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Abstract

A versatile medical image segmentation model applica-
ble to images acquired with diverse equipment and pro-
tocols can facilitate model deployment and maintenance.
However, building such a model typically demands a large,
diverse, and fully annotated dataset, which is challenging
to obtain due to the labor-intensive nature of data curation.
To address this challenge, we propose a cost-effective al-
ternative that harnesses multi-source data with only partial
or sparse segmentation labels for training, substantially re-
ducing the cost of developing a versatile model. We devise
strategies for model self-disambiguation, prior knowledge
incorporation, and imbalance mitigation to tackle chal-
lenges associated with inconsistently labeled multi-source
data, including label ambiguity and modality, dataset, and
class imbalances. Experimental results on a multi-modal
dataset compiled from eight different sources for abdomi-
nal structure segmentation have demonstrated the effective-
ness and superior performance of our method compared to
state-of-the-art alternative approaches. We anticipate that
its cost-saving features, which optimize the utilization of ex-
isting annotated data and reduce annotation efforts for new
data, will have a significant impact in the field.

1. Introduction

Medical image segmentation plays a pivotal role in dis-
ease diagnosis [1, 8, 25, 42], treatment planning [36], and
biomedical research [5, 6, 12, 23]. Models, tailored for spe-
cific applications, imaging modalities, and distinct anatom-
ical regions, are ubiquitous and attract considerable atten-
tion [37]. Nonetheless, they often exhibit limited robust-
ness and generalizability, largely due to insufficient training
data. Additionally, the necessity to develop separate seg-
mentation models for different organs and modalities poses
scalability challenges, causing inefficient resource utiliza-
tion and escalating development and maintenance costs.

Versatile image segmentation models show potential in
overcoming the limitations of their specialized counterparts.
However, their training typically requires a large, diverse,
and fully annotated dataset, incurring high costs in data cu-
ration and annotation. As a result, only small-scale datasets
are usually available, with annotations covering only a por-
tion of anatomical structures or image slices, resulting in
partial or sparse segmentation labels [38]. These datasets
are typically curated by annotators focusing on labeling
specific structures of interest while treating others as back-
ground. However, such selective annotation introduces am-
biguity when interpreting unannotated regions, impeding
the efficacy of image segmentation methods that rely on
complete annotations. Specialized strategies are thus essen-
tial to effectively utilize datasets with ambiguous labels.

Multi-head segmentation models obviate the issue of la-
beling ambiguity by designing a distinct decoder for dif-
ferent datasets [4, 18]. However, their inefficient mem-
ory usage hampers scalability. Dynamic models, such as
the class-conditioned model [9], DoDNet [41], and CLIP-
driven [24], adeptly address partial labeling through condi-
tional segmentation, enabling adjustments in their outputs
for specific tasks. Nevertheless, dynamic models face their
own challenges, such as training complexities, inefficien-
cies in inference due to multiple forward passes, and limita-
tions in fully exploiting the benefits of fine-grained annota-
tions, as class-specific parameters are optimized separately.
Semi-supervised segmentation methods generate pseudo-
labels for unannotated anatomical structures to facilitate
conventional loss computation [15, 43]. However, these
methods require fully annotated data for initial fully super-
vised training, and the incorporation of inaccurate pseudo-
labels in later training stage may degrade the model perfor-
mance. Background modeling methods [11, 35] dynami-
cally compute losses for unannotated voxels to mitigate se-
mantic drifts in partial annotations. Nevertheless, their re-
quirement for fully annotated data limits their applicability
in challenging scenarios. Notably, all these existing meth-
ods are unable to utilize sparsely labeled data (cf. Fig. 1(c)).
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In this study, we present a weakly-supervised approach
for medical image segmentation, utilizing a large and
diverse dataset with incomplete labeling from multiple
sources. Our method utilizes a model self-disambiguation
mechanism to tackle labeling ambiguity in both partially
and sparsely annotated data. This is achieved by intro-
ducing two ambiguity-aware loss functions. Additionally,
by leveraging prior knowledge of optimal predictions, we
integrate a regularization term into the objective function.
This helps reduce uncertainty in model predictions, par-
ticularly for challenging and unannotated voxels, thereby
expediting convergence. To address imbalances in multi-
source data, we propose a hierarchical sampling strategy.
Our approach facilitates training a single versatile model
using multi-source datasets and enables efficient inference
in a single forward pass, predicting all anatomical structures
simultaneously. Our contributions are three-fold:
• We propose a weakly-supervised approach that leverages

partially and sparsely labeled data to address data lim-
itations in medical image segmentation. Remarkably,
our approach exhibits impressive versatility and self-
disambiguation capabilities, holding great promise for en-
hancing label efficiency and reducing the costs associated
with model development, deployment, and maintenance.

