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Abstract

Recent breakthroughs in vision-language models (VLMs)
start a new page in the vision community. The VLMs
provide stronger and more generalizable feature embed-
dings compared to those from ImageNet-pretrained models,
thanks to the training on the large-scale Internet image-text
pairs. However, despite the amazing achievement from the
VLMs, vanilla Vision Transformers (ViTs) remain the de-
fault choice for the image encoder. Although pure trans-
former proves its effectiveness in the text encoding area,
it remains questionable whether it is also the case for im-
age encoding, especially considering that various types of
networks are proposed on the ImageNet benchmark, which,
unfortunately, are rarely studied in VLMs. Due to small
data/model scale, the original conclusions of model design
on ImageNet can be limited and biased. In this paper, we
aim at building an evaluation protocol of vision models
in the vision-language era under the contrastive language-
image pretraining (CLIP) framework. We provide a com-
prehensive way to benchmark different vision models, cov-
ering their zero-shot performance and scalability in both
model and training data sizes. To this end, we introduce
ViTamin, a new vision models tailored for VLMs. ViTamin-
L significantly outperforms ViT-L by 2.0% ImageNet zero-
shot accuracy, when using the same publicly available
DataComp-1B dataset and the same OpenCLIP training
scheme. ViTamin-L presents promising results on 60 di-
verse benchmarks, including classification, retrieval, open-
vocabulary detection and segmentation, and large multi-
modal models. When further scaling up the model size, our
ViTamin-XL with only 436M parameters attains 82.9% Im-
ageNet zero-shot accuracy, surpassing 82.0% achieved by
EVA-E that has ten times more parameters (4.4B).

1. Introduction
The past decades have witnessed significant progress in
computer vision, like visual recognition tasks. The advent
of AlexNet [53] marked a significant milestone, catalyz-
ing the extensive evolution and dominance of Convolutional
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Figure 1. Practices of designing scalable vision models in
the vision-language era. We benchmark modern vision mod-
els with various model and data scales under CLIP setting using
DataComp-1B [30], leading to findings about data and model scal-
ability, feature resolution, and hybrid architecture, which motivate
us to develop ViTamin for VLM. ViTamin-L achieves superior
zero-shot performance over ViT-L/14 [60] on ImageNet [86] and
average 38 datasets [30], and advances a suite of 22 downstream
tasks for Open-Vocabulary (OV) detection [111] and segmenta-
tion [124], and Large Multi-modal Model (LMM) tasks [67].

Neural Networks (ConvNets) [8, 32, 37, 38, 46, 55, 72, 73]
in computer vision. More recently, with the debut of Vision
Transformer [23, 104], a growing number of transformer-
based architectures [18, 71, 103, 108, 116, 121] have shown
great potential to surpass the prior ConvNet counterparts.

The rapid advancement of neural network design in com-
puter vision can be attributed to a combination of factors.
Among them, an important factor is the well-established
benchmarks, allowing the community to examine the devel-
opments in a standardized way. Particularly, ImageNet [86]
has become the de facto testing ground for new vision
models. It not only sets a standard benchmark for vi-
sual recognition, but also serves as a mature pre-training
dataset for transferring the network backbone to a vari-
ety of downstream tasks (e.g., detection and segmenta-
tion) [9, 10, 15, 38, 51, 66, 73, 95, 107, 117, 122, 123].

Recently, the emergence of vision-language models
(VLMs) [50, 82] has changed the paradigm by leveraging
the pre-training schedule on the extremely large scale noisy
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Internet data up to billions of image-text pairs [89], much
larger than the ImageNet scale. VLMs not only produce
strong and generalizable features [50, 82], but also excel in
zero-shot downstream tasks [31, 54, 68, 77, 85, 124, 137].
However, unlike the ImageNet benchmark, where many
types of neural networks are designed and blossomed [37,
44, 46, 53, 91, 97], the existing VLMs mostly employ the
vanilla Vision Transformer (ViT) architecture [23] *, and
the recent benchmark DataComp [30] focuses on the data
curation under the common (yet unverified) belief that ViTs
scale much better than any other architectures in this vision-
language era [20, 61] and thus ViT is all we need.

The current trend can be characterized by several key ob-
servations: (1) The high computational demand, requiring
extensive resources [48] for months, is a significant barrier
for advancing VLMs [82], limiting exploring diverse vision
models. (2) Traditional vision models are mainly optimized
for the ImageNet benchmark, which may not scale well
for larger datasets [30, 89], unlike purely transformer-based
architectures [104] that have proven scalable in language
tasks [81, 102] and are now being adopted for VLMs as
image encoders [23]. (3) Current VLM benchmarks focus
on zero-shot classification/retrieval tasks [30], with a no-
table lack of downstream tasks involving open-vocabulary
dense prediction [21, 22, 31, 54, 114, 115, 124, 129, 135],
as well as a gap in assessing Large Multi-modal Models
(LMMs) [57, 67, 68, 137].

In this paper, we aim to address the aforementioned is-
sues with practices as shown in Fig. 1. To begin with,
we establish a new test bed for designing vision models
under the CLIP framework [50, 82] using the DataComp-
1B dataset [30], which is one of the largest publicly avail-
able datasets with high quality. Specifically, we employ
two training protocols: short schedule for fast benchmark-
ing vision models across model and data scales, and long
schedule for training best performing vision models. With
the short schedule, we re-benchmark state-of-the-art vision
models found on ImageNet settings for VLMs. Particularly,
we select ViT [23], ConvNeXt [72], CoAtNet [18], as rep-
resentatives for pure Transformer, pure ConvNet, and hy-
brid architecture, respectively. We combine various model
scales and data scales to provide a comprehensive evalua-
tion towards different architectures, revealing several criti-
cal findings. First, increasing data scales improves all vision
models across all model sizes, while ViT scale slightly bet-
ter than others in terms of model parameters. Second, the
final resolution of the extracted features affects prediction
performance. Third, CoAtNet performs better than ViT and
ConvNeXt in general, though it is hard to scale up CoAtNet-
4 to billions of data due to computational constraints.

