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Abstract

Achieving the optimal form of Visual Question Answering
mandates a profound grasp of understanding, grounding,
and reasoning within the intersecting domains of vision
and language. Traditional VQA benchmarks have predom-
inantly focused on simplistic tasks such as counting, visual
attributes, and object detection, which do not necessitate
intricate cross-modal information understanding and infer-
ence. Motivated by the need for a more comprehensive
evaluation, we introduce a novel dataset comprising 23,781
questions derived from 10,124 image-text pairs. Specifi-
cally, the task of this dataset requires the model to align
multimedia representations of the same entity to implement
multi-hop reasoning between image and text and finally use
natural language to answer the question. Furthermore, we
evaluate this VTQA dataset, comparing the performance of
both state-of-the-art VQA models and our proposed base-
line model, the Key Entity Cross-Media Reasoning Network
(KECMRN). The VTQA task poses formidable challenges
for traditional VQA models, underscoring its intrinsic com-
plexity. Conversely, KECMRN exhibits a modest improve-
ment, signifying its potential in multimedia entity alignment
and multi-step reasoning. Our analysis underscores the di-
versity, difficulty, and scale of the VTQA task compared to
previous multimodal QA datasets. In conclusion, we an-
ticipate that this dataset will serve as a pivotal resource
for advancing and evaluating models proficient in multime-
dia entity alignment, multi-step reasoning, and open-ended
answer generation. Our dataset and code is available at
https://visual-text-qa.github.io/.

1. Introduction

A paramount objective in AI research is to endow systems
with the capacity to comprehend the intricacies of the real
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world, akin to human understanding. Question Answering
(QA) stands out as an effective task for evaluating the cogni-
tive capabilities of AI systems. To answer questions, people
need to extract information from multiple modalities, such
as text, images and structured data like knowledge bases,
graphs and tables. And furthermore, people need to align
the information and do multi-step reasoning between differ-
ent modalities.

Although Visual Question Answering (VQA) [5] has
been widely researched as a multimedia QA task, VQA
models only extract information from image when answer-
ing questions and focus mainly on scene recognition, count-
ing, color and other visual detection tasks, which do not
require much logical reasoning or assignment between dif-
ferent modalities. Only recently, there are some attempts to
introduce more modal information into VQA tasks. For ex-
ample: (1) FVQA [24] and KBVQA [23] combine knowl-
edge base (KB) with VQA task, which requires the ability
of knowledge understanding and multi-step reasoning. But
it is difficult to construct a comprehensive KB in real world,
thus limiting its ability to address open-ended questions;
(2) TextbookQA [10] and ScienceQA [14] use textbook as
data sources, involving texts, images, tables and other mul-
timodal information. But most images in these datasets are
manually drawn schematic diagrams, and the questions are
all in a multiple-choice setting, which are far from the real
world.

To address these issues, more recently, there appear
some new datasets such as MultiModalQA [21] and Mu-
MuQA [18], which involve reasoning across texts, im-
ages and tables. However, it’s noteworthy that all these
datasets are conducted with extracted QA. And in the Mul-
tiModalQA dataset, each image corresponds to a Wikipedia
entity, simplifying image reasoning to ranking images based
on these entities, which diminishes the necessity for cross-
media reasoning abilities. As for MuMuQA, although it re-
quires grounding between image and text along with multi-
hop reasoning, there are still some problems: (1) the data
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Figure 1. Example in our dataset with the question-answer pairs and their corresponding image and text. Different representations of the
same object in text and image are identified with the same color. For example, ’Elena’ in the text and the object bounding box corresponding
to ’Elena’ in the image are marked red.

is all from news, resulting in most questions related to hu-
man beings; (2) questions all follow a specific pattern: first
perform image entity grounding and then find the answer in
the news body text; (3) there is only 1384 human-curated
examples and the training data is automatically generated,
which leads to poor quality and difficult to train with. Cur-
rent multimedia benchmarks are still far from the real-world
QA scene and cannot measure the multimedia understand-
ing ability of AI system well.

