
Unraveling Instance Associations: A Closer Look for Audio-Visual Segmentation

Yuanhong Chen 1 * Yuyuan Liu 1 * Hu Wang 1 Fengbei Liu 1

Chong Wang 1 Helen Frazer2 Gustavo Carneiro3

1 Australian Institute for Machine Learning, University of Adelaide
2 St Vincent’s Hospital Melbourne

3 Centre for Vision, Speech and Signal Processing, University of Surrey

Abstract

Audio-visual segmentation (AVS) is a challenging task
that involves accurately segmenting sounding objects based
on audio-visual cues. The effectiveness of audio-visual
learning critically depends on achieving accurate cross-
modal alignment between sound and visual objects. Suc-
cessful audio-visual learning requires two essential compo-
nents: 1) a challenging dataset with high-quality pixel-level
multi-class annotated images associated with audio files,
and 2) a model that can establish strong links between au-
dio information and its corresponding visual object. How-
ever, these requirements are only partially addressed by cur-
rent methods, with training sets containing biased audio-
visual data, and models that generalise poorly beyond this
biased training set. In this work, we propose a new cost-
effective strategy to build challenging and relatively unbi-
ased high-quality audio-visual segmentation benchmarks.
We also propose a new informative sample mining method
for audio-visual supervised contrastive learning to leverage
discriminative contrastive samples to enforce cross-modal
understanding. We show empirical results that demonstrate
the effectiveness of our benchmark. Furthermore, experi-
ments conducted on existing AVS datasets and on our new
benchmark show that our method achieves state-of-the-art
(SOTA) segmentation accuracy1.

1. Introduction

The human nervous system exhibits multi-modal percep-
tion [44], combining input signals from different modali-
ties to improve the detection and classification of multiple
stimuli [44]. Such functionality has been emulated by re-
cent papers [1–3, 5, 18, 32, 33] that aim to associate visual
objects with their corresponding audio sequences, in a task
known as audio-visual correspondence (AVC) [2, 3].
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Figure 1. Current AVS datasets [54] tend to assume specific ob-
jects as consistent sound sources. Such a bias influences AVS
methods, like TPAVI [54] (2nd row), to favour segmenting the pre-
sumed sound source, even when replacing the original audio with
different sound types such as a person speaking (2nd column), bird
chirping (3rd column), or background noise (4th row). Our paper
proposes a new cost-effective strategy to build a relatively unbi-
ased audio-visual segmentation benchmark and a supervised con-
trastive learning method that mines informative samples to better
constrain the learning of audio-visual embeddings (last row).

A particularly interesting AVC task is the audio-visual
segmentation (AVS) [54, 55] that aims to segment all pix-
els of the sounding visual objects using a fully supervised
model. A major challenge in AVS is achieving cross-modal
alignment between sound and visual objects [43]. Current
datasets poorly establish and evaluate this alignment, lead-
ing to undesired system behaviour and less effective eval-
uation. For instance, the dataset in [54] shows a “com-
monsense” bias because it assumes that certain objects are
always the sound source in some scenarios. Fig. 1 shows
an example of a scene from [54] with a bias toward the
segmentation of the helicopter, even though other sound
sources (e.g., person’s speech or bird’s singing) are plau-
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sible. Such biases can reduce cross-modal alignment un-
derstanding. Another challenge in AVS datasets [54] is the
localization of the sound-producing object when multiple
instances of the same object class are present. While visual
cues (e.g., motion or visual semantics) can help, some ac-
tions with silent audio can introduce false positives [34].
Spatial audio can also be helpful [40, 50], as shown in
Fig. 3, where we are more likely to segment the dog on
the right if the spatial audio suggests that the sounding ob-
ject is located on the right-hand side of the image. Re-
grettably, addressing the AVS dataset challenges mentioned
above by collecting new datasets can be exorbitantly ex-
pensive. Therefore, we consider alternative data collection
procedures to mitigate the problems described above and to
effectively enable the training and evaluation of AVS meth-
ods that can better generalise to diverse AVS conditions.

Many AVL [5, 33] and AVS [29] methods rely on audio-
visual contrastive learning (AV-CL). AV-CL bears some
similarities with metric learning, particularly with respect to
the selection of informative samples (also called hard sam-
pling) for improving training efficiency and model perfor-
mance [38, 41, 52]. In AVC tasks, such a selection of infor-
mative training samples is not well-studied, but it is critical
because the more representative visual data can overpower
the weaker audio modality [39], resulting in false detections
that are relatively independent of the audio-visual input, as
shown in Fig. 1 for TPAVI (columns 2 to 4). Also, current
AV-CL methods [29, 32] consist of unsupervised learning
approaches that treat each audio-visual data pair as an in-
dependent contrastive class. However, such instance-based
CL is unable to effectively mine informative samples that
can mitigate the false detections mentioned above.