Those findings motivate us to develop a new vision
model, named ViTamin tailored for VLM. ViTamin is a 3-

*with only a few exceptions, e.g., ConvNeXt [72] by OpenCLIP [48].

stage hybrid architectures, combining two stages of MB-
Conv blocks with a final stage of Transformer blocks. This
hybrid design leverages its Transformer stage to enhance
data and model scalability, along with output stride of 16
to enjoy high feature resolution. As a result, ViTamin-L
outshines its ViT-L/14 counterpart [30] by +2.0% zero-shot
imageNet accuracy in identical OpenCLIP training scheme
and identical 256 token length. When increasing feature
resolution to 576 patches, ViTamin-L further attains 81.8%
zero-shot imageNet accuracy, surpassing the prior art ViT-
L/14 CLIPA-v2 [60] by +1.5%. In average performance
across 38 datasets, it not only exceeds ViT-L/14 counter-
part [60] by +1.5%, but also outperforms the larger ViT-
H/14 model [60] by +0.4% while having only half parame-
ters. When further scaling up the model size, our ViTamin-
XL with only 436M parameters attains 82.9% ImageNet
zero-shot accuracy, surpassing 82.0% achieved by EVA-
E (i.e., EVA-02-CLIP-E/14 [94]) that has ten times more
parameters (4.4B). Furthermore, we introduce an effective
training scheme Locked-Text Tuning (LTT), which guides
the training of vision backbone with a frozen pretrained text
encoder. It enhances the small variant by +4.0% and the
base variant by +4.9% without any extra cost.

Our another intriguing observation is the prevailing em-
phasis on data filtering over vision architecture design in
VLM. For instance, while the best DataComp challenge
solution [119] achieved only a +2.3% gain, our ViTamin
with LTT largely improves performance by +23.3% on the
same dataset size, without intensive data filtering. Finally,
we introduce a suite of downstream tasks, including open-
vocabulary detection and segmentation, and LMMs, for
evaluating VLM-specific vision models. ViTamin outper-
forms the ViT-L model, enhancing detector by +3.1% on
OV-LVIS and segmentor by +2.6% on average 8 datasets,
and excelling across 12 LMM benchmarks. Notably, ViTa-
min sets a new state-of-the-art on 7 benchmarks for open-
vocabulary segmentation.

We aim for our findings to encourage a reevaluation of
the current limitations in VLM designs and hope that our
extensive benchmarking and evaluations will drive the de-
velopment of more advanced vision models for VLMs.

2. Related Work
Vision Backbone: On the ImageNet benchmark [86], Con-
vNets [37, 46, 53, 72, 88, 91, 96–98, 113, 128] have
been the dominant networks choice since the advent of
AlexNet [53]. Recently, the vision community has wit-
nessed impressive emergence of the Transformer architec-
ture [104], a trend that began with the widespread adop-
tion of the ViT [23] and its subsequent developments [26,
58, 62, 71, 83, 99, 106, 108, 126, 136]. Among these, hy-
brid architectures [14, 18, 24, 34, 41, 63, 76, 93, 103, 109,
112, 116] combine Transformer self-attention with convo-
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lution, where CoAtNet [18] particularly obtains impres-
sive results on ImageNet. Notably, MaX-DeepLab [107],
emerged as early as 2020, successfully developed a hy-
brid network backbone for dense pixel predictions, where
the first two stages utilize residual bottleneck blocks [37],
followed by two subsequent stages employing axial atten-
tion [106]. More recently, by leveraging the design prac-
tices of a Vision Transformer, a ResNet [37] can be mod-
ernized to ConvNeXt [72], competing favorably with ViT.
Along the same direction, but not limited to the ImageNet
scale, our work aims to develop a novel vision model for
training with billions of data [30] in the vision-language era.

Language-Image Pre-training: Language-image pre-
training has seen significant advancements [1, 3, 50, 57, 68,
82, 120] with the emergence of LLMs [7, 81, 101]. The
huge progress can be attributed to the pre-training on an
immense scale of noisy web-collected image-text data [30,
89], much larger than the ImageNet. Notably, CLIP [50, 82]
generates strong image features and excels in zero-shot
transfer learning [31, 54, 68, 77, 85, 124, 137], which make
it an essential role in large multi-modal model [13, 57, 67,
68]. CLIP has been improved by advanced training strate-
gies including self-supervised learning [65, 79], efficient
tuning [69, 132] and training [59, 61, 94, 110, 133]. These
studies predominantly employ ViT [23] as the only vision
model. As a result, the architectural design for the CLIP
vision model has not been thoroughly investigated. Thus,
we attempt to bridge the gap by developing a novel vision
model for VLMs.

3. Method

In the section, we revisit the problem definition of CLIP and
propose two training protocols (short and long schedules)
on DataComp-1B (Sec. 3.1). With short schedule, we re-
benchmark modern vision models found on ImageNet un-
der the CLIP setting (Sec. 3.2). We then introduce the pro-
posed ViTamin architecture design, motivated by the dis-
coveries in the re-benchmarking results (Sec. 3.3).

