior. Specifically, our method adopts a progressive optimiza-
tion strategy, which includes a geometry optimization stage
and an appearance refinement stage. In geometry optimiza-
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tion, a coarse representation is established under 3D point
cloud diffusion prior along with the ordinary 2D SDS opti-
mization, ensuring a sensible and 3D-consistent rough shape.
Subsequently, the obtained Gaussians undergo an iterative
appearance refinement to enrich texture details. In this stage,
we increase the number of Gaussians by compactness-based
densification to enhance continuity and improve fidelity. With
these designs, our approach can generate 3D assets with del-
icate details and accurate geometry. Extensive evaluations
demonstrate the effectiveness of our method, especially for
capturing high-frequency components. Our code is available
at https://github.com/gsgen3d/gsgen.

1. Introduction

Diffusion model based text-to-image generation [1, 55, 57,
58] has achieved remarkable success in synthesizing photo-
realistic images from textual prompts. Nevertheless, for high-
quality text-to-3D content generation, the advancements lag
behind that of image generation due to the inherent complex-
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Stable DreamFusion [50, 69] threestudio ProlificDreamer [23, 77] GSGEN (Ours)
A DSLR photo of a panda

Fantasia3D [12] threestudio ProlificDreamer [23, 77] GSGEN (Ours)
A high quality photo of a furry corgi

threestudio Magic3D [23, 34] threestudio ProlificDreamer [23, 77] GSGEN (Ours)
A zoomed out DSLR photo of an amigurumi bulldozer

Figure 2. Compared to previous methods, GSGEN alleviates the Janus problem by representing the 3D scene using 3D Gaussian Splatting,
which is capable of applying direct 3D geometry guidance and expressing content with delicate details. Note that the results of DreamFusion,
Magic3D, and ProlificDreamer are obtained using Stable DreamFusion [69] and threestudio [23] since the official implementations have not
been publicly available till the date of this work.

ity of real-world 3D scenes. Recently, DreamFusion [50] has
made great progress in generating delicate assets by utilizing
score distillation sampling with a pre-trained text-to-image
diffusion prior. Its follow-up works further improve this
paradigm in quality [12, 77], training speed [34, 41], and
generating more reasonable geometry [2, 61, 85]. However,
most existing text-to-3D methods still suffer greatly from
collapsed geometry and limited fidelity, and are difficult to
incorporate 3D priors due to the implicit nature of NeRF
[43] and DMTET [62].

Recently, 3D Gaussian Splatting [31] has garnered signif-
icant attention in the field of 3D reconstruction, primarily
due to its remarkable ability to represent intricate scenes and
capability of real-time rendering. By modeling a scene using
a set of 3D Gaussians, Kerbl et al. [31] adopt an explicit and
object-centric approach that fundamentally diverges from
implicit representations like NeRF and DMTET. This dis-

tinctive approach paves the way for the integration of explicit
3D priors into text-to-3D generation. Building upon this in-
sight, instead of a straightforward replacement of NeRFs
with Gaussians, we propose to guide the generation with
an additional 3D point cloud diffusion prior to enhancing
geometrical coherence. By adopting this strategy, we can
better harness the inherent advantages of 3D Gaussians in
the creation of complex and 3D-consistent assets.

Specifically, we propose to represent the generated 3D
content with a set of Gaussians and optimize them progres-
sively in two stages, namely geometry optimization and
appearance refinement. In the geometry optimization stage,
we optimize the Gaussians under the guidance of a 3D point
cloud diffusion prior along with the ordinary 2D image prior.
The incorporation of this extra 3D SDS loss ensures a 3D-
consistent rough geometry. In the subsequent refinement
stage, the Gaussians undergo an iterative enhancement to en-
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rich delicate details. Due to the sub-optimal performance of
the original adaptive control under SDS loss, we introduce an
additional compactness-based densification technique to en-
hance appearance and fidelity. Besides, to prevent potential
degeneration and break the symmetry in the early stage, the
Gaussians are initialized with a coarse point cloud generated
by a text-to-point-cloud diffusion model. As a result of these
techniques, our approach can generate 3D assets with con-
sistent geometry and exceptional fidelity. Fig. 2 illustrates
a comparison between GSGEN and previous state-of-the-art
methods on generating assets with asymmetric geometry. In
summary, our contributions are:

• We propose GSGEN, a text-to-3D generation method using
3D Gaussians as representation. By incorporating direct
geometric priors, we highlight the distinctive advantages
of Gaussian Splatting in text-to-3D generation.