In this paper, we introduce a new cost-effective AVS
data collection procedure for training and evaluating AVS
methods that aim to mitigate the aforementioned problems
of AVS datasets [54], and a new AVS method developed
to address the shortcomings of AV-CL approaches. Our
new AVS dataset collection and annotation, called Visual
Post-production (VPO), consists of matching images from
COCO [23] and audio files from VGGSound [4] based on
the semantic classes of the visual objects of the images.
The proposed VPO dataset has three settings: 1) the sin-
gle sound-source (VPO-SS), which contains multiple vi-
sual objects, but just a single sounding object; 2) multi-
ple sound-source (VPO-MS), which contains multiple vi-
sual objects with multiple sounding objects from different
classes; and 3) multiple sound-source multi-instance (VPO-
MSMI), which has multiple sets of visual objects from the
same or different classes with multiple sounding objects. In
these three settings, stereo sound is used to disambiguate
visual objects. We also propose a new AVS method, named
contrastive audio-visual pairing (CAVP), with a supervised
contrastive learning approach that leverages audio-visual

pairings to mine informative contrastive samples. To sum-
marise, our main contributions are
• A new cost-effective strategy to build AVS datasets,

named Visual Post-production (VPO), which aims to re-
duce the biases observed in current datasets [54] by pair-
ing images [23] and audio files [4] based on the visual
classes of the image objects. Three new VPO benchmarks
are built using this strategy: the single sound source
(VPO-SS: single sounding object per image), multiple
sound sources (VPO-MS: multiple sounding objects per
image from separate classes), and multiple sound sources
multi-instance (VPO-MSMI: multiple sets of sounding
objects from the same class).

• A new supervised audio-visual contrastive learning
method that mines informative contrastive pairs from ar-
bitrary audio-visual pairings to better constrain the learn-
ing of audio-visual embeddings.

• A thorough evaluation of SOTA AVS methods on AVS-
Bench and VPO datasets. The methods are also assessed
on AVS salient and semantically labelled objects with the
resized image and traditional full-resolution setups.

We first show the effectiveness of our VPO strategy by
modifying the AVSBench dataset [54] with the matching
of AVSBench images with new VGGSound [4] audio files
from the same classes. We then train TPAVI [54] on
the original and modified AVSBench datasets and show
that both datasets lead to the equivalent performance of
TPAVI on the testing set of AVSBench. We also con-
ducted experiments to test the segmentation accuracy of
our proposed AVS method on AVSBench-Objects [54],
AVSBench-Semantics [55], VPO-SS, VPO-MS and VPO-
MSMI, and results display a consistent improvement of our
method compared to the SOTA.

2. Related Works
Audio-visual Localisation (AVL) is a binary classification
task for detecting sounding visual objects in videos, using
image sequences and audio signals. It employs unsuper-
vised AVL training with ImageNet pre-trained backbone
models [11]. Prior research focused on creating joint audio-
visual representations, with feature concatenation [2] or at-
tention modules [5, 32, 33]. However, neglecting the contri-
bution from audio can be a concern when audio and visual
representations are not properly constrained [43]. This is-
sue is addressed with contrastive learning [7, 8, 16], which
emphasizes discriminative audio-visual feature learning for
each instance [5, 18, 32, 33, 42, 46]. However, Senocak et
al. [43] argue that AVL with instance discrimination may
hinder genuine cross-modal semantic understanding [35].
Hence, they propose leveraging a richer positive set, ob-
tained through strong augmentation or nearest neighbours,
to facilitate cross-modal alignment. Despite these advance-
ments, the lack of pixel-level annotation with semantic la-
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bels still hinders the accurate detection of visual objects.
Audio-visual Segmentation (AVS) addresses the limita-
tions observed in AVL by providing pixel-level binary an-
notations. Zhou et al. [54] introduced the AVSBench-
Object and AVSBench-Semantic benchmarks [55], which
encompass single-source and multi-source AVS tasks for
salient/multi-class object segmentation. The manual anno-
tation of AVS datasets is costly and hence limits dataset di-
versity. Our VPO aims to mitigate this issue with off-the-
shelf semantic segmentation datasets [23] combined with
audio data from YouTube [4] to build datasets that facilitate
model training and cross-modal alignment evaluations.