3.1. CLIP and Training Protocols

CLIP Framework: Given a batch of N image-text pairs
{(I1, T1) , ..., (IN , TN )} (where Ii and Ti denote image and
text for ith pair), the objective of CLIP [82] learns to align
the image embeddings xi and text embeddings yi for each
pair. Formally, the loss function is defined as follows:

− 1

2N

N∑
i=1

(log
ex

T
i yi/τ∑N

j=1 e
xT
i yj/τ︸ ︷︷ ︸

image to text

+ log
ey

T
i xi/τ∑N

j=1 e
yT
i xj/τ︸ ︷︷ ︸

text to image

), (1)

where xi =
f(Ii)

∥f(Ii)∥2
, yi =

g(Ti)
∥g(Ti)∥2

, and τ is a temperature
variable. A vision model f (.) and a text model g (.) are

trained to minimize the loss function. We focus on vision
model design and use the text models from OpenCLIP [48].

Training Protocols: We employ two training protocols:
short schedule and long schedule. The short schedule is
designed for efficiently benchmarking vision models up to
1 training epoch on DataComp-1B [30] (i.e., 1.28B seen
samples). As detailed in Tab. 2, given a descent amount
of resources (e.g., 32 A100 GPUs), it takes less than two
days to train a small (∼25M parameters) model variant. The
long schedule is designed for training the best performing
models with up to 40B seen samples.

3.2. Benchmarking Vision Models in CLIP Setting

The short schedule allows us to efficiently re-benchmark
state-of-the-art vision models found on ImageNet under the
CLIP setting using DataComp-1B. The experimented mod-
els are ViT [23] (a pure Transformer), ConvNeXt [72] (a
pure ConvNet), and CoAtNet [18] (a hybrid model). We
examine their scalability in terms of both model scales and
data sizes. Each vision model has sizes varying from small
(∼25M parameters), base (∼85M) to large (∼300M), while
the data sizes range from 128M, 512M to 1.28B training
seen samples (1 epoch is equal to 1.28B seen samples). The
metric is zero-shot accuracy on ImageNet, supplemented by
the results on the 38 tasks following DataComp [30]. As
shown in Fig. 2, we analyze the benchmarked results from
four aspects, including data scalability, model scalability,
feature resolution, and hybrid architecture. For simplicity,
we use “X@Y” to denote the vision model X trained with
Y seen samples. See appendix for numerical results.

Data Scalability: When training seen samples increase
from 128M to 1.28B, we observe a consistent trend of
improvements across all model sizes and all vision mod-
els (a1-a5). Interestingly, ViT-S/16@512M (22M param-
eter) attains the zero-shot performance of 53.8% on Im-
ageNet, which is better than 45.8% by ViT-B/16@128M
(86M parameter). It shows the effectiveness of training
large scale data that quadrupling training seen samples can
be more impactful than quadrupling the number of model
parameters. Additionally, ViT-B/16@512M & @1.28B sig-
nificantly boost ViT-B/16@128M from 45.8% to 60.0%
(+14.2%) and 65.6% (+19.8).

→ As the training seen samples increase, the perfor-
mances consistently improves in all cases.

Model Scalability: When the model sizes increase, the
performances of all vision models are also boosted (b1-b3).
However, we observe a different gain among them (b4).
For example, ConvNeXt-XL@128M brings only +1.4%
gain over ConvNeXt-B@128M, while ViT-L/16@128M
enhances ViT-B/16@128M by +3.6%. Given plenty of data,
ViT still shows a better model scalability, especially scaling
from base to large (e.g., +6.4% for ViT vs. +3.6% for both
CoAtNet and ConvNeXt at 512M samples; +6.3% for ViT
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Data Scalability: As the training seen samples increase, the performances consistently improves in all cases.

Model Scalability: ViT demonstrates the most effective scaling in terms of model parameters.

Feature Resolution: The final resolution of extracted features affects prediction accuracy. Models with smaller patch sizes performs better.

Hybrid Architecture: CoAtNet performs better than ViT and ConvNeXt in general, but hard to scale up CoAtNet-4 to billions of data.
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Figure 2. Benchmarking vision models under CLIP setting on DataComp-1B, including ViT (a pure Transformer), ConvNeXt (a pure
ConvNet), and CoAtNet (a hybrid model). We examine their scalability in terms of both data sizes (1st row) and model scales (2nd row),
and further analyze the results from the aspects of feature resolution (3rd row) and hybrid architecture (4th row).

vs. +2.8% for CoAtNet and + 4.9% for ConvNeXt at 1.28B
samples). As a result, ViT shows the best scalability.

→ ViT demonstrates the most effective scaling in terms
of model parameters.

Feature Resolution: Across all model scales and data
sizes, ConvNeXt performs better than ViT/32 but loses its
advantage to ViT/16 (c1 & c2). This trend deviates sig-
nificantly from what is observed in ImageNet era, where
ConvNeXt consistently outperforms ViT/16 (also see our
ImageNet-scale VLM experiments in appendix). We hy-
pothesize that, comparing to ImageNet’s object class label,
the text in CLIP captures broader area of information, and
thus is beneficial from higher feature resolution. Besides,
ViT also benefits from using smaller patch sizes (thus high
feature resolution) over larger path sizes (c3 & c4).

→ The final resolution of extracted features affects the
prediction performance. ViT with smaller patch sizes out-

performs ViT with larger patch sizes and ConvNeXt.

