
Unsupervised Blind Image Deblurring Based on Self-Enhancement

Lufei Chen Xiangpeng Tian Shuhua Xiong Yinjie Lei Chao Ren*

College of Electronics and Information Engineering, Sichuan University, China
{chenlufei, tianxp}@stu.scu.edu.cn, {xiongsh, yinjie, chaoren}@scu.edu.cn

Abstract

Significant progress in image deblurring has been
achieved by deep learning methods, especially the remark-
able performance of supervised models on paired synthetic
data. However, real-world quality degradation is more com-
plex than synthetic datasets, and acquiring paired data in
real-world scenarios poses significant challenges. To ad-
dress these challenges, we propose a novel unsupervised
image deblurring framework based on self-enhancement.
The framework progressively generates improved pseudo-
sharp and blurry image pairs without the need for real paired
datasets, and the generated image pairs with higher qualities
can be used to enhance the performance of the reconstruc-
tor. To ensure the generated blurry images are closer to
the real blurry images, we propose a novel re-degradation
principal component consistency loss, which enforces the
principal components of the generated low-quality images to
be similar to those of re-degraded images from the original
sharp ones. Furthermore, we introduce the self-enhancement
strategy that significantly improves deblurring performance
without increasing the computational complexity of network
during inference. Through extensive experiments on multiple
real-world blurry datasets, we demonstrate the superiority
of our approach over other state-of-the-art unsupervised
methods.

1. Introduction

Image deblurring is a classical problem in the field of com-
puter vision, which aims to recover a clear image from its
blurred version. The image deblurring tasks can be divided
into blind and non-blind deblurring, where the blind image
deblurring with unknown degradation is more challenging in
general. Conventional model-based methods for blind image
deblurring typically involve two main steps: estimating the
blur kernel, and then reconstructing the sharp image from
the blurred input [10, 26, 40, 42]. These methods’ perfor-
mance is largely constrained by the accuracy of blur kernal
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Figure 1. Performance comparison of our proposed SEMGUD with
other unsupervised methods [12, 23, 36, 39, 48, 50] on different
datasets.

estimation. For instance, in [27], the dark channel prior is
used to estimate the blur kernel and reconstruct the sharp
image. However, the blurry characteristics in real-world sce-
narios are quite complex, making it challenging to accurately
estimate the optimal blur kernel. In addition, these meth-
ods often require complex iterative optimisation processes,
which may lead to long inference time.

In recent years, with the rapid development of deep learn-
ing technology, convolutional neural networks (CNNs) have
been widely used in deblurring tasks, achieving significant
success. The supervised methods [4–6, 15, 16, 19, 29, 34, 44–
46] focus on training deep neural network models using a
large number of paired sharp and blurry images. This en-
ables the network to learn the mapping from blurry images
to sharp images without the need for blur kernel estima-
tion, achieving end-to-end reconstruction of the blurry and
sharp images. For example, DeepDeblur [24] proposes a
multi-scale CNN to implement a coarse-to-fine processing
pipeline and directly restores sharp images. However, in
the real world cases, for the supervised learning methods,
collecting paired datasets from the real world is challenging,
and manually synthesized datasets are difficult to simulate
the complex real image degradation processes.

Compared to supervised deep learning methods, unsuper-
vised deep learning methods [3, 25, 49, 50] for real world
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images typically achieve end-to-end image reconstruction
without requiring real world paired sharp and blurry images
during training. This allows unsupervised methods to more
effectively handle complex real-world scenarios, especially
when data collection cost is high, or the blur degradation is
complex and challenging to model. Unfortunately, due to
the high difficulty and challenges of unsupervised deblur-
ring methods in training, there is still very little relevant
research [12, 23, 36, 48] in this field. Specifically, because
unsupervised methods lack the strong constraints provided
by paired datasets, researchers tend to design more extensive
deep models and complex inference processes to establish
connections between inputs and outputs. This often leads to
longer model inference times. Additionally, deploying large
models in practical applications presents significant chal-
lenges. Therefore, how to synthesize high-quality pseudo-
paired datasets and how to improve the performance of unsu-
pervised methods without increasing the complexity of the
model have become key research issues.

