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Universal Prior Generalize to Novel Views, Poses, Identities, and Illuminations Quick Personalization 

from a Phone Scan

Figure 1. URHand (a.k.a. Your Hand). Our model is a high-fidelity Universal prior for Relightable Hands built upon light-stage data. It
generalizes to novel viewpoints, poses, identities, and illuminations, which enables quick personalization from a phone scan.

Abstract
Existing photorealistic relightable hand models require

extensive identity-specific observations in different views,
poses, and illuminations, and face challenges in generaliz-
ing to natural illuminations and novel identities. To bridge
this gap, we present URHand, the first universal relightable
hand model that generalizes across viewpoints, poses, illu-
minations, and identities. Our model allows few-shot per-
sonalization using images captured with a mobile phone,
and is ready to be photorealistically rendered under novel
illuminations. To simplify the personalization process while
retaining photorealism, we build a powerful universal re-
lightable prior based on neural relighting from multi-view
images of hands captured in a light stage with hundreds of
identities. The key challenge is scaling the cross-identity
training while maintaining personalized fidelity and sharp
details without compromising generalization under natural
illuminations. To this end, we propose a spatially vary-
ing linear lighting model as the neural renderer that takes
physics-inspired shading as input feature. By removing
non-linear activations and bias, our specifically designed
lighting model explicitly keeps the linearity of light trans-
port. This enables single-stage training from light-stage
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data while generalizing to real-time rendering under ar-
bitrary continuous illuminations across diverse identities.
In addition, we introduce the joint learning of a physically
based model and our neural relighting model, which fur-
ther improves fidelity and generalization. Extensive exper-
iments show that our approach achieves superior perfor-
mance over existing methods in terms of both quality and
generalizability. We also demonstrate quick personalization
of URHand from a short phone scan of an unseen identity.

1. Introduction

We engage our hands for various tasks throughout the day,
and they consistently remain within our field of view. This
constant visibility of our hands makes them one of the most
frequently seen parts of our body, playing a central role in
self-embodiment. To seamlessly reproduce this experience
for games or social telepresence, an ideal hand representa-
tion in a digital medium is photorealistic, personalized, and
importantly, relightable for coherent appearance in any en-
vironment. Our objective is to enable the quick creation
of such a hand model for any individual given lightweight
input such as a phone scan, without going through an ex-
pensive capture process in a production studio (Figure 1).

Approaches to build a photorealistic relightable hand
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Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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model can be broadly categorized into one of two philoso-
phies. On the one hand, physically based rendering mod-
els [24, 53] can generalize to various illuminations through
costly offline path-tracing, but typically lack photorealism
under a real-time constraint. Additionally, accurately esti-
mating material parameters remains a non-trivial challenge
from unconstrained inputs and the quality is often bounded
by the expressiveness of the physical models. On the other
hand, neural relighting [2, 14] recently achieves impressive
photorealism in real-time by directly inferring the outgoing
radiance from illumination conditions. However, for gen-
eralization to natural illuminations to be possible these ap-
proaches require expensive data augmentation with teacher-
student distillation, where the student model learns to match
with offline renderings produced by the teacher model un-
der natural illuminations. Most importantly, cross-identity
generalization remains an open problem in both camps.

In this work, we propose URHand, the first Universal
Relightable Hand model that generalizes across view-
points, motions, illuminations, and identities. To achieve
the best trade-off between generalization and fidelity, our
work exploits both physically based rendering and data-
driven appearance modeling from neural relighting. More
specifically, we incorporate known physics, such as the lin-
earity of light transport [8] and surface reflections in the in-
ductive bias of the neural relighting framework. We modu-
late non-linear layers conditioned by pose and identity with
linear layers conditioned by spatially varying physically
based shading [3]. This explicitly ensures linearity between
input lighting features and output radiance. Thus, it enables
environment map relighting without an expensive two-stage
teacher-student distillation process commonly used in exist-
ing models [2, 14]. Our single-stage training enabled by lin-
earity preservation makes cross-identity training more scal-
able with better generalization to novel illuminations.

