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In cyberpunk, neonpunk style,
Kung Fu Panda, jump and kick.

Cinematic photo melting pistachio ice
cream dripping down the cone.
35mm photograph, film, bokeh.

Large motion, surrounded by butterflies,
a girl walks through a lush garden.

Figure 1. Give a text prompt, our method can generate a video with high visual quality and accurate text-video alignment. Note that it is
trained with only low-quality videos and high-quality images. No high-quality videos are required. Best viewed with Acrobat Reader. Click
the images to play the video clips.

Abstract

Text-to-video generation aims to produce a video based
on a given prompt. Recently, several commercial video mod-
els have been able to generate plausible videos with mini-
mal noise, excellent details, and high aesthetic scores. How-
ever, these models rely on large-scale, well-filtered, high-
quality videos that are not accessible to the community.
Many existing research works, which train models using
the low-quality WebVid-10M dataset, struggle to generate
high-quality videos because the models are optimized to fit
WebVid-10M. In this work, we explore the training scheme of
video models extended from Stable Diffusion and investigate
the feasibility of leveraging low-quality videos and synthe-
sized high-quality images to obtain a high-quality video
model. We first analyze the connection between the spatial
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and temporal modules of video models and the distribution
shift to low-quality videos. We observe that full training of
all modules results in a stronger coupling between spatial
and temporal modules than only training temporal modules.
Based on this stronger coupling, we shift the distribution
to higher quality without motion degradation by finetun-
ing spatial modules with high-quality images, resulting in a
generic high-quality video model. Evaluations are conducted
to demonstrate the superiority of the proposed method, par-
ticularly in picture quality, motion, and concept composition.

1. Introduction

Benefiting from the development of diffusion models [25,
43], video generation has achieved breakthroughs, particu-
larly in basic text-to-video (T2V) generation models. Most
existing methods [14, 23, 26, 30, 48, 63] follow a logic to
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obtain video models, i.e., extending a text-to-image (T2I)
backbone to a video model by adding temporal modules
and then training it with videos. Several models train video
models from scratch, while most start from a pre-trained T2I
model, typically Stable Diffusion (SD) [38]. Models can also
be categorized into two groups based on the space modeled
by diffusion models, i.e., pixel-space models [26, 30, 60]
and latent-space models [14, 23, 48, 63]. The latter is the
dominant approach. Picture quality, motion consistency, and
concept composition are essential dimensions for evaluating
a video model.

Recently, a few commercial startups have released their
T2V models [5, 6, 8, 9] that can produce plausible videos
with minimal noise, excellent details, and high aesthetic
scores. However, they are trained on a large-scale and well-
filtered high-quality video dataset, which is not accessi-
ble to the community and academia. Collecting millions
of high-quality videos is challenging due to copyright restric-
tions and post-filtering processing. Though there are a few
open-source video datasets collected from the Internet for
video understanding, such as HowTo100M [33], HD-VILA-
100M [56], and InterVid [51], there exist many issues for
video generation, e.g., poor picture quality and caption, mul-
tiple clips in one video, and static frames or slides. WebVid-
10M [12] is the most widely used dataset to train video gen-
eration models in academia. The clips are well-segmented,
and the diversity is good. However, the picture quality is
unsatisfactory, and most videos have a resolution of about
320p. The lack of high-quality datasets poses a significant
obstacle to training high-quality video models in academia.

In this work, we target a quite challenging problem,
i.e., training high-quality video models without using high-
quality videos. We dive into the training process of SD-based
video models to analyze the connection between spatial and
temporal modules under different training strategies and
investigate the distribution shift to low-quality videos. We
make a meaningful observation that the full training of all
modules results in a stronger coupling between appearance
and motion than just training temporal modules. The full
training can achieve more natural motion and tolerate more
subsequent modification of spatial modules, which is the
key to improving the quality of generated videos. Based
on the observation of the connection, we propose a method
to overcome the data limitation by disentangling motion
from appearance at the data level. Specifically, instead of
high-quality videos, we exploit low-quality videos to guar-
antee motion consistency and use high-quality images to
ensure picture quality and concept composition ability. Ben-
efiting from the successful T2I models such as SDXL and
Midjourney, it is convenient to obtain a large set of images
with high-resolution and complex concept composition. As
shown in Fig. 2, we design a pipeline to train a video diffu-
sion model following the guidelines from the analysis. Fig. 1

shows visual examples generated by our method.
Our main contributions are summarized as follows:

• We propose a method to overcome the data for training
high-quality video models by disentangling motion from
appearance at the data level.