• We employ hierarchical sampling to account for the im-
balance issues in multi-source datasets and incorporate
prior knowledge to improve the model performance.

• We showcase the proposed method’s effectiveness on a
multi-modality dataset of 2, 960 scans from eight distinct
sources for abdominal organ segmentation. Our approach
demonstrates substantially improved efficiency and effec-
tiveness compared to state-of-the-art alternative methods.

2. Related Work
Category-specific models. Developing separate models for
different anatomical structures using annotated data from
various sources is a straightforward strategy for leveraging
multi-source datasets. However, this method is computa-
tionally complex and inefficient, as it requires training mul-
tiple models and processing test images through each model
during inference. Additionally, it fails to capitalize on the
benefits of fine-grained segmentation, which could improve
feature representations and overall performance [22].
Multi-head models. Multi-head models [4, 18] share an
encoder but have separate decoders for each dataset. Yet,
redundant structures in multiple decoders hinder scalability,
and training decoders with limited and less diverse data may
degrade model generalization.
Dynamic models. Dynamic models like the class-
conditioned model [9], DoDNet [41], CLIP-driven model
[24], and Hermes [13] utilize a unified model with task-
adjustable outputs via a controller. However, they handle
only one segmentation task at a time, causing inefficien-

cies during inference and limiting their exploitation of fine-
grained segmentation benefits.
Semi-supervised segmentation. Semi-supervised segmen-
tation methods [15, 43] tackle partial labeling by generat-
ing pseudo-labels for unannotated anatomies, incorporating
additional regularizations like anatomy size [43] and inter-
model consistency [15] to stabilize training. However, in-
accuracies in pseudo-labels can impair model performance.
Moreover, the necessity of a fully labeled dataset for pre-
training [43] and training multiple single-anatomy segmen-
tation models [15] may limit practical applicability.
Weakly-supervised segmentation. Weakly-supervised
segmentation methods utilize various forms of weak super-
vision, including image-level labels [16], bounding boxes
[19], points [10, 40], scribbles [28, 38], and incomplete
annotations [2, 11, 32, 35]. Our work falls within this
broad category, focusing on learning from ambiguous data
labeled partially and sparsely. However, in contrast to exist-
ing methods that utilize image-level labels, bounding boxes,
points and scribbles, none of which can attain compara-
ble segmentation performance to voxel-wise supervision, or
those tailored for training with partial labels, which strug-
gle to leverage sparse labels, or those trained on data with
sparse labels, requiring clear background definitions and
annotations, our approach is designed to handle both par-
tial and sparse labels, achieving highly competitive perfor-
mance to fully supervised segmentation, even in the absence
of background annotations.
Background modeling. Background modeling methods
[11, 35] address label ambiguity in partially labeled data
by dynamically calculating the loss for unannotated voxels.
These methods assume complete annotations of all identi-
fied organs within the volume and consolidate the predic-
tions for all categories, excluding the annotated ones, into a
distinct class during loss computation. Our approach bears
similarities to these methods but offers enhanced capabil-
ity in handling sparsely annotated data by relaxing label-
ing constraints. Notably, these methods still require fully
annotated data during training, limiting their applicability
in practical scenarios where such data is unavailable. In
contrast, our method maintains effectiveness even when all
training images are incompletely annotated.
Segment anything model. The “segment anything” model
[20] and its variants, such as MedSAM [29] and SAM-
Med2D [7], share the same goal as our work, aiming for a
universal segmentation model applicable to various images
and objects. However, these models presume the availabil-
ity of a substantially large labeled dataset and do not attempt
to handle practical challenges like label incompleteness and
ambiguity. Moreover, these models are typically designed
to generate segmentation results automatically without pro-
viding their semantic labels and are more suited for interac-
tive use, requiring user input, such as a bounding box.
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Fully labeled Partially labeled Sparsely labeled

(a) (b) (c)

Figure 1. Illustrations of (a) fully labeled, (b) partially labeled,
and (c) sparsely labeled images. The fully labeled image contains
annotations for all anatomical structures of interest, the partially
labeled image includes labels for a subset, and the sparsely labeled
image provides annotations for only a fraction of the slices and
structures. Note that annotated structures are fully marked within
a particular volume (b) or slice (c).

3. Methods
This section begins by introducing the motivation, objective
and scope of our study. It then offers an overview of our
proposed framework, followed by a detailed explanation of
the key strategies employed in this research.