In this paper, we employ Generative Adversarial Net-
work (GAN) [7] to learn the real-world image degradation
distribution, addressing the issue of the lack of real-world
paired data. We also introduce a novel re-degradation princi-
pal component consistency loss to more accurately synthe-
size blurred images. Considering that progressively update
pseudo paired data can lead to higher performance [21], we
propose a self-enhancement deblurring strategy within our
unsupervised framework to further enhance the network’s
performance. This strategy significantly improves network
deblurring performance without altering the existing network
structure and without increasing inference computational
complexity. The main contributions of this paper are as
follows:
• We propose a novel self-enhancement based unsupervised

deblurring framework. This framework can progressively
improve the generated pseudo-paired data and reconstruc-
tor without the need for real paired datasets, addressing
the issues of insufficient paired data in real deblurring
tasks, as well as the substantial complexity increase in the
conventional geometric augmentation inference.

• We design a novel loss function called re-degradation
principal component consistency (RPC2) loss. By in-
troducing blur kernel prediction in principal component
constraint, the RPC2 loss enforces the principal compo-
nents of the synthesized low-quality images to be similar
to those of re-degraded images from the original sharp
ones. It can decrease the effect of noise interfere in blur-
ring images, and also make the synthetic image has more
similar blurring degradation to the real data.

• Extensive experiments are conducted on typical real blur-
ring datasets and the results verify the superior perfor-
mance and generalization of our method over other exist-
ing unsupervised deblurring methods.

2. Related Work

2.1. Deep Supervised Image Deblurring

Recently, deep learning methods have achieved significant
success in the field of image restoration [20–22, 24, 25, 28,
30, 34, 41]. For image deblurring, DL-MRF [35] proposes
a CNN-based model to estimate the blur kernel and elim-
inate motion blur. In [2], a CNN is employed to compute
an estimate of a clear image blurred by an unknown motion
kernel. Thanks to the availability of some paired datasets,
learning-based methods have gradually shifted their focus
towards learning the mapping from given blurry images to
the original sharp images, without explicitly estimating the
blur kernel [11, 15, 16, 19, 29, 31, 44, 45]. MPRNet [45]
introduces a novel multi-level progressive architecture to
generate context-rich and spatially accurate output. DBGAN
[47] designs an effective GAN-based model for simulating
the synthesis of real-world blurry images. Stripformer [38]
develops a transformer-based architecture by constructing
horizontal and vertical labels to reweight image features.
NAFNet [5] introduces a simple baseline network for image
deblurring and denoising tasks. MRLPFNet [8] proposes
a simple and effective multi-scale residual low-pass filter
network that can better model both low and high frequency
information. UFPNet [9] represents the motion blur kernel
space in the latent space using normalized flows and designs
a CNN to predict latent codes instead of motion blur kernels.
Overall, supervised real image deblurring methods are de-
pendent on real paired datasets, yet the scarcity of such data
in real-world scenarios frequently limits their applicability.

2.2. Deep Unsupervised Image Deblurring

Compared to supervised methods, unsupervised real image
deblurring methods [25, 39, 49, 50] do not involve real paired
data during the training process. Consequently, unsupervised
methods have weaker constraints between input and output,
making it challenging to accurately learn the blur-to-clear
mapping. Building on the basic GAN, UID-GAN [23] en-
tangles the content and blur features of blurry images on
a domain-specific dataset and then removes the blur from
the blurry images. FCLGAN [48] proposes a lightweight
and real-time unsupervised single-image blind deblurring
baseline. USDF [12] introduces a multi-step self-supervised
deblurring framework that iteratively decomposes and re-
assembles input images, exploiting the uncertainty of blur
artifacts to generate a variety of pseudo-blurred and sharp
image pairs. UADU [36] proposes an unsupervised semi-
blind deblurring model that can effectively recover uniformly
blurry image. However, unsupervised real deblurring meth-
ods have only received limited research attention in recent
years. Existing methods overlook the potential in perfor-
mance enhancement, and traditional model augmentation
tends to increase inference computational complexity. Ad-
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Figure 2. Multi-Generator Unsupervised Deblurring (MGUD) framework. The whole framework employs four generators and discriminators
and uses NAFNet [5] as reconstructor. The red arrows represent the backbone of MGUD, and the blue arrows, purple arrows, and
green arrows respectively represent the different generator complementary constraint modules GECM-1, GECM-2, and GECM-3. DGIG
Module denotes the degradation guidance information generation module.