• We introduce a two-stage optimization strategy that first
exploits joint guidance of 2D and 3D diffusion prior to
shaping a coherent rough structure in geometry optimiza-
tion; then enriches the details with compactness-based
densification in appearance refinement.

• We validate GSGEN on various textual prompts. Experi-
ments show that our method can generate 3D assets with
accurate geometry and enhanced fidelity. Especially, GS-
GEN demonstrates superior performance in capturing high-
frequency components, such as feathers, surfaces with
intricate textures, animal fur, etc.

2. Related Work

2.1. 3D Scene Representations

Representing 3D scenes in a differentiable way has achieved
remarkable success in recent years. NeRFs [43] demon-
strates outstanding performance in novel view synthesis
by representing 3D scenes with a coordinate-based neu-
ral network. After works have emerged to improve NeRF
in reconstruction quality [7, 8, 76], handling large-scale
[13, 40, 68, 81] and dynamic scenes [3, 47, 51, 60, 73],
improving training [10, 44, 67, 79], rendering [25, 56, 80]
speed and facilitating down-stream tasks [17, 46, 78, 83, 84].
Although great progress has been made, NeRF-based meth-
ods still suffer from low rendering speed and high training-
time memory usage due to their implicit nature. To tackle
these challenges, Kerbl et al. [31] propose to represent the
3D scene as a set of anisotropic Gaussians and render novel
views using GPU-optimized tile-based rasterization. Gaus-
sian Splatting could achieve better reconstruction results
while being capable of real-time rendering. Our research
highlights the distinctive advantages of Gaussian Splatting
within text-to-3D by incorporating explicit 3D prior, gener-
ating 3D consistent and highly detailed assets.

2.2. Diffusion Models

Diffusion models have arisen as a promising paradigm for
learning and sampling from a complex distribution. Inspired
by the diffusion process in physics, these models involve a
forward process to gradually add noise and an inverse pro-
cess to denoise a noisy sample with a trained neural network.
After DDPM [27, 66] highlights the effectiveness of diffu-
sion models in capturing real-world image data, a plethora
of research has emerged to improve the inherent challenges,
including fast sampling [5, 39, 65] and architecture improve-
ments [6, 20, 28, 36, 48, 49]. One of the most successful
applications of diffusion models lies in text-to-image gener-
ation, where they have shown remarkable progress in gener-
ating realistic images from text prompts [1, 26, 55]. To pro-
duce high-resolution images, current methods utilize either
a cascaded structure combining a low-resolution diffusion
model with super-resolution models [1, 4, 58] or train a dif-
fusion model in latent space using an auto-encoder [22, 57].
Our proposed GSGEN is built upon StableDiffusion [57], an
open-source latent diffusion model that provides fine-grained
guidance for delicate 3D content generation.

2.3. Text-to-3D Generation

Early efforts in text-to-3D generation, including CLIP-forge
[59], Dream Fields [29], Text2Mesh [42], TANGO [14],
CLIPNeRF [72], and CLIP-Mesh [32], harness CLIP [53]
guidance to create 3D assets. To leverage the stronger dif-
fusion prior, DreamFusion [50] introduces score distilla-
tion sampling that optimizes the 3D content by minimiz-
ing the difference between rendered images and the dif-
fusion prior. This development sparked a surge of inter-
est in text-to-3D generation through image diffusion prior
[15, 38, 52, 54, 74, 85]. Magic3D [34] employs a coarse-
to-fine strategy, optimizing a NeRF with a low-resolution
diffusion prior and then enhancing texture under latent diffu-
sion prior with a DMTET initialized with the coarse NeRF.
Latent-NeRF [41] trains a NeRF within the latent space of
StableDiffusion and introduces the Sketch-Shape method
to guide the generation process. Fantasia3D [12] disen-
tangles the learning of geometry and material, harnessing
physics-based rendering techniques to achieve high-fidelity
mesh generation. ProlificDreamer [77] introduces varia-
tional score distillation to improve SDS and facilitate the
generation of high-quality and diverse 3D assets. Our concur-
rent work DreamGaussian [70] achieves fast image-to-3D by
capitalizing on the rapid convergence of Gaussian Splatting,
whose contribution is orthogonal to ours since we focus on
incorporating 3D prior with more advanced representation.
Another line of work lies in training or fine-tuning diffu-
sion models directly on 3D datasets (e.g. ShapeNet [9] and
Objaverse [18, 19]) to achieve more consistent results with
advanced guidance [11, 16, 24, 30, 33, 35, 37, 63, 64, 75, 82].
Our approach builds upon Point-E [45], a text-to-point-cloud
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Figure 3. Overview of the proposed GSGEN. Our approach aims at generating 3D assets with accurate geometry and delicate appearance.
GSGEN starts by utilizing Point-E to initialize the positions of the Gaussians (Sec 4.3). The optimization is grouped into geometry
optimization (Sec 4.1) and appearance refinement (Sec 4.2) to meet a balance between coherent geometry structure and detailed texture.