3.1. Motivation, Objective & Scope

Given the challenges of obtaining a large, diverse, and fully
annotated dataset for training versatile medical image seg-
mentation models, as well as the increased accessibility and
cost-effectiveness of weakly labeled data compared to the
fully labeled data, our study pursues a cost-effective alter-
native utilizing two forms of weak supervision: partially
labeled data and sparsely labeled data. Fig. 1 illustrates
the differences between these data types, emphasizing vari-
ations in their annotation scopes and details.

It is important to clarify that the term “sparsely labeled
data” here specifically refers to images with per-voxel anno-
tations, rather than other types of weak annotations such as
image-level labels, point annotations, scribbles, and bound-
ing boxes, which are often categorized as sparse annotations
in other studies. Nonetheless, our definition allows for flex-
ibility: annotations for different slices and structures are in-
dependent, meaning that a structure annotated in one slice
does not have to be annotated in other slices. Additionally,
it is crucial to emphasize that sparsely labeled data encom-
passes a broader spectrum, with partially labeled data repre-
senting a specific category within it. By using these distinct
terminologies, we highlight the differences between exist-

ing methods, primarily tailored for partially labeled data,
and our approach, which accommodates a wider range of
weakly labeled data. Our method excels at better data uti-
lization and has the potential to enhance data accessibility.

3.2. Overview

As illustrated in Fig. 2, our approach employs a hierarchi-
cal sampling technique to generate training examples from
multi-source multi-modality datasets with ambiguous anno-
tations. A 3D variant of TransUNet [3] (3D TransUNet) is
adopted as the base network for extracting per-voxel feature
representations from the input. These representations are
then processed by a segmentation head to produce multi-
channel predictions. To address label ambiguity and en-
sure effective training, we integrate ambiguity-aware losses.
Moreover, we incorporate prior knowledge to regularize the
model training.

3.3. Model Self-disambiguation

When annotating medical images, it is a common practice
for annotators to focus solely on labeling the anatomical
structures of interest. Thus, a significant portion of vox-
els remains unannotated (with a default value of 0) and is
interpreted as background for each image. In a data col-
lection comprising partially and/or sparsely labeled images
from diverse sources, unannotated voxels in different im-
ages may contain various anatomical structures, leading to
semantic ambiguity/drift within the background class. This
semantic ambiguity presents significant challenges for fully
supervised approaches due to conflicting supervision.

In this study, we tackle the challenges posed by seman-
tic drift by computing the loss for unannotated voxels adap-
tively, considering both the possible categories for the unan-
notated voxels and the label type (i.e., partially labeled or
sparsely labeled). Without loss of generality, let’s consider
a scenario where there are a total of N anatomical struc-
tures of interest, denoted by ΦN , and each training exam-
ple has only a fraction of its slices annotated. In each an-
notated slice, the annotation may cover only a subset of
M out of N structures, where 1 ≤ M ≤ N . Generally,
this subset can comprise any combination and be denoted
as ΦM = {i1, i2, . . . , iM}, where 1 ≤ ip < iq ≤ N for
any p < q. For the annotated voxels in a given slice, their
labels are definitive and offer clear supervision. However,
the true labels for the unannotated voxels in the same slice
are unknown. It is only certain that these voxels may be-
long to either the “real” background category or any class
in ΦN\ΦM , representing the difference between sets ΦN

and ΦM , i.e., {x | x ∈ ΦN and x /∈ ΦM}. Therefore, we
adaptively adjust the loss calculation for the unannotated
voxels to accommodate label ambiguity. We adopt the fol-
lowing ambiguity-aware focal cross-entropy loss (Lfocal ce)
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Figure 2. Overview of our approach. It trains a model by using hierarchical sampling for training example generation, 3D TransUNet as
its base network, two ambiguity-aware losses and a prior knowledge-based entropy minimization regularization term for guidance.

and dice loss (Ldice), calculated slice-wise, as the objective:

Lfocal ce =
1

Nv

∑
c∈{0}∪ΦM

Nv∑
i=1

1yi=c(1− p̃ic)2 log p̃ic, (1)

Ldice = 1− 1

|ΦM |+ 1

∑
c∈{0}∪ΦM

2 · TPc + ε

2 · TPc + FPc + FNc + ε
,

(2)
where 1 denotes an indicator function, | · | is the cardi-
nality, Nv represents the number of pixels in the slice,
TPc =

∑Nv

i=1 p̃icỹic, FPc =
∑Nv

i=1 p̃ic(1 − ỹic) and FNc =∑Nv

i=1(1 − p̃ic)ỹic are the soft values for the true positive,
false positive and false negative respectively, ε is set to 1 to
avoid division by 0,

p̃ic =

{
pic, c ∈ ΦM ,∑

j 6∈ΦM
pij , c = 0,

(3)

ỹic =

{
yic, c ∈ ΦM ,∑

j 6∈ΦM
yij , c = 0,

(4)

pic and yic represent the c-th element of the probability vec-
tor and the one-hot encoded vector for the expert label for
the i-th pixel, respectively.