• We investigate the connection between spatial and tem-
poral modules, and the distribution shift. We identify the
keys to obtain a high-quality video model.

• We design an effective pipeline based on the observations,
i.e., obtaining a fully trained video model first and tuning
the spatial modules with synthesized high-quality images.

2. Related Work
The evolution of video generation techniques goes along
with the development of generative models. Generative ad-
versarial networks [17] and variational auto-encoders [18]
are the commonly used backbones in early research of video
generation, e.g., VGAN [47], TGAN [40], MoCoGAN [44],
GODIA [52], StyleGAN-V [41], and MCVD [46]. Then,
since transformers have been successfully applied in var-
ious fields, they are also introduced for video synthesis,
e.g., CogVideo [28], VideoGPT [57], NUVA-infinity [53],
TATS [19], MAGVIT [58], Phenaki [45].

Recently, diffusion models (DMs) [25, 42, 43] have been
a famous star in generative models, especially in text-to-
image (T2I) generation [13, 21, 24, 34, 36–39, 62]. For
video generation, Video Diffusion Models (VDMs) are pro-
posed to model the distribution of videos. VDM [27] is
the first to utilize a space-time factorized U-Net to model
videos in pixel space for unconditional video generation.
It uses an image-video joint training strategy to avoid con-
cept forgetting. Imagen Video [26] and Make-a-Video [30]
are two cascade models that target text-to-video generation
in pixel space. Show-1 [60] is another cascade model that
uses IF [1] as the base model and LDM extended video
model for super-resolution. Subsequently, LVDM [15, 23]
and MagicVideo [63] propose to extend LDM [38] to model
videos in the latent space of an auto-encoder. Many other
methods use the same paradigm, including ModelScope [48],
Align Your Latent [14], Hotshot-XL [7], LAVIE [50], PY-
OCO [20], VideoFactory [49], VPDM [59], VIDM [32], and
Latent-Shift [11]. Besides text-to-video generation, a few
methods, such as [16, 55, 61], attempt to generate videos
from a given image and a prompt as condition.

Several startups release their text-to-video generation ser-
vices, e.g., Gen-2 [5], Pika Labs [9], Moonvalley [8], and
Genmo [6]. Their models can generate plausible results with
minimal noise, excellent details, and high aesthetic scores.
However, those methods are trained with a large-scale well-
filtered high-quality video dataset that is not accessible to
researchers. The video models are also not available, leading
to the slow development of downstream tasks to a certain
extent. The most widely used video dataset is WebVid-10M,
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Figure 2. The efficient training pipeline. In the first stage, we use a
large amount of low-quality videos to fully train the VDM to learn
motion. In the second stage, we only train the spatial parameters
with the high-quality images generated by the T2I model to improve
the concept composition and picture quality.

a large-scale dataset of short videos with textual descriptions
sourced from stock footage sites. The videos are diverse and
rich in their content, and each video is well-segmented, how-
ever, the picture quality is unsatisfactory and most videos
are 320p. Training a high-quality video model under the data
limitation is quite challenging.

AnimateDiff [22] finds that combining temporal modules
from a video model trained on WebVid-10M and a LORA
SD model can improve the picture quality of the generated
videos. However, this is not a generic model and does not
always work. There are a few severe issues. First, the tem-
poral modules can only be combined with a few selected
LORA models, which makes it not a generic model. Second,
the motion quality degenerates when the modules do not
match the LORA model well. Unlike AnimateDiff, we ana-
lyze the connection between spatial and temporal modules
instead of direct combination, and design a pipeline to train a
generic high-quality video model without high-quality video
by disentangling appearance and motion at the data level.

3. Method

We propose an effective method to overcome the data limi-
tation for training high-quality video diffusion models. We
first analyze the connection between spatial and temporal
modules of SD-based video models under different training
strategies. Based on the observations, we then develop a
pipeline to train high-quality video models with just low-
quality videos and high-quality images, i.e., disentangling
appearance from motion at the data level.