diffusion model trained on millions of 3D models, which
offers valuable 3D guidance and coarse initialization.

3. Preliminary

3.1. Score Distillation Sampling

Instead of directly generating 3D models, recent studies have
achieved notable success by optimizing 3D representation
with a 2D pre-trained image diffusion prior based on score
distillation sampling, as proposed by Poole et al. [50]. In
this paradigm, the scene is represented as a differentiable
image parameterization (DIP) denoted as θ, where the image
can be differentiably rendered based on the given camera
parameters through a transformation function g. The DIP
θ is iteratively refined to ensure that, for any given camera
pose, the rendered image x = g(θ) closely resembles a
plausible sample derived from the guidance diffusion model.
DreamFusion achieves this by leveraging Imagen [58] to
provide a score estimation function denoted as ϵϕ(xt; y, t),
where xt, y, and t represent the noisy image, text embedding,
and timestep, respectively. This estimated score plays a
pivotal role in guiding the gradient update, as expressed by
the following equation:

∇θLSDS = Eϵ,t
[
w(t)(ϵϕ(xt; y, t)− ϵ)

∂x

∂θ

]
(1)

where ϵ is a Gaussian noise and w(t) is a weighting function.
Our approach combines score distillation sampling with 3D
Gaussian Splatting at both 2D and 3D levels with different
diffusion models to generate 3D assets with both detailed
appearance and 3D-consistent geometry.

3.2. 3D Gaussian Splatting

Gaussian Splatting, as introduced in Kerbl et al. [31],
presents a pioneering method for novel view synthesis
and 3D reconstruction from multi-view images. Unlike
NeRF, 3D Gaussian Splatting adopts a distinctive approach,
where the underlying scene is represented through a set of
anisotropic 3D Gaussians parameterized by their positions,
covariances, colors, and opacities. When rendering, the 3D
Gaussians are projected onto the camera’s imaging plane
[86]. Subsequently, the projected 2D Gaussians are assigned
to individual tiles. The color of p on the image plane is
rendered sequentially with point-based volume rendering
technique [86]:

C(p) =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) (2)

where αi = oie
− 1

2 (p−µi)
TΣ−1

i (p−µi) refers to the opacity
at point p, ci, oi, µi, and Σi represent the color, opacity,
position, and covariance of the i-th Gaussian respectively,
N denotes the Gaussians in this tile. To maximize the uti-
lization of shared memory, Gaussian Splatting further de-
signs a GPU-friendly rasterization process where each thread
block is assigned to render an image tile. These advance-
ments enable Gaussian Splatting to achieve more detailed
scene reconstruction, significantly faster rendering speed,
and reduction of memory usage during training compared
to NeRF-based methods. In this study, we expand the ap-
plication of Gaussian Splatting into text-to-3D generation
and introduce a novel approach that leverages the explicit
nature of Gaussian Splatting by integrating direct 3D diffu-
sion priors, highlighting the potential of 3D Gaussians as a
fundamental representation for generative tasks.
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4. Approach

Our goal is to generate 3D content with accurate geometry
and delicate detail. To accomplish this, GSGEN exploits
the 3D Gaussians as representation due to its flexibility to
incorporate geometry priors and capability to represent high-
frequency details. Based on the observation that a point
cloud can be seen as a set of isotropic Gaussians, we propose
to integrate a 3D SDS loss with a pre-trained point cloud dif-
fusion model to shape a 3D-consistent geometry. With this
additional geometry prior, our approach could mitigate the
Janus problem and generate more sensible geometry. Subse-
quently, in appearance refinement, the Gaussians undergo an
iterative optimization to gradually improve fine-grained de-
tails with a compactness-based densification strategy, while
preserving the fundamental geometric information. The de-
tailed GSGEN methodology is presented as follows.