In order to address these gaps, we propose a novel task
named ‘Visual Text Question Answering’ (VTQA), accom-
panied by a dedicated dataset, which includes only ques-
tions that require multi-hop reasoning through both images
and text. All the annotations in VTQA dataset are first
marked in Chinese, and then translated into English.

To answer VTQA questions, the proposed model needs
to: (1) learn to identify entities in image and text referred
to the question, (2) align multimedia representations of the
same entity, and (3) conduct multi-step reasoning between
text and image and output open-ended answer. The VTQA
dataset consists of 10,124 image-text pairs and 23,781
questions. The images are real images from MSCOCO
dataset [12], containing a variety of entities. The annota-
tors are required to first annotate relevant text according to
the image, and then ask questions based on the image-text
pair, and finally answer the question open-ended. To ensure
textual richness, we enforce a minimum text length require-
ment of over 100 Chinese words. Additionally, we system-
atically exclude questions that can be answered solely based
on either the image or the text, thereby guaranteeing the
complexity of the questions.

Moreover, we conduct an evaluation on the VTQA
dataset, employing both state-of-the-art VQA models and
our newly proposed baseline model. The baseline model we
propose is called Key Entity Cross-Media Reasoning Net-
work (KECMRN), which follows the general paradigm for
answering questions on this dataset by iteratively perform-
ing key entity extraction and alignment, and cross-modal
multi-step reasoning to answer questions. Evaluation re-

sults on the VTQA dataset show that existing state-of-the-
art VQA models struggle to achieve satisfactory perfor-
mance on this dataset, which illustrates the challenges and
potential of this dataset for cross-modal question answering
tasks.

The contributions of this work can be summarized as fol-
lows: (1) we propose a new cross-modal QA dataset named
VTQA. Information diversity, multimedia multi-step rea-
soning and open-ended answer make our dataset more chal-
lenging than the existing datasets; (2) we benchmark the
state-of-the-art VQA model on our new dataset and show
the performance of these models degrades drastically; (3)
we propose a baseline that is capable of multimedia entity
alignment and multi-step reasoning.

2. Related Work

Visual Question Answering (VQA) aims to answer a natural
language question based on an image, which requires model
to understand and reason in the vision-language joint space.
Several datasets have been proposed in the past few years,
such as DAQUAR [15], FM-IQA [4], VQA [2, 5], COCO-
QA [19], Visual7W [28], Visual Genome [11], GQA [8],
OKVQA [16], A-OKVQA [20], VizWizQA [6] and so on.
However, the natural language questions in these datasets
can be regarded as instructions to guide the model to com-
plete visual tasks such as object detection, scene recogni-
tion, counting, etc. And these questions often only involve
the surface information of the image, without considering
the complexities between different modalities. understand-
ing of the reasoning process. In order to improve the mul-
timodal perception ability of the model, we need to design
more challenging problems, requiring the model to combine
the features of images and texts for cross-modal knowledge
fusion and logical reasoning.

Recently, some datasets attempt to introduce more modal
information into VQA tasks, such as FVQA [24], KB-
VQA [23], TextbookQA [10], and ScienceQA [14]. But the
information used in these datasets includes manually col-
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lected databases or manually drawn schematic diagrams in
textbooks, which are far from real-world QA scenarios. The
VTQA we propose is different from these, using the seman-
tically rich real images of the COCO dataset and human-
annotated text passages, which can be better generalized to
real-world QA scenarios.

The most similar to our dataset is MuMuQA [18]. The
MuMuQA dataset is a news-based QA dataset whose im-
ages and questions mainly involve people and events. This
dataset has only a few human-labeled data, and most of the
data is generated by automated methods, so there may be
a lot of noise and errors. In contrast, our VTQA dataset
covers a variety of genres and topics, and all texts, ques-
tions, and answers are annotated by humans, ensuring the
high quality and accuracy of the data. Our VTQA dataset
has 23781 items, which is richer and more diverse than Mu-
MuQA dataset.