Unlike methods that simply treat unannotated voxels as
background, potentially misleading the model, or those that
overlook voxels with ambiguous labels in the loss calcula-
tion, leading to incorrect predictions for voxels not belong-
ing to any specific structure, our ambiguity-aware losses
enable the model to self-disambiguate during training and
infer the correct labels for all voxels.

It is noteworthy that for partially labeled data, the loss
computation can be simplified. The ambiguity-aware losses
can be calculated for each volume rather than slicewise,
with Nv representing the number of voxels, and ΦM de-
noting the set of annotated structures within the volume.

3.4. Prior Knowledge Incorporation

We have the prior knowledge that each voxel/pixel corre-
sponds to a single label in multi-class medical image seg-
mentation tasks. When confronted with challenging and
unannotated voxels, the model encounters difficulty in de-
termining their classes, leading to high-entropy predictions.
Our hypothesis is that reducing this uncertainty can improve
the differentiation between categories and accelerate a more
reliable convergence during the optimization process. We
thus incorporate this prior knowledge into the training pro-
cess, encouraging the model to produce more confident and
informative predictions. This is achieved by regularizing
the model training to minimize the Shannon entropy below.

Lreg = − 1

Nv

Nv∑
i=1

N∑
c=0

pic log pic, (5)

Notably, this regularizer is class-agnostic and can be applied
to both annotated and unannotated voxels.

3.5. Imbalance Mitigation

Medical image segmentation models often encounter chal-
lenges in maintaining consistent performance across diverse
domains due to variations in imaging modalities, equip-
ment, imaging protocols, and patient demographics. While
aggregating data from multiple sources can enrich training
data diversity and bolster model robustness, it may also in-
troduce imbalances at the modality, dataset, and class lev-
els. Neglecting these issues during model training could
result in inferior performance, particularly on underrepre-
sented modalities, datasets, and categories.

However, such imbalance issues have not been well ad-
dressed in existing methods that utilize multi-source par-
tially labeled data [11, 15, 35, 43]. To tackle these chal-
lenges, we propose a hierarchical sampling approach. Dur-
ing training, we initiate the sampling by selecting images
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based on the type of anatomical structure, thereby narrow-
ing down the number of eligible images. The chosen struc-
ture determines the location of the training image patch cen-
ter. Subsequently, we conduct a secondary sampling based
on the modality of the medical images within the subset of
images from the first level, enabling us to focus on images
that belong to the chosen modality. Next, we draw a sample
from the candidate pool based on the dataset of origin for
each image, ensuring equitable treatment for images from
various sources. Finally, we select an image from the cho-
sen dataset for training. The proposed strategy enables us
to account for the variations across domains, ultimately en-
suring a balanced representation of the training data.

3.6. Overall Objective

The overall objective for training (L) is a weighted com-
bination of the uncertainty-aware focal cross-entropy loss
(Lfocal ce), uncertainty-aware dice loss (Ldice), and the Shan-
non entropy minimization regularization term (Lreg):

L = Lfocal ce + Ldice + λLreg. (6)

where the hyper-parameter λ is set to 3 for training ex-
amples without annotations to mitigate the null effects of
Lfocal ce and Ldice, and 1 otherwise.

4. Experiments and Results
4.1. Experiment Setup

Dataset. We curated a dataset of 2, 960 volumetric im-
ages from eight sources, including seven public datasets
(AbdomenCT-1K (AbCT-1K) [30], AMOS [17], BTCV
[21], FLARE 2022 (FLARE22) [31], NIH pancreas (NIH-
Pan)[33], TotalSegmentator (TotalSeg) [39], and WORD
[27]) and one private dataset (Urogram). Notably, the
AMOS dataset is multi-modality, featuring 300 labeled CT
and 60 labeled MRI images, which we segregated into two
subsets, AMOS-CT and AMOS-MRI. We demonstrated
the model’s self-disambiguation capability by segmenting
16 abdominal structures, namely spleen (Sp), right kidney
(RK), left kidney (LK), gallbladder (GB), esophagus (Eso),
liver (L), stomach (St), aorta (A), postcava (PC), pancreas
(Pan), right adrenal gland (RAG), left adrenal gland (LAG),
duodenum (Duo), bladder (B), prostate/uterus (PU), and
portal vein and splenic vein (PSV). Although TotalSeg and
WORD provided masks for anatomical structures beyond
our scope, we retained only the pertinent ones. In WORD,
RK and RAG are assigned with the same labels as LK and
LAG, respectively. We thus partitioned segments for kid-
ney and adrenal gland into connected components and au-
tomatically assigned labels to the largest two, assisted by
a model trained without WORD. The same was applied to
AbCT-1K to separate RK and LK. For cases with only one
kidney or adrenal gland, we manually verified and assigned

Table 1. Method performance comparison.