ditionally, methods based on synthetic pseudo-real paired
images don’t address how to continuously improve the qual-
ity of synthetic images.

3. Methodology
3.1. Unsupervised Deblurring Framework

We provide a detailed explanation of our proposed unsuper-
vised framework in this subsection. Our approach aims to
address the issue of insufficient paired data in real-world
deblurring applications, and significantly improve network
performance without altering the existing network structure
and without increasing inference computational complexity.

3.1.1 Overall Framework of Proposed Method

In response to the lack of paired datasets in the real world,
we propose the Multi-Generator Unsupervised Deblurring
(MGUD) framework, as illustrated in Fig. 2. The framework
employs ResNet-based generator with 6 residual blocks,
PatchGAN [50] discriminator, and NAFNet [5] reconstructor.
The detailed structures are presented in the supplementary
materials.

In generator, we effectively utilize unpaired sharp and
blurry images to synthesize pseudo-paired datasets. Inspired
by CycleGAN [50], we design a GAN structure that transi-
tions from “original sharp → synthetic blur → reconstructed

sharp → secondary synthetic blur”, as shown by the red and
blue arrows in Fig. 2. The process (x,F(y)) → xb1 trans-
forms original sharp image x to synthetic blurry image xb1

according to degradation of blurry image y, where “F(·)” is
the degradation guide information generation (DGIG) mod-
ule, providing ample pseudo-paired data for deblurring. The
process xb1 → xrec achieves deblurring by transforming xb1

to reconstructed sharp image xrec. We incorporate a genera-
tor complementary constraint module (GECM) following the
CycleGAN concept, (xrec,F(xb1)) → xb2, facilitating the
transition from reconstructed sharp image xrec to secondary
synthetic blur image xb2, adding additional constraints and
enhancing training stability.

Considering that the unsupervised deblurring frame-
work’s performance mainly relies on the blur image genera-
tor’s capability, and also considering the challenges in GAN
training, we further introduce two GECMs: (yrec,F(y)) →
yb1 and (yrec,F(xb1)) → yb2, which substantially enhance
the qualities of the synthetic images.

3.1.2 Generation of Pseudo Paired Datasets and Recon-
structor for Deblurring

Compared to supervised methods, the training process of un-
supervised methods struggle to accurately learn the mapping
from blurry to sharp due to the lack of strong constraints
from paired data. GAN is often preferred for unsupervised
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Figure 3. The implementation principles of the proposed self-
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trained in the last round at the input of DGIG to synthesize better
pseudo-paired data.

methods due to its superior data synthesis capability. Cur-
rent mainstream unsupervised methods focus on developing
more capable generators to simulate the image blurring pro-
cess and generate synthetic images that closely resemble
real blur. Theoretically, the closer the synthetic blur images
are to actual blur, the better the reconstructor is expected
to perform. The structure of our generator is depicted in
Fig. 2, incorporating a sharp feature extraction module and
6 residual blocks.