A recently published paper, developed in parallel with
ours, proposes the AVS-Synthetic [27] benchmark aimed
to reduce annotation costs by matching audio and visual
categories to create a synthetic dataset. While our VPO
and AVS-Synthetic share a similar concept of dataset cre-
ation, the data selection and partition process in AVS-
Synthetic [27] has several problems, such as: 1) most an-
notated images consist of trivial cases containing a single
sounding object, 2) it cannot assess models under differ-
ent scenarios like single-source and multi-source settings,
as proposed in AVSBench [54], 3) the use of binary labels
limits semantic understanding, and 4) it shows ambiguous
cases where multiple instances (MI) of the same class are
associated with single audio. Our dataset collection ad-
dresses these four points, and in particular, it provides a
cost-effective method to create spatial audio based on an
object’s relative position within the scene.

Like AVL, AVS methods [13, 19, 21, 24–27] use au-
dio for segmentation queries. For example, some methods
adopt MaskFormer [9] to perform image segmentation us-
ing audio queries and cross-attention layers. These meth-
ods benefit from the attention mechanism’s ability to cap-
ture long-range dependencies and segment images, enhanc-
ing spatial-temporal reasoning [21] and task-related fea-
tures [13, 21, 24, 25, 30, 54]. Also, certain methods [29, 30]
have investigated the utilization of conditional generative
models [17, 45], alongside contrastive learning, to create
discriminative latent spaces. However, the reliance on bi-
nary annotations and image resizing limits their application
and segmentation accuracy.
Contrastive learning has shown promise in AVL meth-
ods [5, 18, 32, 33]. These methods bring together aug-
mented representations from the same instance as posi-
tives while separating representation pairs from different
instances as negatives within a batch. The issue with
current AVL contrastive learning is its reliance on self-
supervision [7] to connect audio and visual representations
of the same class. In our work, we propose a new super-
vised contrastive learning [20, 22, 48] that mines informa-
tive contrastive pairs from arbitrary audio-visual pairings to
constrain the learning of audio-visual embeddings.

3. Visual Post-production (VPO) Benchmark
Our VPO benchmark includes three evaluation scenarios: 1)
the single-source (VPO-SS) shown in Fig. 2 (2nd frame), 2)
the multi-source (VPO-MS) displayed in Fig. 2 (3rd frame),
and 3) the multi-source multi-instance (VPO-MSMI) dis-
played in Fig. 2 (4th frame). VPO is built by combining
images and semantic segmentation masks from COCO [23]
with audio files for the 21 COCO classes, including hu-
mans, animals, vehicles, sports, and electronics, sourced
from VGGSound [4, 54]. The audio files were obtained
from YouTube videos under the Creative Commons license,
each trimmed to 10 seconds, as verified by [4]. We then ran-
domly matched the COCO semantic segmentation masks
with related audio files based on instance labels to create the
VPO dataset. Below, we describe the three VPO settings:
VPO-SS, VPO-MS, and VPO-MSMI. For dataset statistics,
examples and a detailed description of the collection pro-
cess please refer to Supplementary Material.

The VPO-SS comprises 12,202 samples (11,312 train-
ing and 890 testing samples), where a sample consists of
an image, a pixel-level semantic segmentation mask of a
single-sounding object, and an audio file of the sounding
object class. During image collection, our process priori-
tized the inclusion of sounding visual classes from multiple
categories within the same image, even when only one class
matched the audio file. This strategy aims to reduce the
“commonsense” bias in AVS datasets and avoid the domi-
nance of a single visual object in the segmentation process,
minimizing incidental correlations. This is done by ensur-
ing images containing visual objects from various COCO
classes are given higher priority than single-class images.
By employing this collection protocol, we aim to produce a
benchmark that has a diverse set of sounding visual objects
because we can match images with many different types of
audio files that represent visual objects, resulting in numer-
ous combinations, as demonstrated in Fig. 2 (2nd frame).