Furthermore, we observe that the quality of the input
shading features directly influences both generalization and
fidelity of the final neural relighting outputs. Inspired by re-
cent inverse rendering techniques [5, 60, 63], we introduce
an additional physical branch that estimates the material pa-
rameters and high-resolution geometry via inverse render-
ing, from which we produce the input lighting features to
the neural branch. The physical branch prevents the neu-
ral branch from overfitting by reducing hallucinations, and
the neural branch compensates for the complex global light
transport effects, such as subsurface scattering, that cannot
be well captured by the physical branch. In addition, the
proposed physics-based refinement improves the accuracy
of the tracking geometry with fine details such as wrinkles.
Combining it with our novel lighting-aware adversarial loss,
our method achieves highly detailed relighting with various
illuminations under any pose for novel identities.

We run an extensive ablation study as well as compar-

isons with baseline methods. The experiments demonstrate
the efficacy of our hybrid neural-physical relighting method
by outperforming other methods quantitatively and quali-
tatively. We also demonstrate the quick personalization of
URHand from a phone scan, and relighting with arbitrary
natural illuminations. In summary, our contributions are:
• The first method to learn a universal relightable hand

model that generalizes to novel views, poses, illumina-
tions, and identities.

• A spatially varying linear lighting model that general-
izes to continuous illuminations without expensive dis-
tillation, enabling high-fidelity neural rendering and scal-
able training with multiple identities.

• A hybrid neural-physical relighting framework that lever-
ages the best of both approaches to achieve high fidelity
and generalization at the same time.

• The quick personalization of our universal prior to create
a photorealistic and relightable hand from a phone scan.

2. Related Work
3D Hand Modeling. Human hand modeling is an active
research field within vision and graphics. Early works fo-
cus more on 3D geometry and representation including mix-
ture of 3D Gaussians [43, 44], sphere meshes [48], and tri-
angular meshes [1, 7, 40]. These parametric hand mod-
els facilitate 3D hand pose estimation from 2D observa-
tions [27, 28, 31–33]. Recent works also incorporate phys-
ical priors [24, 29, 42, 49, 64] to model more accurate
non-rigid deformation and articulation of the hand geom-
etry. The recent advances of neural fields [47, 54] also en-
able the learning of personalized articulated models [18].
Beyond geometry modeling, achieving a lifelike appear-
ance for hands [38] is paramount for realistic rendering
and animation. Handy [37] learns a texture space by us-
ing generative adversarial networks for better photorealism
and generalization. More recently, some methods [4, 6, 34]
showcase the modeling of animatable hands from monoc-
ular/multiview captures. However, the appearance models
of these approaches simply bake the captured illumination
and cannot be rendered under novel illuminations. NIM-
BLE [24] builds PCA reflectance maps including diffuse,
normal, and specular maps from light-stage data. DART [9]
also supports accessories. However, physically based mate-
rials are expensive to render with global illumination which
often limits their rendering fidelity with a real-time con-
straint. RelightableHands [14] enables the photorealistic
relighting of hands in real-time using a neural appearance
model. However, the method only supports person-specific
modeling and generalization to unseen identity is not possi-
ble. In contrast, our approach generalizes across poses, illu-
minations, and identities, supporting relightable hand mod-
eling of unseen identities from a phone scan.
Image-based Relighting. Given the linearity of light trans-
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port, Debevec et al. [8] propose to render human faces under
novel illuminations by linear combinations of sampled re-
flectance fields from one-light-at-a-time (OLAT) captures.
A series of follow-up work [26, 45, 52, 55] enable dy-
namic relighting and capture through learning-based ap-
proaches. Meanwhile, another line of work aims at in-
trinsic decomposition, enabling physically based rendering
with disentangled geometry and reflectance in the image
space [11, 12, 17, 21, 35, 41]. Recent advances in neural
rendering [15, 36, 58] learn to match with ground truth us-
ing non-linear neural networks given the lighting features
from a simple physical shading model. Yet, image-based
relighting suffers from 3D inconsistency and flickering due
to the lack of an underlying 3D representation.
Model-based Relighting. To address the lack of 3D
consistency in image-based relighting, one can leverage
a shared 2D parameterization [56, 62] or template mod-
els [2, 5, 14, 19] for model-based relighting. Most model-
based relighting approaches [5, 13, 16, 39, 50] rely on the
intrinsic decomposition of geometry and reflectance fol-
lowed by a physically based appearance model. While they
achieve generalization to novel conditions, the fidelity is
typically limited due to the lack of expressiveness in the
underlying parametric BRDFs. On the other hand, methods
with neural renderers support complex global illumination
effects learned from captured data under point lights. How-
ever, generalization to continuous environments requires
the expensive teacher-student training framework [2, 14],
which is difficult to scale to cross-identity training. On the
contrary, our spatially varying linear network achieves gen-
eralization to any type of illumination without additional
training. Concurrently, Yang et al. [57] propose a linear
lighting model for face relighting that eliminates the need
of teacher-student distillation. While the motivation is sim-
ilar, we observe that their holistic light representation does
not generalize well for hands due to drastic visibility change
by articulation (see Sec. 5.3 for analysis).