The synthesis of high-quality realistic blurred images is
challenging due to varying image content influences. Con-
sidering many potential factors that could lead to undesired
blurring artifacts, we initially process the blurred images y
using a DGIG module to obtain blurred features. The DGIG
module employs a U-Net architecture, comprising a down-
sampling layer followed by an upsampling layer. The G
learns the blurring characteristics of blurry images to guide
the synthesis of sharp images towards realistic blurring. To
ensure the generation of more realistic blurred images, we
also train a discriminator D to distinguish between synthe-
sized and real-world blurred images, where the generator
and discriminator learn collaboratively in an adversarial man-
ner. In the MGUD framework, the adversarial loss Ladv1

of the backbone is constrained between the yϵY and xb1ϵS,
where Y and S denote the real blurred image and synthetic
blurred image respectively. Considering that the pseudo-
paired images generated by the generator are crucial to the
reconstructor’s performance in this unsupervised framework,
and accurate degradation is difficult to obtain, additional
three adversarial losses are further introduced to enhance
constraints as shown in Fig. 2:

LGAN = Ladv1 + Ladv2 + Ladv3 + Ladv4 (1)

For the synthesized blurry image xb1, the deblurred image
xrec is obtained through the reconstructor Rec. In our entire
framework, we optimize the following loss function to train
the reconstructor:

LRec = LPSNR(x, xrec) + LSSIM (x, xrec) (2)

where LPSNR(·) represents the PSNR loss used to constrain
the peak signal-to-noise ratio of the image, and LSSIM (·)
represents the SSIM loss used to constrain the structural
information of the image.

3.1.3 Re-Degradation Principal Component Consis-
tency Loss

Although adversarial losses can effectively improve the per-
formance of the generator and discriminator, leading to more
accurately synthesized realistic blurred images, the data syn-
thesis process is highly susceptible to interference from the
inherent information in blurred images, such as content and
color. To mitigate this, we draw inspiration from [13] and
design a novel loss function called re-degradation princi-
pal component consistency (RPC2) loss. By introducing
blur kernel prediction in principal component constraint, this
RPC2 loss ensures the principal components of the synthe-
sized low-quality images align with those of re-degraded
images from the original sharp ones, which can decrease the
impact of noise interfere in the blurring process. As shown
in Fig. 3, we use the kernel estimation network to estimate
the blur kernel of the blurry image y, and then utilize this
kernel to further re-blur the sharp image x. Subsequently,
we maintain the principal component consistency between x
and the synthesized blurred image xb1 by introducing the L1
norm loss. The process is defined as follows:

LRPC2 =
∑

ϕ=3,5,7

ωϕ||Gϕ(x⊗K(y))− Gϕ(xb1)||1 (3)

where K(·) denotes the blur kernel estimation process, ⊗
denotes the blur operation, Gϕ(·) denotes a Gaussian filter
operator with a kernel size of ϕ, and ωϕ represents the weight
for level ϕ.

Specifically, the RPC2 loss’s role is to guide G in isolat-
ing the main degradation component (e.g., motion blur) from
y, derived from K, with Gaussian filter acting to prevent G
from incorporating residual texture interference (like content
or color from y) onto x. Our test results in Section 4.3 show
that without using the kernel estimation, the performance
will significant decrease, verifying the necessity of the kernel
estimation. In addition, we test three well-performed ker-
nel estimation methods [1, 9, 20] and find that they achieve
similar final performance. This is due to the introduction of
multi-scale Gaussian low-pass filtering, the impact of noise
and kernel estimation biases on the image is mitigated to
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some extent, ensuring good consistency of the main content
in the image.

3.2. Inference Complexity Invariant Self-
Enhancement Strategy

In order to enable the reconstructor to self-correct and en-
hance its performance without altering its structure or in-
creasing the complexity of the original network , we propose
the Self-Enhancement (SE) strategy. Fig. 3 illustrates the im-
plementation scheme of one of the DGIGs integrating the SE
strategy, and the other DGIG with the SE strategy is similar.
By employing the SE strategy, a better reconstructor (Rec)
can be obtained, thereby learning more accurate degrada-
tion. This results in the generation of more realistic synthetic
blurred-sharp image pairs and progressively improves the
performance of the updated Rec with higher quality syn-
thetic samples. It is exciting to note that the performance of
the Rec using the SE strategy shows significant improvement
over the one without the SE strategy. The implementation of
the SE strategy involves several steps. First, we need to train
an initial reconstructor Rec1. Then, as shown in Fig. 3, keep
the Rec1 parameters fixed to guide the generator to learn
degradation information more accurately, generating more
realistic pseudo-blurry images. Subsequently, retrain G, D,
and Rec until Rec reaches convergence. Finally, repeat the
above process, progressively replacing and enhancing the
reconstructor until obtain the best-performing Recn. There-
fore, the complete Rec’s loss function is as follows:

LSE−Rec = LPSNR(R̄ec(xb1), xrec)

+ LSSIM (R̄ec(xb1), xrec)

+ LPSNR(R̄ec(y), yrec)

+ LSSIM (R̄ec(y), yrec) + LRec

(4)

Finally, we obtain the total loss function:

L = min
G

max
D

LGAN +ΦRPC2LRPC2 + LSE−Rec (5)

Strategies Original Geometric Augmentation Self-Enhancement
PSNR 27.68 27.79 29.06

PSNR Gains — 0.11 1.38

Table 1. Comparing the performance enhancement of the self-
enhancement strategy and the geometric augmentation strategy on
the GoPro dataset.

where ΦRPC2 represents the hyperparameter for the re-
degradation principal component consistency loss.

The basic idea of the SE strategy is to use the results of the
previous phase as feedback information to guide and improve
the training of subsequent stages. A comparative analysis
with existing typical geometric augmentation methods, as
presented in Fig. 4, reveals that the SE strategy markedly
boosts performance with slightly additional training cost,
without imposing extra complexity or testing overhead. As
Table 1 indicates, our method improves the PSNR by more
than 1dB after incorporating the SE strategy, which demon-
strates the effectiveness of SE strategy in image deblurring.

4. Experiments
4.1. Datasets and Implementation Details

Datasets. Following the state-of-the-art image deblurring
methods [5, 9], we first divide the GoPro dataset [24] (con-
sists of 2103 pairs of blurred and sharp images) into separate
sharp and blurred image parts and further constitute unpaired
blurred datasets to train the algorithm proposed in this paper.
We evaluate our method on the GoPro dataset [24], RealBlur
dataset [32], and HIDE dataset [33]. The GoPro dataset
consists of 1111 test images, the RealBlur dataset includes
980 images for testing, and the HIDE dataset provides 2025
test images.
Implementation Details. We follow the experimental set-
tings described in [5]. We adopt the Adam optimizer [14]
(β1 = 0.9, β2 = 0.999), the initial learning rate is set to 10−4,
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Conference/Journal Methods GoPro HIDE RealBlur-R RealBlur-J
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Deep supervised

CVPR 2018 DeepDeblur [24] 29.23 0.916 25.73 0.874 32.51 0.841 27.87 0.827
CVPR 2018 SRN [37] 30.26 0.934 28.36 0.915 35.66 0.947 28.56 0.867
CVPR 2021 HINet [4] 32.71 0.959 30.32 0.932 35.75 0.949 28.17 0.849
ECCV 2022 Stripfromer [38] 33.08 0.962 31.03 0.940 36.07 0.952 28.82 0.876
ECCV 2022 MSDI-Net [17] 33.28 0.964 31.02 0.940 35.88 0.952 28.59 0.869
ECCV 2022 NAFNet [5] 33.69 0.967 31.32 0.943 35.50 0.953 28.32 0.857
ICCV 2023 icDPM [31] 33.20 0.963 30.96 0.938 N/A N/A 28.81 0.872
CVPR 2023 UFPNet [9] 34.06 0.968 31.74 0.947 36.25 0.953 29.87 0.884

Deep unsupervised

ICCV 2017 CycleGAN [50] 22.54 0.720 21.81 0.690 12.38 0.242 19.79 0.633
ICCV 2017 DualGAN [43] 22.86 0.722 N/A N/A N/A N/A N/A N/A
CVPR 2019 UIDGAN [23] 23.56 0.738 22.70 0.715 16.64 0.323 22.87 0.671

ACM MM 2022 FCLGAN [48] 24.84 0.771 23.43 0.732 28.37 0.663 25.35 0.736
ICCV 2021 USR-DA [39] 25.49 0.787 23.91 0.756 32.32 0.821 26.39 0.784

ACM MM 2023 USDF [12] 25.58 0.857 23.93 0.829 32.57 0.923 26.59 0.881
CVPR 2023 UAUD [36] 26.12 0.869 24.37 0.837 32.91 0.885 26.84 0.792

— SEMGUD (Ours) 29.06 0.927 27.64 0.892 35.51 0.946 28.01 0.844

Table 2. The comparison results on the benchmark datasets. All the models are trained on the GoPro dataset.