The VPO-MS comprises 9,817 images, with 8,380 im-
ages for training and 1,437 for testing. Each image can
include up to five sounding objects from the 21 COCO
classes, where each visual object is accompanied by its
pixel-level semantic segmentation mask and corresponding
audio file. In total, the dataset contains 13,496 semantic
segmentation masks. Following the same VPO-SS strategy,
we prioritise the collection of images that have sounding
objects from multiple classes but exclude images that con-
tain multiple instances of the same class. Additionally, to
prevent methods that detect all visual objects from an im-
age from performing well in our benchmark, we randomly
remove the sound of some visual objects from images con-
taining more than two objects. We merge audio files from
multiple sounding visual objects into a single file using ad-
dition operations performed on the waveform data [18, 51].
Fig. 2 (3rd frame) shows VPO-MS examples.
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Figure 2. VPO Benchmarks. Using four classes, including “female”, “cat”, “dog”, and “car”, the AVSBench (SS) (1st frame) provides
pixel-level multi-class annotations to the images containing a single sounding object. The proposed VPO benchmarks (2nd frame to 4th
frame) pair a subset of the segmented objects in an image with relevant audio files to produce pixel-level multi-class annotations.

Based on VPO-MS, we additionally searched 3,038 im-
ages, each containing multiple instances that share a com-
mon semantic class. The resulting VPO-MSMI contains
12,855 images, with 11,080 images for training and 1,775
for testing. The VPO-MSMI is a challenging AVS task,
represented by the accurate localisation of sound sources
amid multiple sources of sound with the assistance of spa-
tial cues. The main cue used to allow the segmentation of
multiple instances in VPO-MSMI is the use of spatial au-
dio to localize the sound source in an image. We simulate
spatial audio with stereo sound by leveraging the object’s
spatial location information to modulate the volume of the
left or right audio channel. Assuming we have an RGB im-
age with resolution H ×W and a particular object centred
at (ch, cw), then the relative position of that object w.r.t the
width of the image is denoted by αi =

cw
W . For instance, we

show an example of processing the audio files from a human
and dog in Fig. 3, utilizing position coefficients αM , αD

for volume control and deriving cw from ground-truth mask
center of mass. Based on this modelling method, we can
work with an arbitrary number of sound sources.

4. Method

The multi-class audio-visual dataset is denoted as D =
{(ai,xi,yi, ti)}|D|

i=1, where xi ∈ X ⊂ RH×W×3 is an RGB
image with resolution H × W , a ∈ A ⊂ RT×F denotes
the Mel Spectrogram audio representation with time T and
F Mel filter banks, yi ∈ Y ⊂ {0, 1}H×W×C denotes the
pixel-level ground truth for the C classes (the background
class is included in these C classes), and ti ∈ Y ⊂ {0, 1}|C|

+

+

Figure 3. Synthesising stereo sound for the VPO-MSMI setting.

is a multi-label ground truth audio annotation.

4.1. Preliminaries about Cross-Attention

Our goal is to learn the parameters θ ∈ Θ for the
model fθ : X × A → [0, 1]H×W×C , which com-
prises the image and audio backbones that extract features
with ua = fγ(a) and uv = fϕ(x), respectively, where
γ, ϕ ∈ θ, and ua,uv ∈ U , with U denoting a unified
feature space. Our approach is similar to other early fu-
sion methods [13, 36, 54] that combine audio and video
features with a multi-head attention block [47] which es-
timates the co-occurrence of audio and visual data with
fMHA(Q,K,V) = softmax

(
QKT

√
D

)
V, where

√
D de-

notes the scaling factor [47], and Q,K,V represent the
query, key and value inputs. Previous AVS methods [13, 54]
usually use audio as the cross-attention (CA) query Q to
produce ûv = uv⊕uv⊙fMHA(ua,uv,uv), where ⊕ is the
element-wise addition operator, and ⊙ is the element-wise
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Figure 4. Illustration of our CAVP method for the “Dog” anchor. Starting with the audio-visual foreground anchor set E fg
dog, we create the

positive and negative audio-visual features denoted by P fg and N fg = N fg
hard ∪ N fg

easy respectively defined in Eq. (3). The CAVP loss in
Eq. (4) pulls the anchor and positive audio-visual features closer while repelling the anchor and negative audio-visual features.

multiplication operator. However, we empirically observe
that the use of audio as query leads to a situation where
the visual feature dominates the CA process, suppressing
the audio representation. We address this issue by using
the visual feature as the query and removing the ⊙ opera-
tion to produce ûv = fCA(uv,ua), where fCA(uv,ua) =
uv ⊕ fMHA(uv,ua,ua). Another important point about
fMHA(.) is that we replace softmax(.) by sigmoid(.) to
enable the highlighting of multiple regions of varying sizes
in the attention map that is related to the audio. Please refer
to the Supplementary Material for the visual results.