Hybrid Architecture: We observe that ConvNeXt con-
sistently lags behind ViT-{S,B}/16 and particularly ViT-
L/14, suggesting that a pure ConvNet has limited capacity
under the CLIP setting when presented with abundant of
data (d1-d3). By contrast, CoAtNet significantly surpasses
both ViT and ConvNeXt (e.g., CoAtNet-2@1.28B has a
remarkable +2.9% and +3.2% gain over ViT-B/16@1.28B
and ConvNeXt-B@1.28B, respectively), indicating the ef-
fectiveness of hybrid models. However, CoAtNet requires
the most GPU memory; we can only train CoAtNet-4 with
batch size 8k on 64 A100 GPUs, while all the other large
models are trained with batch size 16k on 32 A100 GPUs.
This affects CoAtNet’s scalability in large variant.

→ CoAtNet surpasses ViT and ConvNeXt in general, yet
it is hard to scale up CoAtNet-4 to billions of data.
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3.3. Novel Vision Transformer for Vision-Language

Herein, we distill from the aforementioned observations,
culminating in the proposed vision model, ViTamin (Vision
TrAnsforMer for vIsion-laNguage), which notably takes
the lead in the benchmarking results across all settings in
Fig. 2. To introduce ViTamin, we commence by its macro-
level network design (Sec. 3.3.1), followed by the micro-
level block design (Sec. 3.3.2). Finally, we develop a vision
model family with a simple scaling rule (Sec. 3.3.3).

3.3.1 Macro-level Network Design
Overview: The macro-level network design of ViTamin
is inspired by the ViT and CoAtNet. Specifically, on top
of a simple convolutional stem (i.e., two 3 × 3 convolu-
tions) [18], we adopt a 3-stage network architecture, where
the first two stages employ the Mobile Convolution Blocks
(MBConv) [43, 88] and the third stage uses the Transformer
Blocks (TFB) [23, 104]. Fig. 3 shows the overview of Vi-
Tamin. We detail the design principles below, based on the
discoveries from the re-benchmarking results

Data and Model Scalability: ViT demonstrates the best
scalability in terms of both model scales and data sizes. We
thus opt for using Transformer Blocks in our last stage, and
we stack most blocks here across different model sizes.

Feature Resolution: We tailor the network to generate
high resolution feature maps in the end. Our 3-stage net-
work design thus yields a feature map with output stride 16
(i.e., a downsampling factor of 16).

Hybrid Architecture: Similar to CoAtNet, we employ
MBConv in the first two stages, resulting in a hybrid model.
However, unlike CoAtNet that is constrained by its large
memory usage, we propose a light-weight design of stage 1
and 2, which contain only two and four MBConv blocks.

Given the macro-level network design, we then move on
to further improve the micro-level block design below.

3.3.2 Micro-level Block Design
Overview: The proposed ViTamin depends on two types of
blocks: Mobile Convolution Blocks (MBConv) and Trans-
former Blocks (TFB). We refine each block in our model.

MBConv-LN: The Mobile Convolution Block (MB-
Conv) [88] employs the “inverted bottleneck” design [37],
starting with a first 1× 1 convolution to expand the channel
size, followed by a 3×3 depthwise convolution [44] for spa-
tial interaction, and ending with another 1 × 1 convolution
to revert to the original channel size. Modern MBConv, as
in MobileNetv3 [43], adds numerous batch normalization
(BN) [49] layers and squeeze-and-excitation (SE) [45]. We
adopt a simple modification by removing all BN layers and
SE, and just using a single layer normalization (LN) [4] as
the first layer in our block, akin to the pre-norm layer in
the Transformer block, resulting in the proposed MBConv-
LN. Ablation (in appendix) shows that MBConv-LN enjoys

ViTamin-S ViTamin-B ViTamin-L ViTamin-XL
block stride B C B C B C B C

conv-stem 2 2 64 2 128 2 160 2 192
MBConv-LN 4 2 64 2 128 2 160 2 192
MBConv-LN 8 4 128 4 256 4 320 4 384
TFB-GeGLU 16 14 384 14 768 31 1024 32 1152

Table 1. ViTamin model variants. ViTamin variants differ in the
number of blocks B and number of channels C in each stage.

a simple design while attaining a similar performance to the
original MBConv-BN-SE in MobileNetv3.

TFB-GeGLU: The Transformer Block (TFB) [104] con-
tains two residual blocks: one with self-attention and
the other with feed-forward network (FFN). We empiri-
cally discover that substituting the first linear layer with
GeGLU [90], an enhanced version of the Gated Linear
Unit [19] that has a 2× expansion rate, can enhance ac-
curacy in the FFN. We denote the Transformer Block
with the updated FFN as TFB-GeGLU. Ablation (in ap-
pendix) shows that TFB-GeGLU requires 12% fewer pa-
rameters than TFB due to half expansion ratio, allowing us
to stack additional Transformer blocks towards deeper ar-
chitectures [96, 100, 136].

3.3.3 Meta Architecture and Scaling Rule

Meta Architecture: After introducing our macro-level net-
work and micro-level block designs, we now put everything
together to form the meta architecture of ViTamin. Specif-
ically, ViTamin is a hybrid architecture that contains only
three stages, built on top of a simple convolutional stem
(i.e., two 3 × 3 convolutions). The first two stages are
composed of MBConv-LN, where we stack two and four of
them for stage 1 and 2, respectively. The third stage are ob-
tained by stacking NB TFB-GeGLU blocks. With the meta
architecture in mind, we are ready to discuss the scaling rule
to generate a family of ViTamin with different model sizes.