4.1. Geometry Optimization

Many text-to-3D methods encounter the significant chal-
lenge of overfitting to several views, resulting in assets with
multiple faces and collapsed geometry [12, 34, 50]. This
issue, known as the Janus problem [2, 61], has posed a per-
sistent hurdle in the development of such approaches. In our
early experiments, we faced a similar challenge that rely-
ing solely on 2D guidance frequently led to flawed results.
However, we noticed that the geometry of 3D Gaussians can
be directly rectified with a point cloud prior, which is not
feasible for previous text-to-3D methods using NeRFs as
their geometries are represented in implicit density functions.
Recognizing this distinctive advantage, we introduce a ge-
ometry optimization process to shape a reasonable structure.
Concretely, in addition to the ordinary 2D image diffusion
prior, we further optimize the positions of Gaussians using
Point-E [45] guidance, a pre-trained text-to-point-cloud dif-
fusion model. Instead of directly aligning the Gaussians with
a Point-E generated point cloud, we apply a 3D SDS loss to
lead the positions inspired by image diffusion SDS, which
avoids challenges including registration, scaling, and poten-
tial degeneration. We summarize the loss in the geometry
optimization stage as the following equation:

∇θLgeometry = EϵI ,t
[
wI(t)(ϵϕ(xt; y, t)− ϵI)

∂x

∂θ

]
+ λ3D · EϵP ,t [wP (t)(ϵψ(pt; y, t)− ϵP )] ,

(3)

where pt and xt represent the noisy Gaussian positions and
the rendered image, w∗ and ϵ∗ refer to the corresponding
weighting function and Gaussian noise.

4.2. Appearance Refinement

While the introduction of 3D prior does help in learning a
more reasonable geometry, we experimentally find it would

Figure 4. An illustration of the proposed compactness-based densi-
fication.

also disturb the learning of appearance, resulting in insuffi-
ciently detailed assets. Based on this observation, GSGEN
employs another appearance refinement stage that iteratively
refines and densifies the Gaussians utilizing only the 2D
image prior.

To densify the Gaussians, Kerbl et al. [31] propose to split
Gaussians with a large view-space spatial gradient. However,
we encountered challenges in determining the appropriate
threshold for this spatial gradient under score distillation
sampling. Due to the stochastic nature of SDS loss, em-
ploying a small threshold is prone to be misled by some
stochastic large gradient thus generating an excessive num-
ber of Gaussians, whereas a large threshold will lead to a
blurry appearance, as illustrated in Fig. 7.

To tackle this, we propose compactness-based densifica-
tion as a supplement to positional gradient-based split with a
large threshold. Specifically, for each Gaussian, we first ob-
tain its K nearest neighbors with a KD-Tree. Then, for each
of the neighbors, if the distance between the Gaussian and its
neighbor is smaller than the sum of their radius, a Gaussian
will be added between them with a radius equal to the resid-
ual. As illustrated in Fig. 4, compactness-based densification
could “fill the holes”, resulting in a more complete geometry
structure. To prune unnecessary Gaussians, we add an extra
loss to regularize opacity with a weight proportional to its
distance to the center and remove Gaussians with opacity
smaller than a threshold αmin periodically. Furthermore,
we recognize the importance of ensuring the geometry con-
sistency of the Gaussians throughout the refinement phase.
With this concern, we penalize Gaussians which deviate sig-
nificantly from their positions obtained during the preceding
geometry optimization. The loss function in the appearance
refinement stage is summarized as the following:

∇θLrefine = λSDSEϵI ,t
[
wI(t)(ϵϕ(xt; y, t)− ϵI)

∂x

∂θ

]
+ λmean∇θ

∑
i

||pi||+ λopacity∇θ

∑
i

sg(||pi||) · oi,
(4)

where sg(·) refers to the stop gradient operation, pi and
oi represents the position and opacity of the i-th Gaussian
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Magic3D Fantasia3D GSGEN (ours)

A 3D model of an adorable cottage with a thatched roof.