Method Base DSC [%]

DoDNet [41] 3D TransUNet 83.5±15.9

CLIP-driven [24] 3D TransUNet 83.3±16.3

Ours

Unet++ [44] 87.4±8.5

Swin UNETR [14] 86.9±8.5

MedNeXt [34] 88.4±7.3

3D TransUNet 88.7±7.0

the correct labels. Approximately 90% of the images were
selected for training, with the remainder reserved for eval-
uation purposes. Details about each dataset are outlined in
Fig. 3. Note that we have removed corrupted images, and
no images used in this study are fully annotated.

Data preprocessing. To facilitate hierarchical sampling,
we added a prefix to each image name indicating the dataset
it comes from and its modality. For example, a CT im-
age from AMOS initially named “amos 0001.nii.gz” was
renamed “amos ct amos 0001.nii.gz” after prefixing. Ad-
ditionally, we standardized all images to lie in a common
coordinate system to ease model training with images in
varied orientations. All data were resampled to a uniform
spacing of 2 × 2 × 2 mm3. Intensity values in CT images
were clipped at −400 and 400 HU, while for MRI images,
the clipping was done at the 1st and 99th percentiles of the
intensity distribution. Finally, the intensity values were nor-
malized to the range of [0, 1].

Implementation details. PyTorch was used to implement
the proposed method. We employed the AdamW optimizer
[26] with an initial learning rate of 0.001 and a polynomial
learning rate scheduler with a decay of 0.9. Data augmen-
tations, such as random rotation and scaling, were applied
during the training process. Unless otherwise specified,
the default patch size and number of iterations were set to
112×112×112 and 200, 000, respectively. Distributed data
parallel was used to enhance training efficiency. All exper-
iments were conducted on a single node with 8 NVIDIA
Titan Xp GPUs. The effective batch size was 8 for all ex-
periments, and all models were trained from scratch.

Evaluation metric. The Dice Similarity Coefficient (DSC,
%) was used for performance evaluation. Since annotations
were limited to a subset of anatomical structures in each
image, and the region of interest (ROI) varied across im-
ages, only those annotated structures within the ROI were
included for quantitative evaluation. Notably, the segmen-
tation difficulty varied across different structures, and the
number of annotated structures differed among datasets,
leading to significant variation in the quantitative values
across datasets. It is noteworthy that all the reported per-
formances were obtained with a single model, not through
ensemble learning techniques.
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Total=308

Testing 

Total=2652

Training 

AbdomenCT-1K (893/100) 
AMOS-CT (270/30)
AMOS-MRI (54/6)
BTCV (27/3) 
FLARE22 (45/5) 
NIH Pancreas (73/9)
TotalSegmentator (1081/122)
Urogram (109/13)
WORD (100/20) 

Dataset (Training/Testing) 

(a)

Dataset Sp RK LK GB Eso L St A PC Pan RAG LAG Duo B PU PSV

AbCT-1K 3 3 3 7 7 3 7 7 7 3 7 7 7 7 7 7
AMOS-CT 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 7

AMOS-MRI 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 7
BTCV 3 3 3 3 3 3 3 3 3 3 3 3 7 7 7 3

FLARE22 3 3 3 3 3 3 3 3 3 3 3 3 3 7 7 7
NIH-Pan 7 7 7 7 7 7 7 7 7 3 7 7 7 7 7 7
TotalSeg 3 3 3 3 3 3 3 3 3 3 3 3 3 3 7 3
Urogram 7 3 3 7 7 7 7 7 7 7 7 7 7 3 7 7
WORD 3 3 3 3 3 3 3 7 7 3 3 3 3 3 7 7

(b)

Figure 3. (a): Training and testing image composition. (b): Annotated anatomical structures in different datasets.

Table 2. Comparison of overall and PU segmentation performance (DSC, %) with varying numbers of datasets
used for training. The “3 Sets” experiment exclusively involves AMOS, BTCV, and FLARE22 datasets.

Setting Overall PU

3 Sets 83.5±13.9 75.8±21.6

8 Sets 88.7±7.0 79.2±17.6

Table 3. Performance with different sampling methods.

Sampling Approach DSC [%]

Random 87.5±7.7

MDC 87.9±7.7

CMD (Default) 88.7±7.0

Table 4. Performance (DSC, %) comparison among DoDNet, CLIP-driven, and the proposed method on each anatomical structure.