3. VTQA Dataset

In this section, we present the details of our Visual Text
Question Answering (VTQA) dataset. We first introduce
the VTQA task of our dataset (Section 3.1) and then detail
how the dataset was constructed (Section 3.2), along with
the statistical properties of our dataset.

3.1. VTQA Task

As illustrated in Fig. 1, given an image-text pair and a ques-
tion, a system is required to answer the question by natural
language. Importantly, the system needs to: (1) analyze the
question and find out the key entities, (2) align the key en-
tities between image and text, and (3) generate the answer
according to the question and aligned entities. For example,
in Fig. 1, the key entity of Q1 is “Elena”. By referencing
the descriptor “gold hair” in the text, it is discerned that the
second person from the right in the image is “Elena”. Sub-
sequently, the answer “suit” is generated based on the visual
information. As for Q2, which is a more complex question,
the previous steps need to be repeated several times to an-
swer it.

3.2. Dataset Construction

To promote the progress of this open-ended multimedia
multi-hop VTQA task, we collect a new dataset. Our dataset
consists of 10124 image-text pairs and 23,781 questions.
We collect data through newly developed annotation inter-
face.

In the first round of labeling, we present images from
COCO and corresponding image descriptions, as well as
the object detection labels, to the annotators. The annota-
tors are required to generate a text that exceeds 100 words,
which should involve the object in the image and contain
information that is not included in the image description.

To ensure compliance with annotation requirements, anno-
tators can choose to skip some images (12198 images were
ultimately skipped, 9830 images were selected, and some of
them were selected more than once). The annotators then
come up with questions based on the image-text pair and
the annotation process requires that the questions cannot be
answered only by image or text. Each image-text pair is
labeled with 1-4 questions.

In a second round of labeling, different annotators were
asked to determine whether the question could be an-
swered solely by relying on either images or text within
the corresponding text-question pair or image-question pair.
Through this step, we filtered down to 23781 questions from
a pool of 28919 questions. The questions that pass this step
will be labeled with answers and answer categories. We set
three categories for answers: (1) YN means yes-or-no an-
swer, (2) E means that the answer is extracted from the text,
and (3) G means that the answer is generated from the text-
image pair. And the annotators need to label ‘yes’ or ‘no’ in
English for the yes-or-no answer, since there are too many
words to express ‘yes’ or ‘no’ in Chinese, for example, ‘可
以’ and ‘是的’ both mean ‘yes’.

We randomly split the dataset into training, validation,
test-dev and test splits and each image will only appear in
one split. Each split has 11312, 1245, 2189, 9035 samples,
respectively.

3.3. Dataset Analysis

Table 1 shows a comparison of VTQA and other VQA
datasets. As shown in the table, VTQA is much larger than
most other datasets, especially with a much larger num-
ber of multimodal questions than existing multimodal QA
datasets. The text length of the VTQA dataset is shorter
than that of MuMuQA, but still much longer than the length
of the questions in all datasets, and the texts in VTQA are
manually generated, containing more types of entities than
existing texts extracted from textbooks, wikis, and news.

Images in VTQA dataset are from MSCOCO dataset,
which contains multiple objects and rich contextual infor-
mation. Fig. 2 presents the top-10 categories distribution of
the images used in this dataset. Unlike MuMuQA, in which
most images are related to people, images in our dataset
contain more kinds of objects.

The texts and questions length statistics are shown in
Fig. 3. It is evident that most texts range from 300 to 600
and most questions range from 9 to 21. Obviously, com-
pared with the previous VQA datasets (usually less than 20
words), our dataset also puts forward higher requirements
for text understanding to extract information from the long
text.