Scaling Rule: Our scaling rule is extremely simple and
straightforward, controlled by two hyper-parameters: width
(i.e., the channel sizes of those three stages) and depth (i.e.,
NB , the number of TFB-GeGLU blocks in stage 3). Note
that our convolutional stem has the same channel size as
the first stage. We define four model sizes: Small, Base,
Large, and X-Large (S, B, and L variants have a similar
amount of model parameters to ViT [23, 131]). We use the
same channel size as ViT in our 3rd stage for each model
variant. Specifically, we set the channel sizes of our three
stages as (C, 2C, 6C), where 6C = {384, 768, 1024, 1152}
for Small, Base, Large and X-Large model variant, respec-
tively†. Subsequently, given the target model parameter,
the value of NB (i.e., the number of TFB-GeGLU blocks
in stage 3) can be easily found. We show the family of
ViTamin-{S, B, L, XL} in Tab. 1.

†We calculate the channel size for stage 1 as 1/6C, rounding to the
nearest value that is divisible by 32.
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Figure 3. Overview of ViTamin architecture. (a) ViTamin begins with a convolutional stem, followed by Mobile Convolution Blocks
(MBConv) in stage 1 and 2, and Transformer Blocks (TFB) in stage 3. The 2D input to the stage 3 is flatten to 1D. For the macro-level
designs, the three-stage layout generates the final feature map with output stride 16, similar to ViT/16 [23]. We set channels sizes for
the three stages to be (C, 2C, 6C). For the micro-level designs, the employed MBConv-LN modifies MBConv [88] by using a single
LayerNorm [4]. TFB-GeGLU upgrades TFB’s FFNs [104] (Feed-Forward Networks) with GELU Gated Linear Units [90]. (b) In the CLIP
framework, given N image-text pairs, the vision model’s output Ii is learned to align with its corresponding text Transformer’s output Ti.
Our text Transformers are the same as OpenCLIP [48]. +: Addition. *: Multiplication.

short schedule for benchmarking long schedule
ViTamin-S ViTamin-B ViTamin-L ViTamin-L ViTamin-XL

batch size 8k 8k 16k 90k 90k 90k
image size 224 224 224 224 256 256

# A100 GPUs 32 32 32 184 312 312
# epochs 1 1 1 10 10 30

seen samples (B) 1.28 1.28 1.28 12.8 12.8 40.0
training days 1.8 3.3 5.6 11 15 46

Table 2. Short and long training schedules on DataComp-1B.

Locked-Text Tuning for CLIP: Besides model design,
we propose Locked-Text Tuning (LTT) to exploits a pre-
trained frozen text encoder. In light of the aligned image
and text embeddings in CLIP, we leverage the pretrained
text encoder from a large VLM to guide the training of im-
age encoders of smaller VLMs. Specifically, when training
other ViTamin variants (e.g., ViTamin-S and ViTamin-B),
we initialize their text encoder with the one from a pre-
trained ViTamin-L. The text encoder is then frozen, used
as a teacher to guide the training of the randomly initialized
image encoder. This scheme can be considered as a way
to distill the knowledge [42] from a pretrained frozen text
encoder to a randomly initialized image encoder.

4. Experimental Results
In this section, we detail the implementation in Sec. 4.1,
compare with the state-of-the-arts in Sec. 4.2, and deploy
ViTamin to downstream tasks, including open-vocabulary
detection/segmentation, and large multi-modal models in
Sec. 4.3. See appendix for ablation studies.

4.1. Implementation Details

Training Strategy: We train the VLMs using Open-
CLIP [48] on the public dataset DataComp-1B [30]. Tab. 2
summarizes the settings for our training schedules and

model variants. We use the short schedule to benchmark
vision models and conduct our ablation studies, and long
schedule to train our best ViTamin-L. We closely follow
the training hyper-parameter settings in OpenCLIP [30, 48].
The training and fine-tuning details are in the appendix.

Evaluation Strategy: We follow DataComp [30] to
zero-shot evaluate VLMs with a testbed of 38 tasks, includ-
ing ImageNet [86], 6 distribution shift tasks [5, 39, 40, 84,
105], VTAB tasks [130], WILDS tasks [52, 87], and 3 re-
trieval tasks [6, 11, 118].

Other Downstream Tasks: We evaluate the trained
VLM in downstream tasks. For open-vocabulary detec-
tion, we exploit the F-ViT framework [111], while for open-
vocabulary segmentation, we adopt the FC-CLIP frame-
work [124] and zero-shot evaluate on multiple segmentation
datasets. Finally, we evaluate VLMs in LLaVA-1.5 [67] for
LMMs across multiple benchmarks. In all the cases, F-ViT,
FC-CLIP, and LLaVA employ the frozen VLM backbone to
effectively ablate different pretrained VLMs.

4.2. Main Results

Comparison with other State-of-the-arts: Tab. 3 summa-
rizes the comparison between ViTamin-L and other state-
of-the-art models, which exclusively employ the ViT back-
bone [23] but use different training schemes and datasets.
For a fair comparison, we focus on the methods that use the
same training data DataComp-1B [30], but still list other
methods in the table for reference. For simplicity, we use
“X@Z” to denote the vision model X trained with input
size Z ‡. ImageNet zero-shot accuracy is our main met-
ric; other results are still reported in the table. As shown