Method Base Sp RK LK GB Eso L St A PC Pan RAG LAG Duo B PU PSV Average

DoDNet 3D TransUNet 92.6 90.6 89.8 73.3 76.6 93.2 85.8 84.8 82.5 81.6 69.6 72.3 69.6 83.6 59.2 75.7 80.0
±11.9 ±13.2 ±13.9 ±28.3 ±14.6 ±15.1 ±19.8 ±22.5 ±19.7 ±14.3 ±18.9 ±17.9 ±21.3 ±17.3 ±29.5 ±20.5 ±18.7

CLIP-driven 3D TransUNet 92.5 89.0 90.5 74.5 76.8 93.1 86.2 84.4 81.7 81.6 70.7 73.4 69.3 85.9 68.2 74.5 80.7
±11.8 ±16.6 ±13.0 ±27.7 ±14.6 ±15.2 ±20.0 ±21.9 ±21.0 ±14.1 ±17.7 ±17.4 ±22.7 ±16.5 ±30.3 ±21.7 ±18.9

Ours

UNet++ 94.9 93.1 93.5 78.2 81.5 96.2 90.3 90.7 85.4 84.1 74.1 75.2 73.9 88.2 76.0 75.8 84.5
±6.9 ±9.0 ±4.9 ±23.2 ±8.6 ±6.8 ±13.0 ±11.2 ±12.7 ±9.4 ±12.5 ±13.3 ±17.9 ±15.0 ±23.6 ±17.0 ±12.8

Swin UNETR 94.7 92.8 93.0 76.4 80.0 96.1 90.0 90.4 85.4 83.0 73.1 74.0 72.6 88.4 74.8 74.8 83.7
±7.3 ±9.7 ±6.4 ±22.9 ±9.0 ±6.6 ±12.5 ±10.1 ±11.6 ±9.9 ±13.1 ±14.9 ±17.1 ±14.3 ±22.2 ±16.1 ±12.7

MedNeXt 95.0 93.3 93.7 78.4 83.2 96.5 91.3 91.9 86.7 85.1 75.5 76.4 76.3 88.9 77.5 77.6 84.5
±8.9 ±9.5 ±6.9 ±23.9 ±7.5 ±6.4 ±12.1 ±8.3 ±12.3 ±8.9 ±11.3 ±13.4 ±15.9 ±14.2 ±23.7 ±15.5 ±12.4

3D TransUNet 95.3 93.8 94.0 77.7 82.4 96.5 91.5 92.5 87.0 85.1 75.4 76.5 76.4 90.3 79.2 77.6 85.7
±6.6 ±7.3 ±5.2 ±25.0 ±9.0 ±6.4 ±12.3 ±6.5 ±11.2 ±9.3 ±12.0 ±14.6 ±16.6 ±13.3 ±17.6 ±16.5 ±11.9

4.2. Results on Partially Labeled Data

Current methods are limited to utilizing partially labeled
data for training. Therefore, we compared our method and
state-of-the-art approaches, DoDNet and CLIP-driven, us-
ing exclusively partially labeled data. For fair comparisons,
we replaced the base network in their original frameworks
with the 3D TransUNet and adopted the same hierarchical
sampling approach as ours. Notably, we adjusted DoD-
Net to produce a single-channel output, since DoDNet was
originally designed to predict both anatomical structures
and associated tumors concurrently whereas our study fo-
cused on the former. Furthermore, both DoDNet and CLIP-
driven were unable to utilize images lacking annotations,
such as those from TotalSegmentator that contain no rele-
vant anatomical structures under study within their ROIs.
Consequently, we excluded those images for training DoD-
Net and CLIP-driven models.

Main results. Table 1 summarizes the segmentation perfor-
mance assessed on a per-subject basis for DoDNet, CLIP-
driven, and the proposed method, which employed different
base networks. This evaluation method computed the aver-
age DSC of all annotated classes for each testing subject and
subsequently averaged them across subjects. During train-
ing DoDNet and CLIP-driven, we observed that they exhib-

ited significantly slower convergence rates and thus doubled
the training time compared to our proposed method. Our ex-
perimental results indicated that, using the same 3D Tran-
sUNet as the base network, our approach achieved an im-
pressive average DSC of 88.7% on the testing set, surpass-
ing both DoDNet and CLIP-driven, which attained average
DSCs of 83.5% and 83.3%, respectively.

Further insights into performance were gleaned by ex-
amining segmentation performance on each anatomical
structure, as depicted in Table 4. This analysis involved av-
eraging DSCs across individual images with specific struc-
tures annotated, revealing the superior segmentation perfor-
mance of the proposed method over DoDNet and CLIP-
driven. Remarkably, our proposed method, employing 3D
TransUNet as the base network, achieved an average DSC
of 85.7% for individual structures, outperforming DoDNet
and CLIP-driven by 5.7% and 5.0%, respectively.