4.2. Contrastive Audio-Visual Pairing (CAVP)

The ultimate goal of our contrastive learning is to discrim-
inate the positive fusion of feature representations from
the same semantic class and the negative fusion of feature
representations from different semantic classes. Previous
works [20, 28] suggest that the discrimination between sam-
ples is critical for contrastive learning, so simply drawing
random negative samples from original audio-visual pairs
could limit the representation learning effectiveness. To cre-
ate an informative contrastive dataset, a practical way is to
mine all possible combinations of audio-visual pairs in the
latent space. However, it is not possible to create some of
the negative pairs because we do not have access to all in-
stance segmentation masks for each image (e.g., we cannot
create fCA(u

cat
v ,udog

a ) in Fig. 4 because we do not have
pixels labelled as “cat”). Motivated by our VPO procedure
in Sec. 3, we observe that this barrier can be overcome by
randomly paring audio and visual features within the batch,
as shown in Fig. 4, offering us the potential to mine most of
the conceivable audio-visual combinations.

CAVP starts by dividing the original audio-visual dataset
D into a visual dataset Dv = {(xi,yi)}|D|

i=1 and audio
dataset Da = {(ak, tk)}k=perm({1,...,|D|}), where j is a per-
mutation of the index set of D. We define the randomly

paired audio-visual feature dataset as:

Z =
{
(z, t,y(ω)) |z = f

(ω)
CA(fϕ(x), fγ(a)), (a, t) ∈ Da, (x,y) ∈ Dv

}
,

(1)
where ω ∈ Ω is the lattice of size H×W , and f

(ω)
CA(.) is the

cross-attention output at lattice position ω. To simplify the
notation, we represent v(ω) = (z, t,y(ω)) and define the
audio-visual anchor sets as:

E fg =
{
v(ω)|v(ω) ∈ Z, (t = y(ω)) ∧ (t ̸= bg) ∧ (y(ω) ̸= bg)

}
,

Eunknow =
{
v(ω)|v(ω) ∈ Z, (tj ̸= yj(ω)) ∧ (yj(ω) = bg)

}
,

Ebg = Z \ (E fg ∪ Eunknow),

(2)
where ∧ and ∨ are respectively the “AND” and “OR” logic
operators, and “bg” is the background class label. The fore-
ground anchor set E fg contains samples from Z in Eq. (1)
that have the same audio and visual labels, and both are dif-
ferent from the background class; the Eunknow represents the
anchors with uncertain semantic meaning due to the lack
of instance segmentation masks for all the available targets,
and the background anchor set Ebg are all the samples in Z
that are not in E fg ∪ Eunknow.

The mining of informative contrastive samples ex-
plores all combinations of audio-visual features after cross-
attention fusion to form positive sets that will enable the
enhancement of the similarity between semantically related
samples while diminishing the similarity of samples with
different semantic concepts. For foreground anchors in
E fg, its contrastive positive set P fg and negative set N fg =
N fg

hard

⋃
N fg

easy are defined by (see Fig. 4):

P fg(v(ω)) =
{
zj |vj(φ) ∈ Z,((tj = t) ∧ (yj(φ) = y(ω)))

}
,

N fg
hard(v(ω)) =

{
zj |vj(φ) ∈ Z,((tj = t) ∧ (yj(φ) ̸= y(ω)))

∨((tj ̸= t) ∧ (yj(φ) = y(ω)))
}
,

N fg
easy(v(ω)) =

{
zj |vj(φ) ∈ Z,((tj ̸= t) ∧ (yj(φ) ̸= y(ω)))

}
,

(3)
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Table 1. Quantitative (mIoU, Fβ) audio-visual segmentation results (in %) on AVSBench dataset [54, 55] (resized to 224×224) with
ResNet50 [15] backbone. Best results in bold, second best underlined. Improvements against the second best are in the brackets.

D-ResNet50 [15] Method AVSBench-Object (SS) AVSBench-Object (MS) AVSBench-Semantics
mIoU ↑ Fβ ↑ mIoU ↑ Fβ ↑ mIoU ↑ Fβ ↑

Transformer

CATR [21] 74.80 86.60 52.80 65.30 - -
AuTR [26] 75.00 85.20 49.40 61.20 - -

AQFormer [19] 77.00 86.40 55.70 66.90 - -
AVSegFormer [13] 76.54 84.80 49.53 62.80 24.93 29.30

AVSC [24] 77.02 85.24 49.58 61.51 - -
BAVS [25] 77.96 85.29 50.23 62.37 24.68 29.63

Per-pixel Classification

TPAVI [54] 72.79 84.80 47.88 57.80 20.18 25.20
AVSBG [14] 74.13 85.40 44.95 56.80 - -

ECMVAE [30] 76.33 86.50 48.69 60.70 - -
DiffusionAVS [29] 75.80 86.90 49.77 62.10 - -