‡Notation @ here is slightly abused to denote the training seen samples.
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image num text encoder seen training training trainable params MACs ImageNet avg. 38 ImageNet VTAB retrieval
image encoder size patches depth/width samples (B) scheme dataset Image+Text (M) Image+Text (G) Acc. datasets dist. shift.
ViT-L/14 [30] 224 256 12 / 768 12.8 OpenCLIP DataComp-1B 304.0 + 123.7 77.8 + 6.6 79.2 66.3 67.9 65.2 60.8
ViT-L/14 [60] 224 256 12 / 768 12.8 + 0.5 CLIPA-v2 DataComp-1B 304.0 + 110.3 77.8 + 2.7 79.7 65.4 68.6 62.9 60.6
ViT-L/14 [60] 336 576 12 / 768 12.8 + 0.5 + 0.1 CLIPA-v2 DataComp-1B 304.3 + 110.3 174.7 + 2.7 80.3 65.7 70.2 62.5 61.1

ViTamin-L 224 196 12 / 768 12.8 OpenCLIP DataComp-1B 333.3 + 123.7 72.6 + 6.6 80.8 66.7 69.8 65.3 60.3
ViTamin-L 256† 256 12 / 768 12.8 + 0.2 OpenCLIP DataComp-1B 333.4 + 123.7 94.8 + 6.6 81.2 67.0 71.1 65.3 61.2
ViTamin-L 336 441 12 / 768 12.8 + 0.2 OpenCLIP DataComp-1B 333.6 + 123.7 163.4 + 6.6 81.6 67.0 72.1 64.4 61.6
ViTamin-L 384† 576 12 / 768 12.8 + 0.2 OpenCLIP DataComp-1B 333.7 + 123.7 213.4 + 6.6 81.8 67.2 72.4 64.7 61.8

ViTamin-L2 224 196 24 / 1024 12.8 OpenCLIP DataComp-1B 333.6 + 354.0 72.6 + 23.3 80.9 66.4 70.6 63.4 61.5
ViTamin-L2 256† 256 24 / 1024 12.8 + 0.5 OpenCLIP DataComp-1B 333.6 + 354.0 94.8 + 23.3 81.5 67.4 71.9 64.1 63.1
ViTamin-L2 336 441 24 / 1024 12.8 + 0.5 OpenCLIP DataComp-1B 333.8 + 354.0 163.4 + 23.3 81.8 67.8 73.0 64.5 63.6
ViTamin-L2 384† 576 24 / 1024 12.8 + 0.5 OpenCLIP DataComp-1B 334.0 + 354.0 213.4 + 23.3 82.1 68.1 73.4 64.8 63.7
ViTamin-XL 256† 256 27 / 1152 12.8 + 0.5 OpenCLIP DataComp-1B 436.1 + 488.7 125.3 + 33.1 82.1 67.6 72.3 65.4 62.7
ViTamin-XL 384† 576 27 / 1152 12.8 + 0.5 OpenCLIP DataComp-1B 436.1 + 488.7 281.9 + 33.1 82.6 68.1 73.6 65.6 63.8
ViTamin-XL 256† 256 27 / 1152 40.0 OpenCLIP DataComp-1B 436.1 + 488.7 125.3 + 33.1 82.3 67.5 72.8 64.0 62.1
ViTamin-XL 336† 441 27 / 1152 40.0 + 1.0 OpenCLIP DataComp-1B 436.1 + 488.7 215.9 + 33.1 82.7 68.0 73.9 64.1 62.6
ViTamin-XL 384† 576 27 / 1152 40.0 + 1.0 OpenCLIP DataComp-1B 436.1 + 488.7 281.9 + 33.1 82.9 68.1 74.1 64.0 62.5
ViT-L/14 [94] 224 256 12 / 768 4.0 EVA-CLIP Merged-2B 333.3 + 123.7 72.6 + 6.6 79.8 64.9 68.9 62.8 63.3
ViT-L/14 [94] 336 576 12 / 768 6.0 EVA-CLIP Merged-2B 333.3 + 123.7 72.6 + 6.6 80.4 65.8 70.9 63.2 63.5

ViT-L/16 [133] 256 256 24 / 1024 40.0 SigLIP WebLI 316.0 + 336.2 78.1 + 19.3 80.5 65.6 70.2 62.5 61.1
ViT-L/16 [133] 384 576 24 / 1024 40.0 + 5.0 SigLIP WebLI 316.3 + 336.2 175.8 + 19.3 82.1 66.8 70.9 63.1 68.7
ViT-G/14 [48] 224 256 32 / 1280 39.0 OpenCLIP LAION-2B 1844.9 + 694.7 473.4 + 48.5 80.1 66.7 69.1 64.6 63.5
ViT-H/14 [60] 336 576 24 / 1024 12.8 + 0.5 + 0.1 CLIPA-v2 DataComp-1B 632.5 + 354.0 363.7 + 9.7 81.8 66.8 72.4 63.7 62.6
ViT-E/14 [94] 224 256 24 / 1024 4.0 EVA-CLIP LAION-2B 4350.6 + 354.0 1117.3 + 23.3 82.0 66.9 72.0 63.6 62.8
ViT-G/14 [60] 336 576 32 / 1280 12.8 + 0.5 + 0.1 CLIPA-v2 DataComp-1B 1845.4 + 672.3 1062.9 + 20.2 83.1 68.4 74.0 64.5 63.1

SoViT-400M/14 [2] 224 256 27 / 1152 40.0 SigLIP WebLI 428.2 + 449.7 106.2 + 6.6 82.0 68.1 69.5 64.8 66.8
SoViT-400M/14 [2] 384 729 27 / 1152 40.0 + 5.0 SigLIP WebLI 428.2 + 449.7 302.3 + 26.3 83.1 69.2 72.4 64.6 69.8