3. Preliminary
Data Acquisition. We use a multiview capture system
consisting of 150 cameras and 350 LED lights to capture
dynamic hands with time-multiplexed illuminations by in-
terleaving fully lit (all lights on) and partially lit every other
frame. Instead of OLAT, our partially lit frames use L = 5
grouped lights to increase brightness and reduce motion
blur as in [2, 14, 22]. Images are captured in the resolution
of 4096× 2668 at 90 fps. We first reconstruct per-frame 3D
meshes using [10] and detect 3D hand keypoints using [23]
followed by triangulation from fully lit frames.

For partially lit frames, we leverage spherical linear in-
terpolation over the pose parameter of adjacent fully lit
frames to obtain the hand pose of partially lit frames. Our
dataset contains 93 different identities in diverse hand mo-

tions with an average of 42000 frames for each identity.
Linearity of Light Transport. To render subjects in arbi-
trary illuminations, natural illumination is treated as a lin-
ear combination of distant point lights given the linearity
of light transport [8]. Specifically, given the appearance
value Ci based on the i-th point light, the final color C is
computed as a linear combination of all light sources, i.e.
C =

∑L
i=1 biC

i, where L denotes the number of lights,
and bi is the intensity of each light. Given a light transport
function f(b) = C, we define it as linear w.r.t. b such that:

f(b) = f(

L∑
i=1

bi) =

L∑
i=1

f(bi), b =

L∑
i

bi. (1)

Hand Geometry Modeling. We use UHM [30] to repre-
sent 3D hands based on a mesh template with vertex offsets.
The 3D hand can be driven by linear blend skinning (LBS)
and represent identity- and pose-specific deformations.

Specifically, we design an autoencoder to obtain accurate
hand tracking and geometry. The encoder learns to predict
identity-dependent latent codes and 3D hand poses from the
input fully lit frames. Given an articulated generic mesh
template M̄ = {V,F ,U , θ} with vertices V ∈ RnV×3,
faces F ∈ RnF×3, texture coordinates U ∈ RnV×2, and 3D
pose θ ∈ R60×3 in Euler angles and latent codes z, the de-
coder learns to predict the 3D offset of all vertices as δV ∈
RnV×3. We use nV = 15930 and nF = 32340. The tracked
hand mesh will be represented as M = {V + δV,F ,U , θ}.
Please refer to the supplementary material for more details.

4. Universal Relightable Hands
Our goal is to build a universal relightable shape and appear-
ance model for human hands that can be rendered for any
identity under arbitrary illumination in real-time. To this
end, we learn a relightable appearance model from cross-
identity light-stage captures based on grouped point lights.