Blurry image from GoPro testset

Blurry CycleGAN UIDGAN USR-DA

FCLGAN UAUD Ours GT

Figure 5. Visual comparisons on the GoPro dataset. From left to right: blurry image, results from CycleGAN [50], UIDGAN [23], USR-DA
[39], FCLGAN [48], UAUD [36], SEMGUD (ours), and ground-truth.

and the training patch size is 128×128. For the RPC2 loss
hyperparameter (ΦRPC2) in the loss function of Eq. 5 is
set to 3. More details are presented in the supplementary
materials.

4.2. Experimental Results

We compare our method with the most recent unsuper-
vised methods from recent years, including [12, 23, 36,
39, 43, 48, 50]. Additionally, we also list the state-of-the-
art supervised methods based on paired images, including
[4, 5, 9, 17, 24, 31, 37, 38]. Note that the related models for
comparison are limited, since only a few unsupervised de-
blurring models have been proposed in the field. We evaluate
the effectiveness of each method using performance metrics
(PSNR and SSIM). The results are directly cited from the

original papers or generated using the official models pro-
vided by the authors.
Quantitative comparison. Table 2 presents the PSNR and
SSIM results for various single-image deblurring test meth-
ods on the GoPro, HIDE, and RealBlur test datasets. It
is evident that our proposed method outperforms other un-
supervised methods. On the GoPro dataset, our method
achieves 2.94dB improvement in PSNR over the state-of-
the-art unsupervised methods. To validate the effectiveness
and generalization of our method, we compare the results
on various real-world blurry datasets. Fig. 1 intuitively
demonstrates the performance improvement of our method
compared to other unsupervised methods. It is well known
that supervised methods usually outperform unsupervised
methods. But on the RealBlur-R dataset, the performance of
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Blurry image from HIDE testset

Blurry CycleGAN UIDGAN USR-DA

FCLGAN UAUD Ours GT

Figure 6. Visual comparisons on the HIDE dataset. From left to right: blurry image, results from CycleGAN [50], UIDGAN [23], USR-DA
[39], FCLGAN [48], UAUD [36], SEMGUD (ours), and ground-truth.

Blurry image from RealBlur testset

Blurry CycleGAN UIDGAN USR-DA

FCLGAN UAUD Ours GT

Figure 7. Visual comparisons on the RealBlur dataset. From left to right: blurry image, results from CycleGAN [50], UIDGAN [23],
USR-DA [39], FCLGAN [48], UAUD [36], SEMGUD (ours), and ground-truth.

UFPNet (NAFNet)+NAFNet (UFPNet)+

Figure 8. The “mode collapse” in NAFNet [5] and UFPNet [9]:
trained on the GoPro dataset may output anomalous pixel re-
gions during testing on the RealBlur-J dataset. “(UFPNet)+” and
“(NAFNet)+” denote the results obtained through training with our
SEMGUD framework.

our method is even higher than NAFNet [5]. This suggests
that our method’s effectiveness is improving and it’s even
becoming competitive with certain supervised methods. It’s

KE ϕ ωϕ GoPro
3,5,7 3,7,9 3,9,15 1,0.2,0.04 1,0.1,0.01 PSNR↑ SSIM↑

% " % % % " 28.54 0.919
" % % " " % 28.72 0.921
" % % " % " 28.83 0.923
" % " % " % 28.89 0.922
" % " % % " 28.97 0.924
" " % % " % 29.00 0.925
" " % % % " 29.06 0.927

Table 3. Ablation study on the hyperparameters ϕ and ωϕ of the
RPC2 loss. The first column indicates whether the kernel estima-
tion network is used.

worth noting that all the mentioned models are trained on
the GoPro dataset, which further demonstrates the excellent
generalization performance of our method from GoPro to
other real-world datasets.
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Figure 9. Crop the blurred region from the ReloBlur dataset for
visual comparison.