27220



#I #Q #MMQ Contexts AvgQ AvgT Answer Type Image Source Text Source
VQA 200K 1.1M - I 6.1 - Open/MC COCO -

FVQA 5826 5826 - I+KB 9.5 - Open COCO -
KBVQA 2402 2402 - I+KB 6.8 - Open COCO -

TextbookQA 3455 26260 12567 I+T 9.2 - MC Textbook Textbook
ScienceQA 10332 21208 6532 I+T 12.1 - MC Textbook Textbook

MultimodalQA 57058 29918 8240 I+T 18.2 66.2 Open Wikipedia Wikipedia
MuMuQA* 1384 1384 1384 I+T 11.8 633.5 Open News News

VTQA 9830 23781 23781 I+T 10 238.4 Open COCO annotated

Table 1. Statistics for VTQA and comparisons with existing datasets. #Q: number of questions, #I: number of images, #MMQ: number
of multimodal questions, AvgQ: average question length, AvgT: average text length. *We only count the manually annotated parts of the
MuMuQA dataset.

Figure 2. Top-10 categories distribution of the images used in our
dataset.

Figure 3. Percentage of questions and texts with different Chinese
word lengths.

4. VTQA Model
In this section, we describe a competitive baseline method
for evaluation on our benchmark, which is called Key En-
tity Cross-Media Reasoning Network (KECMRN). Before
presenting the KECMRN, we first introduce its basic com-
ponent, the KECMR layer. The KECMR layer is a mod-
ular composition which consists of one Key Entity Extract
(KEE) layer and multiple Cross-Media Reason (CMR) lay-
ers. The KEE layer and CMR layer are composed of at-
tention unit and feed-forward unit from [22]. Then we
use the KECMR module with other layers to combine our
KECMRN. An overview flowchart of KECMRN is shown
in Fig. 4.

4.1. Attention and Feed-Forward Units

As shown in [22], the combination of attention unit and
feed-forward unit has strong representational and learning
ability. We use the same settings to construct our units.

Multi-Head Scaled Dot-Product Attention Unit.
Given a query q ∈ R1×d, n key-value pairs (packed into
a key matrix K ∈ Rn×d and a value matrix V ∈ Rn×d),
the attended feature is obtained as:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (1)

Multi-head attention divides the input into h parts and
makes single attention on each part. The attended feature is
given by:

MH(Q,K, V ) = Concat(head1, · · · , headh)WO (2)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (3)

where WQ
i ,WQ

i ,WQ
i ∈ Rd×dh and WO ∈ R(h×dh)×d

are the projection matrices. dh is the dimension of the out-
put features from each head.

Feed-Forward Unit. The feedforward unit takes the
output features of the multi-head attention layer, and further

27221



Figure 4. Overall flowchart of the Key Entity Cross-Media Reasoning Network.

Figure 5. Key Entity Extract Layer.

transforms them through two fully-connected layers with
ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

While the linear transformations are the same across dif-
ferent positions, they use different parameters from layer to
layer.

4.2. Key Entity Extract Layer

As stated in Section 3.1, the first step to answer VTQA
questions is to find out the key entity according to the ques-
tions. We compose the attention unit and feed-forward unit
to integrate question information into the text and the im-
age respectively. Then we apply a fully-connected layer to
the question-aware text/image features to get the score for
each feature. Finally, we extract the top-k features as key
entities.

The complete KKE layer is shown in the Fig. 5. Math-
ematical, given input text features T , image features I and
question features Q, the KEE layer can be formulated by
(the processing of feature I is aligned with that of feature

Figure 6. Cross-Media Reason Layer. ‘G’ means gather and ‘S’
means scatter.

T):

Q = FFN(MH(Q,Q,Q)) (5)

T = FFN(MH(MH(T, T, T ), Q,Q)) (6)

scoreT = WTT + bT (7)

The final score will be used to sort the image/text fea-
tures and the top-k features are considered as image/text key
entities. To unify the expression, we treat all the question
features as key entities.