Ours 85.77 (+7.81) 92.86 (+5.96) 62.39 (+6.69) 73.62 (+6.72) 44.70 (+19.77) 57.76 (+28.13)

where φ ∈ Ω. For background cases in Ebg, the con-
trastive positive set is Pbg = Ebg, while the negative set
is N bg = E fg. Let us represent the set of anchors by
E = E fg ⋃ Ebg, the set of positives with P that is equal to
P fg if the anchor is from E fg, or equal to Pbg if the anchor
is from Ebg (and similarly for N w.r.t. N fg or N bg). Adopt-
ing the supervised InfoNCE [20] as the objective function
to pull the anchor v(ω) ∈ E and respective positive audio-
visual features closer while repelling anchors and their neg-
ative audio-visual features, we define the following loss:

ℓCP(v(ω)) =
1

|P(v(ω))|
∑

zp∈P(v(ω))

− log
exp (z · zp/τ)

exp (z · zp/τ) +
∑

zn∈N (v(ω)) exp (z · zn/τ)
,

(4)

where z is the anchor feature from v(ω), and τ is the tem-
perature hyper-parameter.

The overall training loss function is defined as:

ℓ(D, θ) =
1

|D||Ω|

|D|∑
i=1

∑
φ∈Ω

(
ℓCE(yi(φ), ŷi(φ))

)
+

1

|E|
∑

v(ω)∈E

(
ℓCP(v(ω))

)
,

(5)
where ℓCE(.) is the cross-entropy loss, ŷ = fθ(x,a)
is the model (parameterised by θ) prediction, with ŷ ∈
[0, 1]H×W×C , Ω is the image lattice, and ℓCP(.) is our con-
trastive loss, calculated based on the anchor sets E from
Eq.(2), as specified in Eq. (4).

5. Experiments
5.1. Implementation Details

Evaluation protocols: We first adopt the widely used eval-
uation protocols for the AVSBench-Object [54] (including
single-source (SS) and multi-source (MS) with binary la-
bels) and AVSBench-Semantics dataset (with multi-class
labels) [55] by resizing all images to 224 × 224 for fair
comparison. Note that the use of binary labels and image

resizing limits the application scope as well as the model
performance. Hence, we follow traditional segmentation
benchmarks [10, 12, 23, 37, 53] and use original image
resolution for training and testing. Also following previ-
ous AVS methods [54, 55], we calculate mean intersection
over union (mIoU) [12] to quantify the average segmenta-
tion quality and use Fβ score with β2 = 0.3 [31, 54] to
measure precision and recall performance and false detec-
tion rate (FDR) to highlight the false positive classification
in a pixel-wise manner. For training and inference details,
please refer to Supplementary Material.

5.2. Results

Performance on resized AVSBench. We divide the per-
formance comparison on AVSBench into the AVSBench-
Objects (SS & MS) [54] and AVSBench-Semantics [55].
We compare the performance of SOTA methods with our
CAVP in Tab. 1 using mIoU and Fβ , which shows that
our model surpasses the second-best methods w.r.t. mIoU
by of 7.81% on AVSBench-Object (SS) [54], 6.69% on
AVSBench-Object (MS) [54] and 19.77% on AVSBench-
Semantics [55] using ResNet50 [15] backbone. Please refer
to the Supplementary Material for results obtained with the
PVT-V2-B5 [49] backbone.
Performance on original resolution AVSBench. We intro-
duce a new benchmark based on the AVSBench-Semantics
dataset [55] in Tab. 2 to address the absence of the orig-
inal resolution images in previous benchmarks shown in
Tab. 1. In this new benchmark, we use AVSegFormer [13]2

and TPAVI [54]3 as the baseline methods4. To save train-
ing and evaluation time, we train on the entire training set
of AVSBench-Semantics and test the model on AVSBench-
Semantics (SS) and AVSBench-Semantics (MS) subsets, as
well as the entire testing set for AVSBench-Semantics to
show partitioned model performance. The results on the

2https://github.com/vvvb-github/AVSegFormer
3https://github.com/OpenNLPLab/AVSBench
4We cannot include other methods from Tab. 1 as they were not publicly

available online at the time of submission.
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Table 2. Quantitative (mIoU, Fβ , FDR) audio-visual segmentation results (in %) on AVSBench-Semantic dataset [55] (original resolution)
with ResNet50 [15] backbone. Best results in bold, second best underlined. Improvements against the second best are in the last row.