A ripe strawberry

A DSLR photo of an ice cream sundae

A DSLR photo of car made out of sushi
Magic3D GSGEN (Ours) ProlificDreamer GSGEN (Ours)

A bagel filled with cream cheese and lox A DSLR photo of banana

A peacock on a surfboard A car made out of cheese

Figure 5. Qualitative comparison between the proposed GSGEN and state-of-the-art generation methods, including DreamFusion [50],
Magic3D [34], Fantasia3D [12], and ProlificDreamer [77]. For more qualitative comparison results, please refer to the appendix. Videos of
these images are provided in the project page.

respectively. λSDS, λmean and λopacity are loss weights.

4.3. Initialization with Geometry Prior

Previous studies [12, 34, 41] have demonstrated the critical
importance of starting with a reasonable geometry initializa-
tion. In our early experiments, we also found that initializing
with a simple pattern could potentially lead to a degenerated
3D object. To overcome this, we opt for initializing the po-
sitions of the Gaussians either with a generated point cloud

or with a 3D shape provided by the users (either a mesh or a
point cloud). In the context of general text-to-3D generation,
we employ a text-to-point-cloud diffusion model, Point-E
[45], to generate a rough geometry according to the text
prompt. While Point-E can produce colored point clouds,
we opt for random color initialization based on empirical
observations, as direct utilization of the generated colors has
been found to have detrimental effects in early experiments
(See the appendix for visualization). The scales and opaci-
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(a) w/o initialization (b) w/o 3D guidance (c) Coarse Model (d) Full

A zoomed out DSLR photo of a corgi wearing a top hat

A high quality photo of a furry dog

A DSLR photo of a streaming engine train, high resolution

A DSLR photo of a panda

Figure 6. Ablation study results on initialization and 3D prior.

ties of the Gaussians are assigned with fixed values, and the
rotation matrix is set to the identity matrix. For user-guided
generation, we convert the preferred shape to a point cloud.
To avoid too many vertices in the provided shape, we use
farthest point sampling [21] for point clouds and uniform sur-
face sampling for meshes to extract a subset of the original
shape instead of directly using all the vertices or points.

5. Experiments

In this section, we present our experiments on validating
the effectiveness of the proposed approach. Specifically, we
compare GSGEN with previous state-of-the-art methods in
general text-to-3D generation. Additionally, we conduct
several ablation studies to evaluate the importance of ini-
tialization, 3D guidance, and densification strategy. The
detailed results are shown as follows.

5.1. Implementation Details

Guidance model setup. We implement the guidance model
based on the publicly available diffusion model, StableD-
iffusion [57, 71]. For the guidance scale, we adopt 100
for StableDiffusion as suggested in DreamFusion and other
works. We also exploit the view-dependent prompt technique
proposed by DreamFusion. All the assets demonstrated in
this section are obtained with StableDiffusion checkpoint
runwayml/stable-diffusion-v1-5.
3D Gaussian Splatting setup. We implement the 3D Gaus-
sian Splatting rendering pipeline with a PyTorch CUDA ex-

tension, and further add learnable background support to fa-
cilitate our application. For densification, we split the Gaus-
sians by view-space position gradient every 500 iterations
with a threshold Tpos = 0.02 and perform compactness-
based densification every 1000 iterations which we empir-
ically found effective for achieving a complete geometry.
For pruning, we remove Gaussians with opacity lower than
αmin = 0.05, and excessively large world-space or view-
space radius every 200 iterations.
Traning setup. We use the same focal length, elevation,
and azimuth range as those of DreamFusion [50]. To sam-
ple more uniformly in the camera position, we employ a
stratified sampling on azimuth. We choose the loss weight
hyperparameters λSDS = 0.1 and λ3D = 0.01 in geome-
try optimization stage, and λSDS = 0.1, λmean = 1.0 and
λopacity = 100.0 in appearance refinement.

5.2. Text-to-3D Generation

We evaluate the performance of the proposed GSGEN in
the context of general text-to-3D generation and present
qualitative comparison against state-of-the-art methods. As
illustrated in Fig. 2, our approach produces delicate 3D as-
sets with more accurate geometry and intricate details. In
contrast, previous state-of-the-art methods under SDS guid-
ance [12, 23, 34, 50, 69] struggle in generating collapsed
geometry under the same guidance and prompt, which un-
derscores the effectiveness of our approach. While the VSD
guidance proposed by ProlificDreamer [77] significantly im-
proves the appearance of generated assets, it is still suscepti-