4.3. Cross-Media Reason Layer

The CMR layer is designed for multi-step reasoning across
medias. As show in Fig. 6, we first gather the key enti-
ties as S ∈ Rlk×d from input features, where lk is the to-
tal number of all key entities. Then the key entities pass
through self-attention, global cross-attention based on orig-
inal features and feed-forward unit. Finally, the key entities
are scattered to the input features. As the requirement for
multi-step reasoning, we inserted multiple CMR layers in a
KECMR module. The CMR layer can be formulated by:

S = gather([T, I,Q]) (8)

S = FFN(MH(MH(S, S, S), [T, I,Q], [T, I,Q])) (9)

[T, I,Q] = scatter(S, [T, I,Q]) (10)
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4.4. Key Entity Cross-Media Reason Network

We use the same network framework as [26] but replace
MCA layer with our KECMR module and add an extra text
stream. As show in Figure 4, The input image is repre-
sented as a set of regional visual features in a bottom-up
manner [1]. The input question and text are transformed to
features by passing through a one-layer LSTM network [7].
Then we use our KECMR module several times to extract
key entities and conduct multi-steps cross-media reasoning.
Finally, we use the attention reduce layer to fuse the multi-
media features and project the fused feature into the answer
probability distribution.

The attention reduce layer can be formulated by:

MLP (x) = W2(max(0, xW1 + b1)) + b2 (11)

AttRe(X) = sum(softmax(MLP (X))X) (12)

We can obtain the attended image feature Ia by passing
image feature I through attention reduce layer, and the same
applies to text feature T and question feature Q. Then we
fuse the multimedia features by:

z = WiIa +WtTa +WqQa (13)

The fused feature z is projected into a vector s ∈
RN followed by a sigmoid function, where N is the num-
ber of the answers in the training set. We use binary cross-
entropy (BCE) as the loss function to train an N-way clas-
sifier on top of the fused feature z.

5. Experiments
In this section, we evaluate the current state-of-the-art VQA
model and our KECMRN model, and provide results of
them in VTQA dataset.

5.1. Evaluation Metrics

As the answers divided into three types, we use different
metrics for distinct types of answers.

Exact match (EM). This metric measures the percent-
age of predictions that match the ground truth answer ex-
actly and will be used in all types of answers.

(Macro-averaged) F1 score (F1). This metric measures
the average overlap between the prediction and ground truth
answer. We treat the prediction and ground truth as bags of
tokens and compute their F1. This metric will be used for
the E and G types of answers.

YN accuracy (YNAcc). This metric is only used for the
YN type of answers. The answer will be transformed into
‘yes’ or ‘no’ by a pre-defined yes-or-no dictionary, which
is manually collected based on the answers in our dataset.
Then we calculate the accuracy just based on the yes-or-no
answer.

5.2. Implementation Details

KECMRN: the hyper-parameters of our model used in the
experiments are as follows. The dimensionality of input im-
age features, input question features, input text features and
fused multimodal features are 2,048, 1024, 1024, and 2,048,
respectively. The latent dimensionality d in the multi-head
attention is 1024, the number of heads h is set to 8. The
number of CMR layer in each KECMR module and the
number of KECMR module are 2 and 2. The number of key
entities k is set to 16. We train our model on the train set for
13 epochs and evaluate our model on test set. The Faster-
RCNN used for image feature extraction is pretrained and
frozen, while all other modules are trained from scratch.

GPT4V [17]/LLaVA [13]/MMICL [27]: popular mul-
timodal large language models (MLLM). These models
demonstrated impressive multimodel chat abilities and ex-
ceptional performance across numerous intricate visual rea-
soning datasets, particularly excelling in zero-shot evalua-
tions. Notably, LLaVA achieved an impressive 80.0% ac-
curacy, while GPT4V attained 77.2% and MMICL attained
70.3% on the VQAv2 dataset, underscoring their remark-
able capabilities in the realm of multimodal understanding
and visual question answering. We follow the same evalu-
ation strategy as on the VQAv2 dataset, with the sole mod-
ification of adapting the prompt to ‘Search for answers in
the context above, do not use additional knowledge beyond
the text, and answer the question using a single word or
phrase’. This adjustment facilitated enhanced performance
on VTQA datasets.