ViT-H/14 [27] 224 256 24 / 1024 39.0 OpenCLIP DFN-5B 632.1 + 354.0 162.0 + 23.3 83.4 69.6 69.9 67.5 68.3
ViT-H/14 [27] 378 729 24 / 1024 39.0 + 5.0 OpenCLIP DFN-5B 632.7 + 354.0 460.1 + 23.3 84.4 70.8 72.8 68.5 69.5

Table 3. Comparison with state-of-the-art models. Our models are only trained on the publicly available DataComp-1B [30]. CLIPA-
v2 [60] uses an advanced progressive training scheme (from smaller images to larger ones) than the original OpenCLIP [30, 48] scheme that
we follow. Other methods that use different settings are marked in gray for reference. Specifically, EVA-CLIP [94] uses EVA weights [28],
better training scheme FLIP [65], and different training datasets [28, 89]. SigLIP [133] employs better sigmoid loss, stronger text encoders,
and an extremely long schedule on the proprietary WebLI dataset [12] (40B for training and another 5B seen samples for fine-tuning).
†: ViT-L/14 benefits from more image tokens by using a smaller output stride 14 than 16 that we use. To have the same image tokens,
we slightly enlarge the image size (e.g., 224/14 = 256/16 and 336/14 = 384/16). We note that all compared results are from the
OpenCLIP-results that are evaluated under the same setting to ensure a fair comparison.

in the table, ViTamin-L@224 outperforms ViT-L/14@224
OpenCLIP [48] by +1.6%. However, ViT-L/14 benefits
from more image tokens by using a smaller output stride
14 than 16 that we use (as benchmarked in the appendix).
To have the same image tokens, we slightly enlarge the im-
age size. As a result, our ViTamin-L@256 surpasses ViT-
L/14@224 OpenCLIP [48] and CLIPA-v2 [60] by 2.0% and
1.5%, respectively. After fine-tuning on larger input sizes,
ViTamin-L@384 and ViTamin-L@336 still performs better
than ViT-L/14@336 CLIPA-v2 [60] by +1.5% and +1.3%,
respectively. Impressively, with only half the parameters,
our ViTamin-L attains an average of 67.2% performance
across 38 datasets, exceeding the larger ViT-H/14 CLIPA-
v2 model’s performance by +0.4%. Scaling up the text en-
coder to match the model size of the image encoder (specif-
ically, ViTamin-L2) notably increases zero-shot ImageNet
accuracy to 82.1% and average 38 datasets performance
to 68.1%. Further scaling up the model parameters (i.e.,
ViTamin-XL) and 40 billion seen samples reaches 82.9%
zero-shot ImageNet accuracy.

Locked-Text Tuning: Fig. 4 shows that our LTT im-
proves our ViTamin-S/-B by a large margin, especially
when data sizes are small. Notably, LTT lifts ViTamin-B to
the next scale of model performance, surpassing ViT-L/16
by +14% in 128M samples and +1.1% in 512M seen sam-
ples. Interestingly, LTT can save 10% training budget for
ViTamin-B as the text tower is completely frozen.

Figure 4. Locked-text tuning (LTT). LTT exploits a pretrained
frozen text encoder, and effectively boosts the model performance.

Data Quality vs. Model Capacity: The DataComp
challenge [30] underscores the role of data filtering for
VLM, however, using a fixed ViT model. As shown
in Tab. 4, the leading solution [119] of DataComp challenge
in ICCV 2023 employed a complicated 24 filtering rules to
improve the dataset quality, resulting in +2.3% gain. Sur-
prisingly, our ViTamin-B improves the performance by a
healthy margin of +12.8% accuracy, and locked-text tuning
can lift the gain to +23.3%. The result highlights the impor-
tance to co-design the vision-language dataset and model.

4.3. New Suite of Downstream Tasks

The evaluations so far are mostly on classification/retrieval-
based task, highlighting a lack of downstream tasks simi-
lar to those employed in the ImageNet era. Yet, in con-
trast to ImageNet-based vision models where downstream
tasks mainly involve transfer learning for conventional de-
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dataset seen IN acc. avg. 38
image encoder data filtering size samp. (%) datasets (%)

leaderboard
ViT-B/32 DataComp [30] 14M 128M 29.7 32.8
ViT-B/32 SIEVE [75] 24M 128M 30.3 (+0.6) 35.3 (+2.5)
ViT-B/32 Top-1 Solution [119] 23M 128M 32.0 (+2.3) 37.1 (+4.3)

our experiments
ViT-B/32 DataComp [30] 14M 128M 29.4 31.5
ViT-B/16 DataComp [30] 14M 128M 35.8 (+6.4) 34.6 (+3.1)

ViTamin-B DataComp [30] 14M 128M 42.2 (+12.8) 38.3 (+6.8)
ViT-B/16-LTT DataComp [30] 14M 128M 43.6 (+14.2) 41.1 (+9.6)

ViTamin-B-LTT DataComp [30] 14M 128M 52.7 (+23.3) 47.2 (+15.7)

Table 4. Data quality vs. model capacity. The leaderboard results
are from ICCV 2023 DataComp challenge medium filtering track.

pretraining OV-COCO [129] OV-LVIS [35]
image encoder dataset scheme (APnovel

50 ) (APr)
ViT-L/14 DataComp-1B CLIPA-v2 36.1 32.5

ConvNeXt-L LAION-2B OpenCLIP 36.4 29.1
ViTamin-L DataComp-1B OpenCLIP 37.5 35.6

Table 5. Open-vocabulary detection. Different image encoders
(ViT-L/14 by [60], ConvNeXt-L by [48]) are using the F-ViT
framework [111] in a sliding window manner [125], trained on
OV-COCO [129] and OV-LVIS [35]. ConvNeXt-L is marked in
gray due to different pretrained dataset.