In this section, we will introduce our learning frame-
work, URHand, which learns to relight target hands in dif-
ferent poses and views. The core of our model is a spa-
tially varying linear lighting model that preserves the lin-
earity of light transport, which enables the generalization to
arbitrary illuminations by training with monochrome group
lights only. Our model consists of two parallel render-
ing branches, physical and neural. The physical branch
(Sec. 4.1) focuses on refining geometry and providing accu-
rate shading features as an illumination proxy for the neural
branch. The neural branch (Sec. 4.2) learns the final appear-
ance of hands with global illumination. These two branches
are trained jointly in an end-to-end manner with our tailored
loss functions (Sec. 4.3). Finally, we use this universal prior
to quickly personalize a relightable hand model from few-
shot observations (Sec. 5.4).
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Figure 2. Overview of URHand. Our model takes as input a mean texture T , hand pose θ, and a coarse mesh M for each identity. The
physical branch (Sec. 4.1) focuses on geometry refinement and providing accurate shading features for the neural branch (Sec. 4.2). The
core of the neural branch is the linear lighting model which takes as input the physics-inspired shading features from the physical branch.
The neural branch learns to predict the gain and bias map over the mean texture. We leverage a differentiable rasterizer for rendering and
minimize the loss of both branches against ground truth images (Sec. 4.3). The sg(·) denotes the stop-gradient operation.

4.1. Physically based Geometry Refinement

The physical branch employs online physically based ren-
dering to render images using a parametric BRDF. We opti-
mize the material parameters of the BRDF via inverse ren-
dering. The goal of the physical branch is two-fold: 1) fur-
ther refine the initial hand geometry for better alignment,
and 2) provide generalizable lighting features that best ap-
proximate the specular reflection and diffuse shading to pre-
vent overfitting in the neural relighting.

We illustrate the physical branch in Fig. 2. The phys-
ical branch estimates a parametric Disney BRDF [3] Fpb.
We use a 2D U-Net FG to infer a displacement map δd ∈
R1024×1024×3 and a roughness map β ∈ R1024×1024 in
UV space. Instead of predicting a normal map directly,
we use the predicted displacement map to update the nor-
mal map on top of the unwrapped coarse mesh in the UV
space, which makes it easier to infer high-frequency geo-
metric details on a smooth base surface [59]. To support
cross-identity modeling with pose-dependent geometry and
appearance change, FG takes as input the hand pose θ and
the unwrapped mean texture T ∈ R1024×1024×3 for each
identity, where the hand pose is concatenated to the bottle-
neck representation of the U-Net.

Specifically, the refined surface x̂ is obtained by adding
the displacement δd to the base surface x derived from the
coarse mesh M along the direction of the normal n:

x̂ = x+ δd · n, (2)

where positional map x̂ is then used to obtain the refined
normal n̂ in the UV space for physically based rendering. In
our implementation, we apply a sigmoid activation followed
by a scaling factor of 3 in order to constrain the range of
displacement to ±3mm.

The refined normal n̂ and roughness β are fed into Fpb

that considers only the first bounce. Given an illumination
L, the final color Cpb from camera view d is computed as:

Cpb(x̂,d,L) =
∫

Li(L, x̂, ωi)Fpb(x̂, ωi,d, β)(ωi · n̂)dωi, (3)

where Li(x̂, ωi) is the incident light from direction ωi.
The physically rendered texture map Cpb can be decom-
posed into physically based shading feature, i.e. Fpb(L) =
{Cd

pb,C
s
pb}, according to the equation Cpb = Cd

pb ⊙ T +
Cs

pb, where ⊙ is the element-wise multiplication, and T
is the mean texture approximating albedo. Note that, this
computation is directly performed in the UV space.

4.2. Linear Lighting Model

The rendering based on a parametric BRDF generalizes to
novel illuminations, but they lack correct global light trans-
port effects such as subsurface scattering. To enable relight-
ing with global illumination in real-time, we introduce a
neural renderer FR. Given a target illumination, the outgo-
ing radiance is computed as: C = FR(M, T ,Fpb(L), θ).

Our key insight is that removing the non-linear activation
layers and bias in a convolutional neural network preserves
the linearity with respect to the input features. Since our
input feature is the physically based shading Fpb(L), our
network satisfies the following:

L∑
i=1

FR(M, T ,Fpb(Li), θ) = FR(M, T ,
L∑

i=1

Fpb(Li), θ). (4)

Since the physically based rendering in Eq. 3 is energy pre-
serving, the network holds the linearity w.r.t. the input illu-
mination. Therefore, our network can produce accurate re-
lighting with continuous environment maps by training only
with discrete point lights without additional distillation.