BEiT3 [25]/VLMo [3]: visual language models directly
pre-trained on image-text pairs, offering versatility in ad-
dressing a spectrum of visual-language tasks through fine-
tuning on downstream tasks. Notably, on the VQAv2
dataset, BEiT3-base achieved an accuracy of 77.65%,
while VLMo-base demonstrated a commendable accuracy
of 76.6%. To evaluate the transferability of BEiT3 and
VLMo on our VTQA task, we follow the same fine-tuning
strategy as on the VQAv2 dataset, but we concatenate the
text and questions into a single paragraph of text and in-
crease the maximum number of training epochs from 10
to 50 to obtain better results, since our dataset is relatively
small compared to VQAv2.

MCAN-region [26]/MCAN-grid [9]: models based on
MCAN [26] but using different image features. They
achieve SOTA results on VQAv2 dataset (70.93% for
MCAN-region and 72.71% for MCAN-grid) among non-
pretrained visual-language models(non-PVLM), which in-
dicates that these models were not pretrained on visual-
language data, although individual pretraining on either vi-
sual or text data is allowed. We concatenate the text and
questions and increase the maximum number of input words
to train MCAN in VTQA task.

Trans-CA/Trans-SA: models based on Trans-
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Methods EM YN-ACC E-F1 G-F1
English Version

LLaVA 39.90 65.05 60.06 26.20
GPT4V 48.93 75.59 70.24 48.37
MMICL 38.76 62.90 62.32 45.96

BEiT3-base 41.02 56.51 50.18 28.14
VLMO-base 51.85 65.46 64.59 42.74

MCAN-region 56.09 72.06 67.03 40.52
MCAN-grid 55.88 70.73 65.39 39.19
Trans-CA 57.38 73.57 69.02 44.14
Trans-SA 54.39 67.89 65.95 41.11

KECMRN(ours) 57.95 74.99 68.91 44.25
Chinese Version

MCAN-region 49.78 71.26 59.94 45.74
MCAN-grid 50.22 74.17 59.02 45.59
Trans-CA 49.87 74.27 59.63 47.45
Trans-SA 48.99 73.29 58.26 46.31

KECMRN(ours) 51.32 77.59 60.52 51.11

Table 2. Results of our KECMRN on test set compaered with other
multimodal models.

former [22]. Trans-CA treat image, text and question
features as independent input and perform Self Attention
and Question Aware Cross Attention in each layer. The
layers in Trans-CA resemble those of the KEE module,
excluding the ”score&sort” step. Conversely, Trans-SA
adopts a different approach by concatenating all image,
text, and question features and only applying Self Attention
in each layer. The layers in Trans-SA resemble those of
the CMR module, excluding the ”Global Cross-Attention”
step.

5.3. Results and Analysis

Table 2 provides the results of various baselines on the test
set of our VTQA benchmark. VLMs, including MMICL,
LLaVA, BEiT3, and VLMo, primarily pretrained on En-
glish datasets, are exclusively evaluated in the English ver-
sion.

While models such as GPT4V, MMICL, and LLaVA
demonstrate superior performance across a variety of
visual-language datasets in zero-shot evaluation, they en-
counter a significant drop in performance when evaluated
on the VTQA dataset. This is partly because the model
lacks exposure to our training data during training, unlike
the VQA dataset included in the model’s VL fine-tuning
data. The decline also results from the heightened com-
plexity of our VTQA task compared to VQA, posing new
challenges to the model’s image-text alignment and infer-
ence capabilities.

BEiT3 and VLMo, pretrained directly on image-text
pairs, achieve impressive results on various multimodal
datasets through fine-tuning on downstream tasks. Despite

Methods EM YN-ACC E-F1 G-F1
Trans(1) 55.45 72.43 65.35 42.27
Trans(3) 55.07 70.98 65.7 43.58
Trans(6) 54.07 69.43 64.83 43.91
LSTM 57.95 74.99 68.91 44.25

Table 3. Results of different text encoders based on KECMRN.

fine-tuning on VTQA training data, BEiT3 and VLMo still
exhibit a substantial performance decrease. This is partly at-
tributed to the limitation that the pretraining data for BEiT3
and VLMo only includes image-text pairs with relatively
short texts, while the texts in the VTQA dataset are longer,
averaging 284 words in English version. This, once again,
underscores the challenges inherent in the VTQA task.