3.1. Spatial-temporal Connection Analyses

Base T2V model. To leverage the prior in SD trained
on a large-scale image dataset, most text-to-video diffu-
sion models inflate the SD model to a video model by
adding temporal modules, including Align Your Latent [14],
AnimateDiff [22], LVDM [23], Magic Video [63], Mod-
elScopeT2V [48], and LAVIE [50]. They follow VDM [27]

to use a particular type of 3D-UNet that is factorized over
space and time.

These models can be categorized into two groups ac-
cording to their training strategies. One is to use videos to
train temporal modules with spatial ones fixed, called partial
training. The other is to learn both the spatial and temporal
modules with the SD weights as initialization, called full
training.

Though these SD-based T2V models have similar archi-
tectures, they are trained under different training settings.
We use one typical model to investigate the connection be-
tween spatial and temporal modules under the two training
strategies. We follow the architecture of the open-source
VideoCrafter1 [15] with FPS (frames per second) condi-
tion. We also incorporate the temporal convolution in Mod-
elScopeT2V [48] to improve temporal consistency.

Parameter Perturbation for Full and Partial Training.
We apply the two training strategies to the same architecture
using the same data. The model is initialized from pretrained
SD weights. WebVid-10M [12] is exploited as the training
data. To avoid concept forgetting, LAION-COCO 600M [3]
is also used for video and image joint training. The resolution
is 512× 320. For simplicity, the fully trained video model
is denoted as MF (θT , θS), while the partially trained one is
denoted as MP (θT , θ

0
S), where θT and θS are the learned

parameters of the temporal and spatial modules, respectively.
θ0S are the original spatial parameters of SD.

To evaluate the connection strength between spatial and
temporal modules, we perturb the parameters of the specified
modules by using another high-quality image dataset DI

for finetuning. The image data is JDB [35] that consists of
synthesized images from Midjourney [4]. As the JDB has 4
million images, we use LORA [29] for finetuning.

Spatial Perturbation. We first perturb the spatial param-
eters of the two video models using the image dataset. The
temporal parameters are frozen. The perturbation process of
the fully trained base model MF can be denoted as:

M
′

F (θT , θS +∆θS )← PERTBLORA
θS (MF (θT , θS),DI),

where PERTBLORA
θS denote finetuning MF with respect to θS

on the image dataset DI using LORA. ∆θS represents the
parameters of the LORA branch. Similarly, we can obtain
the perturbed model of the partially trained video model:

M
′

P (θT , θ
0
S +∆θS )← PERTBLORA

θS (MP (θT , θ
0
S),DI).

For easy understanding, we also use the name ‘F-Spa-
LORA’ to denote model M

′

F and ‘P-Spa-LORA’ for M
′

P . ‘F’
denotes the fully trained base model while ‘P’ stands for the
partially trained model. ‘Spa’ and ‘Temp’ mean finetuning
spatial and temporal modules, respectively. ‘LORA’ repre-
sents using LORA for finetuning, while ‘DIR’ means direct
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A professional dancer gracefully performs ballet on stage.
Figure 3. Perturbing spatial modules using LORA. Best viewed
with Acrobat Reader. Click the images to play the video clips.

finetuning without LORA. For example, ‘F-Spatial-LORA’
represents perturbing spatial modules of the fully trained
T2V model using LORA.

Comparing the synthesized videos of the two resulting
models, we have the following observations. First, the mo-
tion quality of F-Spa-LORA is more stable than that of
P-Spa-LORA (see user study in Table 4). The motion of
P-Spa-LORA becomes worse quickly during the finetuning
process. The more finetuning steps, the video tends to be
more still with local flicker (see Fig. 3). While the motion
of F-Spa-LORA slightly degenerates compared to the fully
trained base model. Second, P-Spa-LORA achieves much
better visual quality than F-Spa-LORA (see Fig. 3). The pic-
ture quality and aesthetic score of F-Spa-LORA are greatly
improved compared to the partially trained base model (see
Table 3). Surprisingly, the watermark is also removed. While
F-Spa-LORA obtains a slight improvement in picture quality
and aesthetic score, the generated videos are still noisy.