We illustrate the architecture of FR = {Fl,Fnl} in
Fig. 2. It consists of a linear (Fl) and a non-linear (Fnl)
branch, where the linear branch consists of an encoder
Fl−enc and a decoder Fl−dec with physically based shading
features Fpb(L) as input. The pose- and identity-dependent
features derived from the mean texture T and pose θ are fed
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into a non-linear branch. We fuse the linear and non-linear
feature maps in the decoder of the linear branch as follows:

Fj+1
l−dec =

1√
2
· ConvT(Fj

l−enc + Fj
l−dec)⊙Fj

nl, (5)

where j is the index of the layer, ConvT is the transposed
convolutional layer without bias. This fusion mechanism
keeps the linearity of the output w.r.t. the input lighting fea-
tures while incorporating non-linearity w.r.t. identity and
pose conditions. Instead of predicting the final texture, our
neural renderer predicts the texel-aligned gain map g and
bias map b, which contribute to the final texture as follows:

C = g ⊙ T + b · σT , (6)

where σT = 64 is the standard deviation of textures.
Important to note that since our input feature Fpb is spa-

tially varying in a texel-aligned manner similar to [14, 36],
we can accurately incorporate shadow information for bet-
ter generalization with diverse poses. While the concur-
rent work [57] also proposes a linear lighting model using
a holistic illumination representation by simply reshaping
environment maps, we observe that the holistic illumina-
tion representation cannot generalize for hands due to the
infinite shadow variations caused by articulation. The same
observation is also reported in person-specific relightable
hand modeling [14]. Please refer to Sec. 5 for the analysis.

4.3. Training Objectives

Our model is trained on multiview partially lit images in
different identities and poses. The training objective Ltotal

consists of three parts: reconstruction loss Limg, lighting-
aware adversarial loss LGAN, and L1 regularization Lreg:

Ltotal = λimgLimg + λGANLGAN + λregLreg, (7)

where λ∗ are corresponding loss weights.
Reconstruction Loss. We leverage a sum of L1 loss LMAE

and perceptual loss Leff based on the EfficientNet [46]
backbone, i.e. Limg = LMAE + Leff . Both the renderings
from the neural and the physical branch are supervised by
the reconstruction loss against the ground truth images.
Lighting-aware Adversarial Loss. To improve the vi-
sual quality, we propose to use an adversarial loss on top
of the reconstruction loss. We found that a naive image-
conditioned discriminator performs poorly due to the signif-
icant appearance change in partially lit frames. To address
this, we leverage a lighting-aware discriminator on multi-
ple scales of renderings. Specifically, the discriminator FD

is conditioned on the diffuse and specular feature, {A,S},
which prompts the network to discriminate real and fake im-
ages given the illumination information. These lighting fea-
tures are based on simple Phong reflectance [14] to ensure
a consistent lighting prompt during training. We choose a

hinge loss [25] operated on multi-resolution discriminated
patches as the adversarial target:

LGAN = logFD(I|A,S) + log[1−FD(Î|A,S)], (8)

where I is the ground truth, and Î is the rendered image.
L1 Regularization on Linear Model. We also discovered
that without regularization, a linear lighting model often
produces noticeable flickering. As a linear convolutional
network is capacity-limited, it tends to have high variance
in intermediate features, resulting in poor generalization to
novel illuminations. Thus, we penalize the L1 norm of the
intermediate features from all layers in the linear branch:

Lreg =
∑N

j=1
||F j

l−enc||1. (9)

Implementation Detail. The optimizable modules are
{FG,FR,FD}. We use the Adam [20] optimizer and set
the loss weights as λimg = 1.0, λGAN = 0.01, and
λreg = 0.01, respectively. We train the model for 2M itera-
tions distributed on 8 A100 GPUs with a batch size of 24 in
total. The initial learning rate is 1 × 10−4 which decays to
3 × 10−5 with a multistep learning rate scheduler. We de-
scribe the detailed network architecture and more training
details in the supplementary.
Runtime Analysis. Our proposed linear lighting model is
not only scalable and generalizable but also efficient for
real-time rendering. Our model achieves 38 FPS (25.7 ms)
given grouped lights as input and 31 FPS (31.9 ms) given
environmental maps as input on an NVIDIA A100 GPU.