Moreover, we conducted a comparative evaluation of
their performance and undertook a visual comparison across
each dataset, as illustrated in Table 5 and Fig. 4, which ac-
centuated the consistently superior performance of the pro-
posed method across all datasets.

To evaluate model generalizability to unseen datasets,
we additionally trained a model using only AMOS, BTCV,
and FLARE22 as training data. As summarized in Table 2,
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Table 5. Performance (DSC, %) comparison among DoDNet, CLIP-driven and the proposed method on each dataset.

Method Base AbCT-1K AMOS-CT AMOS-MRI BTCV FLARE22 NIH-Pan TotalSeg Urogram WORD

DoDNet 3D TransUNet 91.3 81.5 80.5 76.0 89.0 82.4 77.6 90.9 79.3
±2.9 ±9.0 ±9.5 ±5.4 ±1.5 ±4.5 ±22.5 ±2.7 ±4.9

CLIP-driven 3D TransUNet 91.3 82.0 80.8 76.6 89.3 81.9 76.8 90.3 80.6
±3.2 ±9.3 ±9.3 ±5.3 ±1.2 ±4.0 ±23.1 ±3.7 ±4.2

Ours

UNet++ 92.9 84.9 81.6 79.4 90.5 83.6 84.2 93.1 83.5
±2.3 ±6.9 ±8.8 ±5.9 ±0.9 ±5.2 ±10.5 ±1.8 ±4.5

Swin UNETR 92.8 83.6 80.6 78.8 90.2 82.7 83.4 93.1 83.1
±2.0 ±7.9 ±6.5 ±5.9 ±1.3 ±5.2 ±10.1 ±1.5 ±4.3

MedNeXt 93.3 85.6 81.6 78.8 90.8 84.2 85.9 93.8 84.2
±2.4 ±7.2 ±8.1 ±6.7 ±0.6 ±4.2 ±8.5 ±1.5 ±3.9

3D TransUNet 93.5 85.5 80.5 78.7 90.9 84.7 86.4 93.6 84.1
±1.9 ±6.6 ±9.3 ±5.6 ±0.7 ±4.4 ±7.9 ±2.3 ±3.8

Table 6. Performance (DSC, %) comparison among different sampling methods on each anatomical structure.

Sampling Method Sp RK LK GB Eso L St A PC Pan RAG LAG Duo B PU PSV Average

Random 94.8 92.7 93.0 75.0 80.9 96.0 90.0 92.0 85.5 83.6 71.7 73.3 72.5 89.5 74.4 73.8 83.7
±6.7 ±8.0 ±6.2 ±23.7 ±9.5 ±6.6 ±12.0 ±5.3 ±11.0 ±9.0 ±14.1 ±16.0 ±17.4 ±13.5 ±24.6 ±15.9 ±12.5

MDC 95.0 93.6 93.5 77.8 81.3 96.5 91.1 91.3 86.1 84.6 73.7 74.4 73.2 89.0 75.7 74.9 84.5
±7.8 ±8.0 ±6.7 ±23.2 ±8.9 ±6.4 ±11.2 ±9.8 ±12.1 ±9.0 ±12.9 ±15.1 ±18.0 ±14.4 ±23.1 ±15.3 ±12.6

CMD 95.3 93.8 94.0 77.7 82.4 96.5 91.5 92.5 87.0 85.1 75.4 76.5 76.4 90.3 79.2 77.6 85.7
(Default) ±6.6 ±7.3 ±5.2 ±25.0 ±9.0 ±6.4 ±12.3 ±6.5 ±11.2 ±9.3 ±12.0 ±14.6 ±16.6 ±13.3 ±17.6 ±16.5 ±11.9

Figure 4. Visual comparison between the ground truth and the predictions generated by DoDNet, CLIP-driven and the proposed method
on subjects from different datasets. For a clearer view of detailed differences, zoom in to closely examine the results.

this model achieved an average DSC of 83.5% on the test-
ing set, lower than the one trained with all data, which
was expected. Notably, using all eight datasets for training
yielded a model with superior prostate/uterus segmentation

performance compared to the one trained using only three
datasets, despite the additional datasets lacking annotations
for the prostate/uterus. This highlights the advantages of
fine-grained segmentation.
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Table 7. Performance trained with varying numbers of par-
tially labeled images with and without entropy minimization.

Setting DSC [%]

3 Sets w/o reg 82.6±15.2

3 Sets w/ reg 83.5±13.9

8 Sets w/o reg 88.2±7.0

8 Sets w/ reg 88.7±7.0

Table 8. Performance (DSC, %) on sparsely labeled data
with different portions of annotated slices.