From the two observations, we can conclude that the
coupling strength between spatial and temporal modules of
the fully trained model is stronger than that of the partially
trained model. Because the spatial-temporal coupling of the
partially trained model can be easily broken, leading to quick
motion degeneration and picture quality shift. A stronger
connection can tolerate parameter perturbation more than a
weak one. Our observation can be used to explain the qual-
ity improvement and motion degeneration of AnimateDiff.
AnimateDiff is not a generic model and only works for se-
lected personalized SD models. The reason is that its motion
modules are obtained with the partially training strategy, and

P-Temp-LORA F-Temp-LORA

Robot dancing in times square.
Figure 4. Perturbing temporal modules using LORA. Best viewed
with Acrobat Reader. Click the images to play the video clips.

they cannot tolerate large parameter perturbations. When the
personalized model does not match the temporal modules,
both picture and motion quality will degenerate.

Temporal Perturbation. The partially trained model has
only the temporal modules updated, but the picture quality
is shifted to the quality of WebVid-10M. Hence, the tempo-
ral modules take responsibility for not only the motion but
also the picture quality. We perturb the temporal modules
while fixing the spatial modules with the image dataset. The
perturbation processes can be denoted as:

M
′′

F (θT +∆θT , θS)← PERTBLORA
θT (MF (θT , θS),DI),

M
′′

P (θT +∆θT , θ
0
S)← PERTBLORA

θT (MP (θT , θ
0
S),DI).

We observe that the picture quality of P-Temp-LORA (M
′′

P )
is better than F-Temp-LORA (M

′′

F ). However, the fore-
ground and background of the videos are more shaky, i.e., the
temporal consistency becomes worse (see Fig. 4). The pic-
ture of F-Temp-LORA is improved, but the watermark is still
there. Its motion is close to the base model and much better
than P-Temp-LORA (see Table 4). Those observations also
support the conclusion obtained from spatial perturbation.

3.2. Data-level Disentanglement of Appearance and
Motion

Since obtaining a large-scale, high-quality video dataset
with high diversity is challenging due to copyright issues,
we explore the possibility of training a high-quality video
model without using high-quality videos. We have access to
low-quality videos such as WebVid-10M and high-quality
images such as JDB. We propose to disentangle motion from
appearance at the data level, i.e., learning motion from low-
quality videos while learning picture quality and aesthetics
from high-quality images. We can first train a video model
with videos and then fine-tune the video model with images.
The keys lie in how to train a video model and how to fine-
tune it with images.

According to the study of the connection between spatial
and temporal modules, a fully trained model is more suitable
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F-Spa&Temp-LORA F-Temp-DIR F-Spa-DIR F-Spa&Temp-DIR

An astronaut is waving his hands on the moon.

Figure 5. Module selection based on the fully trained T2V model. Best viewed with Acrobat Reader. Click the images to play the video clips.

Anime illustration of a blue pig, riding a scooter near a
lake, with the sun in the sky

F-Spa-DIR-LAION F-Spa-DIR
Figure 6. Influence of image data on concept composition. ‘F-Spa-
DIR-LAION’ uses the LAION aesthetics V2 as the image data
while ‘F-Spa-DIR’ uses JDB. Best viewed with Acrobat Reader.
Click the images to play the video clips.

for the subsequent finetuning with high-quality images. This
is because the strong spatial-temporal coupling can tolerate
the parameter perturbation for both spatial and temporal
modules without obvious motion degeneration.

Next, we need to investigate how to fine-tune the base
model with images. In both spatial and temporal perturba-
tion (Sec. 3.1), the picture quality can be improved but not
very significantly. To obtain a greater quality improvement,
we evaluate two strategies. One is to involve more parame-
ters, i.e., finetuning both spatial and temporal modules with
images. The other is to change the finetuning method, i.e.,
using direct finetuning without LORA. We can evaluate the
following four cases:

MA
F (θT +∆θT , θS +∆θS )← PERTBLORA

θT ,θS (MF (θT , θS),DI),

MB
F (θT , θS +∆θS )← PERTBθS (MF (θT , θS),DI),

MC
F (θT +∆θT , θS)← PERTBθT (MF (θT , θS),DI),

MD
F (θT +∆θT , θS +∆θS )← PERTBθT ,θS (MF (θT , θS),DI),

Where MA
F (F-Spa&Temp-LORA) is obtained by following

the first strategy, MB
F , MC

F , and MD
F are obtained using

the second strategy. MB
F (F-Spa-DIR) and MC

F (F-Temp-
DIR) represent directly finetuning the spatial and temporal
modules, respectively. MD

F (F-Spa&Temp-DIR) represents
directly finetuning all modules.