5. Experiments
5.1. Evaluation Protocols

To quantitatively evaluate the fidelity of each method, we
use Peak Signal-to-Noise Ratio (PSNR), Structural Simi-
larity Index Measure [51] (SSIM), and Learned Perceptual
Image Patch Similarity [61] (LPIPS) as metrics. To solely
evaluate the quality of rendered hands, we only take the
foreground according to the mask obtained from the refined
hand geometry. We exclude several segments from training
data to evaluate the generalization of our model to novel
poses. All metrics are evaluated on 1,000 images randomly
sampled from those held-out segments.

For fair comparisons with existing works, we train and
evaluate all methods in the single-identity setting except
mentioned. We carefully held out several light directions
and a motion segment from the training data for evaluation,
and made sure training and test identities are in different
genders and skin tones. For ablation studies, we train with
ten identities and test on 1) unseen segments from a train
subject, 2) unseen segments from an unseen subject, and
3) an unseen illumination from a train subject, which or-
thogonally evaluate the generalization of our model to novel
poses, identities, and illuminations.
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Table 1. Quantitative comparisons on sequences with grouped lights. We evaluate our method for both per-subject optimization and
novel identity generalization against the state-of-the-art methods in model-based hand relighting. †Methods are evaluated on the training
identity with unseen segments. ∗Methods are evaluated on unseen identity during training. The top three techniques are highlighted in red,
orange, and yellow, respectively.

Method Subject 1 Subject 2 Subject 3
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

†RelightableHands [14] 25.97 0.9301 0.1425 25.92 0.9372 0.1426 27.16 0.9419 0.1280
†Ours (Physical only) 23.44 0.9062 0.1708 23.25 0.9154 0.1715 24.90 0.9216 0.1510
†Ours (Full model) 27.77 0.9400 0.1204 26.36 0.9384 0.1344 27.75 0.9445 0.1226

∗Handy [37] + Phong 16.65 0.8235 0.3026 16.39 0.8328 0.3019 17.70 0.8311 0.2872
∗Handy [37] + GGX 16.60 0.8212 0.3125 16.33 0.8300 0.3107 17.58 0.8288 0.2978
∗Ours (Full model) 26.94 0.9271 0.1335 26.24 0.9368 0.1341 27.58 0.9436 0.1197

Handy + Phong Handy + GGXRelightableHands Ours Ground TruthOurs Ours (Physical Only)

a)  Single Identity Evaluation b)  Novel Identity Generalization

Figure 3. Qualitative comparisons on sequences with grouped lights. We evaluate our method for both per-subject optimization and
novel identity generalization against comparison methods. a) All methods are evaluated on the training identity with unseen segments. b)
Methods are evaluated on unseen identity during training.

5.2. Comparisons

We compare our approach with the state-of-the-art 3D
hand relighting and reconstruction methods. Relightable-
Hands [14] reconstructs relightable appearance via per-
identity optimization. Handy [37] predicts the UV texture
of the hand from in-the-wild images. For fair comparisons,
we apply physically based renderers on top of the predicted
texture to enable relightable appearances. We also com-
pare with our physical branch using the same loss functions.
This provides a fair comparison with physically based re-
lighting. For this reason, we omit the comparison with other
existing physically based relightable hand methods such as
HARP [19] and NIMBLE [24]. Please refer to the supple-
mentary for our detailed implementations of these methods.

We present quantitative results in Table 1. For per-
identity training, our method significantly outperforms
baseline methods on all metrics, which highlights the ef-
fectiveness of our key designs. As shown in Figure 3, our
method is able to reproduce detailed geometry, e.g. wrinkles
and nails, together with high-fidelity details like speculari-
ties and shadows. Handy [37] fails to reproduce the base
texture of the target hand due to their data-driven latent tex-

ture space. Its combinations of simple physical renderers
lead to artifacts of the relit results. RelightableHands [14]
can reproduce correct shading and appearance. However,
the quality of geometric details and specularity is not on par
with the proposed method, which demonstrates the effec-
tiveness of our hybrid neural-physical approach. Further-
more, the generalizability of our method is showcased in
the right side of Figure 3, where the shown test subjects
are withheld from the training set. Although the quality
slightly degrades compared with per-identity optimization,
it still outperforms all other baselines by a large margin.