D-ResNet50 [15] Method
AVSBench-Semantics (SS) AVSBench-Semantics (MS) AVSBench-Semantics
mIoU ↑ Fβ ↑ FDR ↓ mIoU ↑ Fβ ↑ FDR ↓ mIoU ↑ Fβ ↑ FDR ↓

Transformer AVSegFormer [13] 68.95 82.64 15.45 33.23 45.63 43.16 41.48 56.21 38.77

Per-pixel Classification
TPAVI [54] 64.30 81.06 14.81 36.29 50.36 40.61 43.39 59.24 34.66

Ours 73.08 85.57 12.64 46.40 60.25 32.11 50.75 64.57 32.25
Improvement Ours +4.13 +2.93 -2.17 +10.11 +9.89 -8.50 +7.36 +5.33 -2.41

Table 3. Quantitative (mIoU, Fβ , FDR) audio-visual segmentation results (in %) on VPO dataset (original resolution) with ResNet50 [15]
backbone. Best results in bold, second best underlined. Improvements against the second best are in the last row.

D-ResNet50 [15] Method VPO (SS) VPO (MS) VPO (MSMI)
mIoU ↑ Fβ ↑ FDR ↓ mIoU ↑ Fβ ↑ FDR ↓ mIoU ↑ Fβ ↑ FDR ↓

Transformer AVSegFormer [13] 57.55 73.03 19.76 58.33 74.28 22.13 54.22 70.39 25.51

Per-pixel Classification TPAVI [54] 52.75 69.54 22.83 54.30 71.95 22.45 51.73 68.85 26.75
Ours 62.31 78.46 13.56 64.31 78.92 18.67 60.36 75.60 22.12

Improvements Ours +4.76 +5.43 -6.20 +5.98 +4.64 -3.46 +6.14 +5.21 -3.39

Table 4. Ablation study of the CAVP components.

Method AVSBench-Semantics VPO (MSMI)
mIoU ↑ Fβ ↑ mIoU ↑ Fβ ↑

TPAVI [54] 42.74 58.11 52.83 70.39
fCA(·) 47.18 61.74 58.50 73.19
SupCon 48.72 61.85 59.35 74.20
CAVP 50.75 62.31 64.31 64.13

entire AVSBench-Semantics in the last columns of Tables 1
and 2 show a significant mIoU improvement of +16.55%
for AVSegFromer [13], +23.21% for TPAVI, and +6.05%
for our method when compared to the results obtained
with low image resolution under ResNet-50 backbone [15].
These results suggest the importance of using the original
resolution in the AVSBench-Semantics dataset [55]. Also
in Tab. 2, results show that our method consistently out-
performs the baselines by a minimum of 4.13% and 2.93%
improvements in mIoU and Fβ , respectively. We show a vi-
sualisation of a 6-second video clip in Fig. 5 that displays a
qualitative comparison between TPAVI, AVSegFormer and
our CAVP. Notice how our method approximates the ground
truth segmentation of the sounding objects more consis-
tently than the other methods. Please refer to the Supple-
mentary Material for more qualitative results.
Effectiveness of Visual Post-production (VPO): To test
the effectiveness of our VPO approach to build a bench-
mark dataset, we simulate VPO on the initial single source
AVSBench-Object [54]. This involves the substitution of
the original audio waveform data with samples from the
same category taken from VGGSound [4] (emulating the
way we build the VPO datasets). We denote this dataset as
AVS-M-SS. We directly use the original TPAVI code [54]
and run the model training and testing three times for both
the modified and the original datasets. On AVSBench-
Object (SS), TPAVI achieves mIoU=72.01 ± 0.7% and
Fβ = 83.36 ± 1.2% (mean ± standard deviation), and
on AVS-M-SS, TPAVI achieves mIoU=72.07 ± 0.7% and
Fβ = 83.70 ± 1.0%. The p-values (two-sided t-test) of

Table 5. Training with different proportions of positive and nega-
tive samples in (4). We use D-ResNet50 [15] and DeepLabV3+ [6]
as the backbone and the segmentation architecture, respectively.