panoptic dataset (PQ) semantic dataset (mIoU)
image pretraining ADE Cityscapes MV A-150 A-847 PC-459 PC-59 PAS-21

encoder dataset scheme [134] [17] [80] [134] [134] [78] [78] [25]
ViT-L/14 DataComp-1B CLIPA-v2 24.6 40.7 16.5 31.8 14.3 18.3 55.1 81.5

ConvNeXt-L LAION-2B OpenCLIP 26.8 44.0 18.3 34.1 14.8 18.2 58.4 81.8
ViTamin-L DataComp-1B OpenCLIP 27.3 44.0 18.2 35.6 16.1 20.4 58.4 83.4

Table 6. Open-vocabulary segmentation. Different image en-
coders (ViT-L/14 by [60], ConvNeXt-L by [48]) are using the FC-
CLIP framework [124] in a sliding window manner [125], trained
on COCO [66] and zero-shot evaluated on the other datasets.
ConvNeXt-L is marked in gray due to different pretrained dataset.

tection and segmentation, VLMs excel with zero-shot capa-
bility and provides feature embeddings that are well-aligned
across the vision-language domain. In light of this, we
introduce a novel suite of downstream tasks aimed at the
holistic evaluation of VLMs, including open-vocabulary de-
tection and segmentation and multi-modal LLM.

Open-Vocabulary Detection and Segmentation: To
examine how well the trained VLMs can adapt to down-
stream tasks, we consider two simple yet effective frame-
works F-ViT [111] and FC-CLIP [124] which utilize a
frozen CLIP backbone for open-vocabulary detection and
segmentation, respectively. Specifically, we consider differ-
ent VLMs as plug-in frozen backbones to these frameworks,
while for ViT and ViTamin that may not easily generalize
to high resolution input, we extract the feature in a sliding
window manner [125], with window size equal to the pre-
train image size, resulting in Sliding F-ViT and Sliding FC-
CLIP, respectively. Tab. 5 illustrates that ViTamin-L serves
as a stronger image encoder for open-vocabulary detection,
surpassing its ViT-L/14 counterpart by 1.4% and 3.1% on
OV-COCO and OV-LVIS. Tab. 6 shows that ViTamin-L out-
performs ViT-L/14 by 2.6% on average 3 panoptic datasets
and by 2.6% on average 5 semantic datasets. Notably,
surpassing prior art, ViTamin-L sets a new state-of-the-art
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encoder scheme [33] [47] [36] [74] [92] [29] [64] [70] [70] [56] [68] [127]
ViT-L/14 OpenAI 78.5 62.0 50.0 66.8 58.2 85.9 1511 64.3 58.3 58.6 65.4 31.1

ViT-L/14 CLIPA-v2 75.9 60.3 48.8 65.6 55.0 84.9 1396 60.8 54.6 54.6 60.6 28.6
ViTamin-L OpenCLIP 78.4 61.6 51.1 66.9 58.7 84.6 1421 65.4 58.4 57.7 64.5 33.6
ViTamin-L† OpenCLIP 78.9 61.6 55.4 67.6 59.8 85.5 1447 64.5 58.3 57.9 66.1 33.6

Table 7. Large Multi-modal Model (LMM) performance with
different VLMs. The results in 1st row originate from LLaVa-
1.5 paper [67] and are marked in gray due to pretraining on Ope-
nAI WIT dataset [82] unlike DataComp-1B [30] used by other
rows. All listed models are trsained following the same settings in
LLaVA-1.5 [67] with Vicuna-V1.5-7B [16], for a fair comparison.
†: image size of 384 rather than the default 336.

performance across seven benchmarks for open-vocabulary
panoptic segmentation and semantic segmentation.

Large Multi-modal Models: Another key application
of VLMs lies in their role as vision encoders within LMMs
[57, 68, 137], as image features in VLMs that is well-
aligned with text, thereby bridging the visual comprehen-
sion gap for LLMs. Specifically, we consider LLaVA-
1.5 [67] as the evaluated framework. We follow [67] for all
experimental settings, where the image is processed through
a frozen CLIP model and a MLP projector, retaining the im-
age as visual tokens, which are prepended to a text sequence
and fed into a frozen Vicuna-v1.5-7B [16]. We run evalua-
tion on 12 LMM benchmarks following [67], with results in
Tab. 7. It should be noted that while OpenAI-trained ViT-
L/14 underperforms CLIPAv2-trained counterpart by -3.7%
ImageNet accuracy, it excels remarkably in LLaVA (+4.4%
on VQAv2 and +4.3% on VizWiz). This highlights the need
for incorporating a variety of downstream tasks to ensure
a comprehensive evaluation. Surprisingly, simply replac-
ing LLaVA’s image encoder to ViTamin-L can achieve new
state-of-the-art across various benchmarks.

5. Conclusion
In this work, we build an evaluation protocols of modern
vision models in VLM and re-benchmark them under CLIP
setting. We examine vision models from four aspects of
data scalability, model scalability, feature resolution and hy-
brid architecture. The four pillars motivate us to propose
ViTamin, which not only competes favorably with ViT in
zero-shot ImageNet accuracy and average 38 dataset ac-
curacy, but also achieves the state-of-the-art on 22 down-
stream tasks covering open-vocaburary detection and seg-
mentation and large multi-modal models. We hope that
our design practices will drive the development of more ad-
vanced vision models for VLMs.
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