5.3. Ablation Studies

Ablation on Linear Lighting Model. We investigate dif-
ferent designs of the linear lighting model. We compare our
spatially varying linear lighting model with three alterna-
tives: 1) Non-linear model, where all non-linear activations
are turned on; 2) Non-linear model with a linearity consis-
tency loss to constrain the linearity (Eq. 1) between output
and input of the network; 3) MLP-based linear model pro-
posed in [57], where the lighting is represented as environ-
ment map and flattened to a 1-D vector.

Table 4 shows that the proposed spatially varying lin-
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Table 2. Ablation studies of the linear lighting model on sequences with grouped lights. The “Non-linear” denotes the model that does
not satisfy the linearity of light transport while the “Linearity Consistency” denotes the non-linear model with regularizations to constrain
the linearity between output and input. Moreover, in contrast to MLP-based linear model [57], our model is a spatially varying linear
model. The top three techniques are highlighted in red, orange, and yellow, respectively.

Method Trained Subject Unseen Subject Fully lit
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Non-linear 25.79 0.9283 0.1364 23.89 0.9145 0.1523 17.50 0.9070 0.1717
Linearity Consistency 24.77 0.9122 0.1560 23.11 0.9124 0.1537 19.75 0.9013 0.1619

MLP-based Linear [57] 22.19 0.8727 0.1885 21.56 0.8787 0.1823 11.56 0.8644 0.2259
Ours (Linear Model) 26.01 0.9270 0.1336 24.70 0.9121 0.1520 20.61 0.9153 0.1576

Figure 4. Ablation study on the design of linear lighting model.
Our spatially varying linear lighting model produces realistic ren-
derings, while the baseline methods fail to correctly model shad-
ows or tend to be over smooth.

Table 3. Ablation studies of the lighting features on sequences
with grouped lights. The top three techniques are highlighted in
red, orange, and yellow, respectively.

Method Trained Subject Unseen Subject
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Phong 25.53 0.9257 0.1382 23.87 0.9148 0.1523
w/o Specular 24.97 0.9160 0.1498 23.20 0.9075 0.1607
w/o Visibility 25.44 0.9228 0.1426 23.75 0.9133 0.1533
w/o Refiner 24.82 0.9144 0.1437 22.80 0.8993 0.1620
Full Model 26.01 0.9270 0.1336 24.70 0.9121 0.1520

ear lighting model achieves the best performance on both
trained and unseen identities. Moreover, we also quantita-
tively evaluate on fully lit frames to validate the generaliza-
tion to novel illumination. The non-linear baseline fails to
generalize, which shows the importance of linearity in our
network. The MLP-based linear model fails to correctly
model the light transport due to the lack of pose-aware
visibility change. Figure 4 shows that the proposed light-
ing model produces the most realistic renderings, while the
baseline methods struggle with correctly modeling shadows
and detailed shading effects.
Ablation on Different Lighting Features. We also evalu-
ate the effectiveness of our lighting feature representation,
i.e. the diffuse Cd

pb and specular feature Cs
pb. The con-

tribution in the lighting features can be factored into 1)
the underlying BRDF, 2) the visibility, and 3) the geome-
try. As shown in Figure 5, our model reproduces specular
highlights due to the more accurate specular feature from
the optimized Disney BRDF. This indicates that the quality
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Figure 5. Ablation studies on the impact of lighting features
and geometry refinement. Notably, our full model can produce
fine-grained geometry like wrinkles and nails as well as specular
highlights (e.g. little finger).

of the lighting feature determines the quality of the neural
relighting. In fact, the neural relighting based on Phong
specular features [14, 36] fails to produce accurate specular
highlights. The visibility is also important for novel pose
generalization. Compared with the model trained without
visibility, our full model reproduces better soft shadows as
well as detailed geometry. These observations are also sup-
ported by our quantitative evaluation presented in Table 3.
Effectiveness of Geometry Refinement. Our proposed
neural-physical rendering offers the ability to refine geom-
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Table 4. Ablation studies of the proposed training objectives
on sequences with grouped lights. The top three techniques are
highlighted in red, orange, and yellow, respectively.