Proportion (%) AVSBench-Semantics [55]
Pos Sample Neg Sample mIoU ↑ Fβ ↑ FDR ↓

10% 90% 48.88 63.03 33.13
50% 50% 50.75 64.57 32.25
90% 10% 49.19 61.82 34.50

mIoU and Fβ are 0.66 and 0.73, respectively, which means
that we fail to reject the null hypnosis that the performance
on the VPO dataset is significantly different from the orig-
inal one. This experiment shows the validity of building
AVS datasets using pairs of audio-visual data obtained by
matching images and audio based on the semantic classes
of the visual objects of the images.
Performance on VPO: We show model performance on
our VPO benchmarks in Tab. 3 with ResNet50 [15] image
backbone. Our method outperforms the baseline methods
on all experimental settings by a minimum of 4.76% and
3.46% for mIoU and false detection rate, respectively.

5.3. Ablation Study

We first perform an analysis of CAVP components on
AVSBench-Semantics [55] and VPO(MSMI) in Tab. 4.
Starting from a baseline consisting of TPAVI-like cross-
attention (CA) fusion layer (1st row), we replace this TPAVI
CA layer by our CA layer, represented by fCA(.) and ob-
serve an average mIoU improvement of around +4.5% on
both datasets. Subsequently, by integrating the model with
the supervised contrastive learning loss defined in [20], we
achieve an additional mIoU improvement of around +1%,
as shown in the 3rd row. The final row displays CAVP
method with all components, including the selection of in-
formative samples, which reaches a further average mIoU
improvement of +3.4%.
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Figure 5. Qualitative audio-visual segmentation results on AVSBench-Semantics [55] by TPAVI [54], AVSegFormer [13], and our CAVP,
which can be compared with the ground truth (GT) of the first row.
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Figure 6. mIoU results for Activation functions used by fCA(.) on
AVSBench-Semantic [55] with D-ResNet50 [15] backbone.

Cross-attention. From Sec. 4.1, recall that fCA(.) can have
different activation functions, and we opted for the sigmoid
activation to enable the highlighting of multiple regions of
varying sizes in the attention map. We now study the use
of different activation functions, namely: 1) softmax [47],
2) channel-wise attention adopted in AVSegFormer [13], 3)
min-max normalisation to produce attention map, and the
4) sigmoid function. Results in Fig. 6 show that the setting
with the “sigmoid” improves the second-best method, “min-
max”, by +2.38% mIoU.
Sampling Analysis. Naturally, the amount of negative sam-
ples is overwhelmingly larger than the number of positive
samples in the anchor sets of Eq. (2), so we need to balance
these two sets to enable more effective training. Please refer
to the Supplementary Material for details on the balancing
process. We conduct an ablation study of the model’s per-
formance under three different settings containing different
proportions of positive and negative samples, as shown in
Tab. 5. The results reveal that adopting a balanced positive
and negative sampling strategy benefits the model’s perfor-
mance, with improvements in mIoU of 1.87% and 1.56%
compared to scenarios where either 90% of the samples are
negative or 90% are positive.
Mono and Stereo Sound. To emphasize the significance
of stereo sound in the AVS task, we conducted an ablation
study on the VPO dataset, toggling the stereo sound on and
off, with results shown in Fig. 7. Notice that for all VPO
subsets, the stereo sound can improve the performance on
all evaluation measures5. This improvement is particularly

5Note that PPV = 1-FDR in the graph.
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Figure 7. Mono (blue) and Stereo (red) audio VPO performance.

noticeable in the MSMI split as it significantly enhances the
model’s performance across all three measures. For the nu-
merical results, please refer to the Supplementary Material.

6. Discussion and Conclusion
In this work, we have presented new cost-effective VPO
benchmarks and the innovative CAVP method for Audio-
Visual Segmentation (AVS). Our proposed VPO bench-
marks are both scalable, cost-effective and challenging,
while our data collection and annotation protocols provide
a substantial reduction of the “common-sense” bias found
AVS tasks, where certain objects are always the source of
sound in some scenarios. We also introduce a new super-
vised audio-visual contrastive learning that utilises arbitrary
audio-visual pairs to mine informative contrastive pairs that
can better constrain the learning of audio-visual features.
Overall, our dataset and method can provide a valuable re-
source for future research in AVS tasks.
Limitations and future work. We recognize that our VPO
dataset lacks temporal information and may exhibit a class
imbalance issue similar to that observed in AVSBench-
Semantics [55]. This imbalance results from our strict filter-
ing of trivial cases with training images containing a single
dominating-sounding object. Furthermore, our current ap-
proach does not support simulating spatial audio based on
objects’ visual depth or modelling arrival time differences
in the VPO. We intend to tackle these issues in our future
work to enhance AVS models’ robustness and applicability.
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