Comparing the generated videos of the four models, we
have the following observations. First, F-Spa&Temp-LORA
can further improve the picture quality of F-Spa-LORA, but
the quality is still unsatisfying. The watermark exists in most
generated videos, and the noise is obvious. Second, F-Temp-
DIR achieves better picture quality than F-Temp-LORA. It
is also better than F-Spa&Temp-LORA. The watermark is
removed or lightened in half of the videos. Third, F-Spa-
DIR and F-Spa&Temp-DIR achieve the best picture quality
among the fine-tuned models. However, the motion of F-
Spa-DIR is better (see Fig. 5 and Table 4). The foreground
and background of F-Spa&Temp-DIR are flashing in videos
generated by MD

F , especially local textures.
By exploring the finetuning strategies and different mod-

ules, we identify that directly finetuning spatial modules
with high-quality images is the best way to improve the
picture quality without marginal loss of motion quality. As
shown in Fig. 2, our data-level disentanglement pipeline
can be summarized as follows: fully training a video model
with low-quality videos first and then directly finetuning the
spatial modules only with high-quality images.

3.3. Promotion of Concept Composition

To improve the concept composition ability of video models,
we propose to use synthesized images with complex con-
cepts instead of using real images at the partial finetuning
stage. The success of T2I models such as SDXL and Mid-
journey is built upon large-scale high-quality images. They
have the ability to composite concepts that do not appear
in the real world. Rather than using their training images,
we propose transferring their concept composition ability
to video models by synthesizing a set of images with com-
plex concepts. In this way, we can alleviate the burden of
capturing both concept and motion well at the same time.
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To validate the effectiveness of synthesized images, we
use JDB and LAION-aesthetics V2 [2] as image data for the
second finetuning stage. LAION-aesthetics V2 consists of
web-collected images while JDB contains images synthe-
sized by Midjourney. We observe that the model trained with
JDB has much better concept composition ability (see Fig. 6
and Table 3). More results are in the supplementary material.

4. Experiments
4.1. Settings

Data. To overcome data limitations, we utilized WebVid-
10M [12] as the source of low-quality video data and
JDB [35] for high-quality image data. WebVid-10M is a
large-scale, diverse video dataset comprising approximately
10 million text-video pairs. The resolution of most videos is
336× 596, and each video consists of a single shot. During
training, we sample from videos at varying frame rates. JDB
is a large-scale image dataset featuring around 4 million
high-resolution images from Midjourney, each annotated
with a corresponding text prompt. To prevent concept for-
getting during the training of the base T2V model, we also
employ LAION-COCO[3], a dataset comprising 600 million
generated high-quality captions for publicly available web
images, for both image and video training.

Metrics. We exploit EvalCrafter [31] for quantitative eval-
uation. EvalCrafter is a benchmark to evaluate text-to-video
generation models, which contains around 18 objective met-
rics for visual quality, content quality, motion quality, and
text-caption alignment. It provides about 512 prompts. The
objective metrics are aligned to user opinions from five sub-
jective studies, i.e., motion quality, text-video alignment,
temporal consistency, visual quality, and user favor. The
motion quality considers three metrics: action recognition,
average flow, amplitude classification score, while temporal
consistency considers warping error, semantic consistency,
face consistency. The technical and aesthetic scores in Eval-
Crafter are adapted from DOVER [54]. Besides, we conduct
user studies of human preference since there still lacks a
comprehensive objective metric to measure motion quality.