21407



ble to the Janus problem, resulting in flawed geometry. We
present more qualitative comparison results in Fig. 5, where
our approach showcases notable enhancements in preserv-
ing high-frequency details such as the intricate patterns on
sushi, the feathers of the peacock, and the thatched roof.
In contrast, Magic3D and Fantasia3D yield over-smoothed
geometry due to the limitation of mesh-based methods while
ProlificDreamer is prone to the multi-face problem, making
the generated assets less realistic. Furthermore, our GSGEN
stands out for its efficiency, generating 3D assets in about
40 minutes, on par with Magic3D and Fantasia3D, but with
improved fidelity and richer details. For more qualitative
comparisons and the performance of GSGEN under more ad-
vanced guidance including MVDream [63] and DeepFloyd
IF [1], please refer to the appendix.

5.3. Ablation Study

Initialization. To assess the impact of initialization, we in-
troduce a variant that initiates the positions of the Gaussians
with an origin-centered Gaussian distribution which emu-
lates the initialization adopted in DreamFusion [50]. The
qualitative comparisons are shown in Fig. 6a. It is evident
that assets generated with DreamFusion-like initialization
encounter severe degeneration issues, especially for prompts
depicting asymmetric scenes, resulting in collapsed geome-
try. In contrast, Point-E initialization breaks the symmetry
by providing an anisotropic geometry prior, leading to the
creation of more 3D-consistent objects.
3D prior. We evaluate the necessity of incorporating 3D
prior by generating assets without point cloud guidance dur-
ing geometry optimization. The qualitative comparisons are
visualized in Fig. 6b. Although achieved better geometry
consistency compared to random initialization, relying solely
on image diffusion prior still suffers from the Janus prob-
lem, which is particularly evident in cases with asymmetric
geometries, such as the dog and the panda. In contrast, our
approach effectively addresses this issue with the introduc-
tion of 3D prior, rectifying potentially collapsed structures
in the geometry optimization stage and resulting in a 3D-
consistent rough shape. Notably, we show in the appendix
that GSGEN maintains great performance even when Point-E
behaves sub-optimally. We attribute this to direct 3D prior
provided by Point-E assisting in geometrical consistency by
correcting major shape deviations in the early stage, without
the need to guide fine-grained geometric details. For a com-
prehensive analysis, please refer to the appendix.
Densification strategy. To validate the effectiveness of the
proposed densification strategy, we propose two variants for
comparison: (1) The original densification strategy that split
Gaussians with an average view-space gradient larger than
Tpos = 0.0002. (2) With larger Tpos = 0.02 that avoids too
many new Gaussians. While effective in 3D reconstruction,
the original densification strategy that relies only on view-

Tpos = 0.0002 Tpos = 0.02
Tpos = 0.02
+compactness

Figure 7. Ablation study on densification strategy.

space gradient encounters a dilemma in the context of score
distillation sampling: within limited times of densification,
a large threshold tends to generate an over-smoothed appear-
ance while a small threshold is easily affected by unstable
gradients. As shown in Fig. 7, the proposed compactness-
based densification is an effective supplement to the original
densification strategy under SDS guidance.

6. Limitations and Conclusion

Limitations. GSGEN tends to generate unsatisfying results
when the provided text prompt contains a complex descrip-
tion of the scene or with complicated logic due to the limited
language understanding ability of Point-E and the CLIP text
encoder used in StableDiffusion. Moreover, although incor-
porating 3D prior mitigates the Janus problem, it is far from
eliminating the potential degenerations, especially when the
textual prompt is extremely biased in the guidance diffusion
models. Concrete failure cases and corresponding analyses
are illustrated in the appendix.
Conclusion. In this paper, we propose GSGEN, a novel
method for generating highly detailed and 3D consistent as-
sets using Gaussian Splatting. In particular, we adopt a two-
stage optimization strategy including geometry optimization
and appearance refinement. In the geometry optimization
stage, a rough shape is established under the joint guidance
of a point cloud diffusion prior along with the common im-
age SDS loss. In appearance refinement, the Gaussians are
further optimized to enrich details and densified to achieve
better continuity and fidelity with compactness-based densi-
fication. We conduct comprehensive experiments to validate
the effectiveness of the proposed method, demonstrating its
ability to generate 3D consistent assets and superior perfor-
mance in capturing high-frequency components. We hope
our method can serve as an efficient and powerful approach
for high-quality text-to-3D generation and could pave the
way for more extensive applications of Gaussians Splatting
and direct incorporation of 3D prior.
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