While MCAN models outperform the pre-trained mod-
els, a notable decrease is observed. In addition, Trans-CA
exceeded the results of all VQA models, while the results of
Trans-SA are relatively poor. This highlights the necessity
for a more intricate independent processing of text, image,
and question features in our VTQA dataset. Our KECMRN
achieves the best result with 57.95% on the English version
and 51.32% in Chinese version.

Fig. 7 illustrates the outcomes of attention visualiza-
tion across different models. The attention weights from
the ‘Attention Reduce’ module were employed to colorize
image regions and organize the Top Words. Notably, our
KECMRN model exhibits precise identification of Zhang
Yanqi on the left side, engaged in ball play. This accurate
recognition is based on key phrases such as sports balls
and dribbling skills, leading to a correct inference for the
associated question (‘Yes’). In contrast, although MCAN
also directs attention to the person on the left, the absence
of Key-Entity Extract (KEE) causes attention to be exces-
sively dispersed. Consequently, there is an inaccurate lo-
calization of the person’s upper garment, resulting in an in-
correct answer. Furthermore, Trans-SA mistakenly focuses
on the person on the right, while Trans-CA struggles to dis-
cern whether Zhang Yanqi is positioned on the left or right,
both yielding incorrect answers. The attention visualization
results underscore the superior precision of our KECMRN
model in focusing on the correct visual regions and words.

5.4. Ablation Study

We conducted a number of ablation experiments to inves-
tigate the reasons for the effectiveness of KECMR. All the
reported results are evaluated on English version.

Text Encoders: Table 3 provides an overview of the re-
sults obtained using different text encoders in conjunction
with KECMRN. In this table, Trans(k) denotes a k-layer
transformer encoder model. Contrary to expectations, the
performance of deeper transformer encoder models tends to
be inferior, with LSTM outperforming all transformer en-
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Figure 7. An example of attention visualization for different models.

Methods EM YN-ACC E-F1 G-F1
Trans-CA 57.38 73.57 69.02 44.14
CA+SA 57.17 73.57 68.96 42.88

KEE+SA 57.63 74.42 69.1 43.06
KEE+CMR 57.95 74.99 68.91 44.25

Table 4. Results of the KECMRN model with different module
combinations.

coder models. This phenomenon is attributed to both in-
sufficient training data and the intricate structure of trans-
former models.

KEE/CA and CMR/SA: Table 4 displays the results of
the KECMRN model with different module combinations.
In this table, CA+SA denotes the alternate use of CA and
SA layers, similar to our KECMRN design. KEE+SA fol-
lows a similar pattern. Compared to Trans-CA, replacing
some CA layers with SA layers results in a slight perfor-
mance decrease (↓0.21). Conversely, the inclusion of the
KEE layer improves performance (↑0.46) by concentrating
information on key entities. Additionally, the CMR layer
further optimizes features related to key entities, leading to
enhanced results (↑0.32).

6. Conclusion

We propose a novel cross-modal question answering
dataset, VTQA, which necessitates models to acquire perti-
nent information from both text and image sources and per-
form complex cross-modal reasoning to answer questions.
Our experimental findings reveal that even state-of-the-art
pretrained models fall short of achieving satisfactory perfor-
mance on VTQA, underscoring the challenges and potential
inherent in the dataset for cross-modal question-answering
tasks. Looking ahead, we aim to augment the dataset’s size
and coverage and provide additional reasoning annotations
in future work to more effectively assess and catalyze the
development of cross-modal reasoning models. Simultane-
ously, we aspire to explore more fitting evaluation metrics to
surmount the limitations of EM metrics and more equitably
gauge the model’s question-answering proficiency.
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