Visual comparison. As shown in Figs. 5, 6, and 7, we
compare the visual deblurring results of different unsuper-
vised methods on the GoPro, HIDE, and RealBlur datasets,
respectively. Note that although UAUD [36] effectively re-
stores images with uniform blur, such performance may not
extend to images with non-uniform blur. It can be seen that
our proposed method achieves good results in removing mo-
tion blur from real blurry images. Additionally, we note
that existing unsupervised methods often perform poorly
in dealing with more severe blurring as shown in Fig. 6.
Furthermore, we observe that while some existing advanced
supervised methods like NAFNet and UFPNet achieve the
best performance when trained on the GoPro paired datasets,
they exhibit “mode collapse” when directly applied to other
datasets, as illustrated in Fig. 8. In contrast, unsupervised
models trained with our framework do not exhibit this phe-
nomenon. Additionally, we directly use our GoPro-trained
model to test the ReloBlur [18] dataset, which contains Real
World Partly-blurred images, and find it to be effective for
some of the images, as shown in Fig. 9.

0.41

1.04
1.38

0.30

0.76

1.40

0.38
0.57

1.42

0.26
0.48

0.85

GoPro HIDE RealBlur-J RealBlur-R

NAFNetUFPNetFCLGAN

Figure 10. Performance improvement (PSNR gain) of different
methods on various datasets driven by the self-enhancement strat-
egy.

4.3. Ablation Study

The Re-Degradation Principal Component Consistency
Loss. In fact, we find that if we remove the RPC2 loss, the
generator always struggles to generate satisfactory blurry
images. Due to the minimal impact of different kernel es-
timation networks on the final deblurring performance as
illustrated in Section 3.1.3, we can use any well-performed

Methods SE
GoPro HIDE

PSNR↑ SSIM↑ PSNR↑ SSIM↑

FCLGAN [48]
% 24.70 0.768 23.49 0.733
" 25.11 0.772 23.79 0.741

UFPNet [9]
% 27.37 0.903 25.91 0.862
" 28.41 0.916 26.67 0.875

NAFNet [5] (Ours)
% 27.68 0.911 26.24 0.859
" 29.06 0.927 27.64 0.892

Table 4. Ablation study on the superiority and generalization of the
self-enhancement strategy for different reconstructors.

kernel estimation networks, e.g., [1] can be used for testing.
Therefore, our ablation study on the RPC2 loss primarily
focuses on the blur kernel estimation network and the set-
tings of hyperparameters ϕ and ω in Eq. 3. As shown in
Table 3, we observe that the blur kernel estimation network
significantly improves the performance of our method.
The Self-Enhancement Strategy. As shown in Table 4, the
effect is improved by 1.38dB on the GoPro dataset with the
SE strategy. Furthermore, to demonstrate the superiority
and versatility of our proposed self-enhancement strategy,
we also conduct experiments incorporating SE strategy on
several deblurring methods, including NAFNet [5], FCL-
GAN [48], UFPNet [9]. Fig. 10 shows in detail the different
network performance improvements before and after using
the self-enhancement strategy. Note that due to FCLGAN do
not provide the complete network weights, the experimental
results in the table are obtained from our retraining. This
strongly validates the superiority and significant potential of
the self-enhancement strategy.

5. Conclusion
In this paper, we introduce a novel unsupervised frame-
work for image deblurring. Our approach incorporates a
re-degradation principal component consistency loss, ensur-
ing that the principal components of the synthetically blurred
images align closely with those from the re-degraded ver-
sions of the original sharp images. We also put forward a
self-enhancement strategy that substantially improves perfor-
mance without modifying the model’s architecture or adding
to the computational cost in inference. Comprehensive tests
on standard datasets reveal that our method surpasses the
existing state-of-the-art unsupervised methods with strong
generalization capabilities across various real-world blurry
image datasets.
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