Setting 20% 100%

8 Sets (axial) 85.1±11.8 87.8±8.0

8 Sets (sagittal) 86.2±9.0 87.8±7.9

8 Sets (coronal) 86.1±10.3 87.8±7.9

Table 9. Performance with mixed training.

Setting DSC [%]

8 Sets (axial) 87.6±8.3

8 Sets (sagittal) 87.7±8.5

8 Sets (coronal) 87.6±7.6

Additionally, it should be noted that both DoDNet and
CLIP-driven demand 16 forward passes to predict the de-
sired anatomical structures, whereas our proposed method
achieved the same with just a single forward pass, indicat-
ing our method’s substantially improved efficiency.

Effect of base network. We compared 3D TransUNet, our
custom design, and the default network with other top per-
formers in medical image segmentation, including Unet++
[44], Swin UNETR [14], and MedNeXt-L [34]. All training
configurations were consistent across different networks,
with the patch size for Swin UNETR adjusted to 96×96×96
due to memory constraints. Results in Table 1 demonstrated
that while MedNeXt achieved comparable performance to
3D TransUNet on a per-subject basis, Unet++ and Swin
UNETR exhibited inferior performance by over 1% in terms
of DSC. A detailed class-wise comparison in Table 4 high-
lighted 3D TransUNet’s stronger performance compared to
all others, including MedNeXt. Notably, our approach was
largely not affected by the choices of its base network.

Effect of sampling method. To evaluate the benefits
of hierarchical sampling, we compared three strategies:
1) sampling following the class→modality→dataset hi-
erarchy (CMD, the default), 2) sampling following the
modality→dataset→class hierarchy (MDC), and 3) random
sampling that selects an image randomly from the dataset
and then chooses a random location within the image vol-
ume as the center for training patches. The results presented
in Table 3 indicated that our approach outperformed random
sampling by 1.2% in overall DSC. While MDC exhibited a
0.4% improvement in DSC over Random, it lagged 0.8%
behind CMD. These advantages were particularly notice-
able in the comparison on each anatomical structure, es-
pecially for smaller structures, such as LAG and RAG, as
emphasized in Table 6.

Effect of regularization term. The comparison between
models with and without the entropy minimization regular-
ization term is outlined in Table 7. Despite a decrease in
performance gain with larger training datasets, consistent
enhancements were observed across various dataset sizes.
When all 8 datasets were used for training, the addition of
the regularization term resulted in a DSC improvement of
0.5%. Notably, when training the model with 3 datasets,
including AMOS, BTCV, and FALRE22, a larger improve-
ment of 0.9% in terms of DSC was achieved.

4.3. Results on Sparsely Labeled Data

Our method stands out from existing ones in its capability
of handling sparsely labeled data, a critical feature that en-
hances its applicability in real-world scenarios where the
annotation budget is limited and/or data are sparsely la-
beled. For demonstration purpose, we conducted experi-
ments in which we selectively chose slices from axial, sagit-
tal, or coronal views for training. The experimental results,
summarized in Table 8, revealed that models trained with
only 20% of slices (evenly spaced) achieved an impressive
average DSC ranging from 85.1% to 86.2%, outperform-
ing baseline methods trained with all slices (cf. Table 1).
For comparison, we trained three additional models using
the same data as in the partially labeled experiments (i.e.,
trained with 100% slices), but with slice-by-slice loss cal-
culation to simulate sparsely labeled data conditions. These
results served as an upper bound and demonstrated the con-
sistent performance of our method across different views.

4.4. Results on Hybrid Data

We conducted experiments using both partially and sparsely
labeled data to mimic real-world scenarios. Our mixed
training approach utilized AMOS, BTCV, and FLARE22
entirely, and 20% of evenly spaced slices of the other
five datasets from axial, sagittal, or coronal views, respec-
tively. Table 9 demonstrates that this hybrid data approach
achieved DSCs of 87.6%, 87.7%, and 87.6% for the respec-
tive models. In contrast, the model trained solely with 3
partially labeled datasets attained an average DSC of 83.5%
(cf. Table 2). Integrating sparsely labeled data notably im-
proved the performance by approximately 4.1%.

5. Conclusions

We have developed a novel weakly-supervised medical im-
age segmentation approach that effectively utilizes multi-
source partially and sparsely labeled data for training. Our
method addresses data limitations of large, diverse, fully
annotated datasets, enhancing label efficiency and reduc-
ing annotation efforts through the utilization of weakly
annotated data. By integrating strategies for model self-
disambiguation, prior knowledge incorporation, and imbal-
ance mitigation, our approach establishes a solid foundation
for training versatile and reliable segmentation models.
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