Method Trained Subject Unseen Subject
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w/o LGAN 25.95 0.9271 0.1392 23.70 0.9113 0.1542
w/o Light-aware LGAN 25.38 0.9215 0.1391 23.88 0.9142 0.1521

w/o L1 Reg Lreg 25.52 0.9242 0.1351 23.90 0.9149 0.1491
Full Model 26.01 0.9270 0.1336 24.70 0.9121 0.1520

Figure 6. Ablation studies on the proposed training objectives.
The adversarial loss improves the overall quality while the light
awareness of the discriminator is critical for correct shadows.

etry. As shown in Figure 5, our full model can produce
more fine-grained details such as wrinkles and nails. The
geometry refinement evidently prevents the neural renderer
from hallucinating, leading to better generalization to novel
identities and illuminations. The quantitative results in Ta-
ble 3 show that our geometry refinement (against w/o Re-
finer) significantly improves the reconstruction accuracy for
both training and unseen identities. This validates the gen-
eralizability of our geometry refinement to novel identities.
Effectiveness of Adversarial Loss. We evaluate the ef-
fectiveness of the proposed lighting-aware adversarial loss.
Quantitative results in Table 4 suggest that this adversarial
loss improves the overall quality. The lighting-aware dis-
criminator further improves the fidelity. Figure 6 validates
that the adversarial loss is critical for reproducing shadow
and detailed geometry. It also enhances specular highlights.
Effectiveness of L1 Regularization. We validate the ef-
fectiveness of the L1 regularization on the intermediate fea-
tures of the linear lighting model. Table 4 and Figure 6 illus-
trate that, compared with the model without L1 regulariza-
tion, our model achieves better modeling of the soft shad-
ows and appearance. Its effectiveness is more evident in the
temporal sequence with less flickering artifacts. Please refer
to our supplemental video.

5.4. Quick Adaptation on Unseen Subjects

As shown in Figure 7, we demonstrate the quick person-
alization of URHand to get a relightable and animatable

Figure 7. Quick Personalization of URHand from iPhone cap-
tures. Given a casual phone scan, we fit hand geometry (Sec. 3),
unwrap RGB images to get the mean texture, and feed into UR-
Hand. Our model instantly enables photorealistic relighting in
any poses and illuminations without finetuning, even for out-of-
distribution appearance (w/ tattoos) and extreme novel lighting
(RGB panel). Please refer to the supplementary for more results.

hand from a monocular iPhone video. To achieve this, we
followed the authentic hand avatar creation pipeline [30].
Specifically, we fit a template hand model (Sec. 3) to in-
put images by optimizing pose parameters and the identity
latent code based on foreground segmentation and 2D key-
points. Then we unwrap input RGB images based on the
fitted geometry to obtain the mean texture T , and refine it
to remove shadows. Finally, we directly feed the mean tex-
ture and the coarse mesh into URHand to render it with any
poses and environment maps. Our model can even general-
ize to out-of-distribution appearances like tattoos and chal-
lenging unseen illuminations like RGB panels (bottom row
of Figure 7). Note that while URHand can instantly create
a personalized relightable hand model without any finetun-
ing, the aforementioned preprocessing stage takes several
hours. Please refer to Sec. 3 of the supplementary for more
implementation details and results.

6. Conclusion

We have introduced URHand, the first universal relightable
hand model that generalizes across viewpoints, poses, il-
luminations, and identities. We show that scalable cross-
identity training for high-fidelity relightable hands now is
possible with our physics-inspired spatially varying linear
lighting model and hybrid neural-physical learning frame-
work. Our experiments indicate that URHand even gener-
alizes beyond studio data by showing quick personalization
from a phone scan.
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