Training Details. In Sec 3.1, the two based models
share the same architecture, adapted from the open-source
VideoCrafter1 [15], and incorporate temporal convolution
from ModelScopeT2V [48]. The spatial modules are ini-
tialized with weights from SD 2.1, and the outputs of the
temporal modules are initialized to zeros. The training reso-
lution is set at 512× 320. For joint image and video training,
we utilize the low-quality WebVid-10M and LAION-COCO
datasets. The models are trained on 32 NVIDIA A100 GPUs
for 270K iterations with a batch size of 128. The learning
rate is set at 5×10−5 for all training tasks. When employing

Visual Text-Video Motion Temporal
Quality Alignment Quality Consistency

PikaLab∗ 63.52 54.11 57.74 69.35
Gen2∗ 67.35 52.30 62.53 69.71

VideoCrafter1 61.64 66.76 56.06 60.36
Show-1 52.19 62.07 53.74 60.83

AnimateDiff 58.89 74.79 51.38 56.61
Ours 63.28 64.67 53.95 62.02

Table 1. Comparison on the EvalCrafter benchmark. Higher score
indicates better performance. * commercial models.

LORA for the perturbation of temporal or spatial modules,
we exclusively use JDB for tuning. The finetuning is con-
ducted on 8 A100 GPUs for 30K iterations with a batch
size of 256. Given that the images from JDB have a square
resolution, we adjust the finetuning resolution to 512× 512.

4.2. Comparison with State-of-the-Art T2V Models

We compare our approach with several state-of-the-art T2V
models, including popular commercial models such as Gen-
2 [5] and Pika Labs [9], as well as open-source mod-
els like Show-1 [60], VideoCrafter1 [15], and AnimateD-
iff [22]. Gen-2, Pika Labs, and VideoCrafter1 all utilize
high-quality videos for training their T2V models. It is note-
worthy that AnimateDiff and our models use only the videos
from WebVid-10M. Show-1 employs additional high-quality
videos for finetuning to eliminate the watermark in WebVid-
10M. AnimateDiff is not a generic T2V model; it works only
when the LORA SD model is compatible with its temporal
modules. For our comparison, we use its temporal modules
(second version) based on SD v1.5 and employ Realistic
Vision V2.0 [10] as its corresponding LORA model.

Quantitative Evaluation. The quantitative results ob-
tained using EvalCrafter are presented in Table 1. Our
method achieves visual quality comparable to that of
VideoCrafter1 and Pika Labs, which use high-quality videos
for training. This underscores the effectiveness of employing
high-quality images to enhance picture quality and aesthetic
scores. Furthermore, our text-video alignment performance
is ranked second. In terms of motion quality, our perfor-
mance surpasses that of Show-1 but falls short of models
that utilize a larger volume of videos to learn motion. This
indicates that our method can enhance visual quality without
significant motion degradation.

Qualitative Evaluation. The visual comparison is de-
picted in Fig. 7. Additional results are provided in the sup-
plementary material. The visual quality of our results is on
par with that of commercial models such as Gen-2 and Pika
Labs. Since we employ JDB as the image dataset, the picture
quality of our synthesized videos shifts from WebVid-10M
to JDB. Regarding motion, our motion quality is superior to
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Figure 7. Comparison of different text-to-video generation models. Best viewed with Acrobat Reader. Click the images to play the video clips.

that of AnimateDiff and comparable to Show-1. Although
the integration of temporal modules with a LORA SD model
can enhance visual quality, AnimateDiff experiences motion

degradation in generic scenes.
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Methods Text-Video
Alignment

Motion
Quality

Visual
Quality

Ours vs Gen2 56% 46% 34%
Ours vs AnimateDiff 55% 64% 69%

Ours vs Show-1 59% 59% 82%
Ours vs VideoCrafter1 61% 63% 61%

Table 2. Human preference. The numbers represent the probability
of users choosing our method.

User Study. For further evaluation, we conduct a user
study to compare our method with other video models. We
select 50 prompts from EvalCrafter, covering diverse scenes,
styles, and objects. When comparing a model pair, three
video production experts are asked to select their preferred
video from three options: method 1, method 2, and com-
parable results, according to the given subject, i.e., visual
quality, motion quality, and text-video alignment. The re-
sults are shown in Table 4. Our method has better visual
quality than AnimateDiff and Show-1 and is comparable to
VideoCrafter1. Our method is more preferred than Show-1
and AnimateDiff in motion quality.

4.3. Strategy Evaluation

Spatial-temporal Connection. In Sec. 3.1, we show a
visual comparison of perturbing the spatial and temporal
parameters of the fully and partially trained models in Fig. 3
and Fig. 4. Here we provide the quantitative comparisons
about the visual quality in Table 3, including aesthetic and
technical scores from DOVER [54]. We observe that fine-
tuning the partially trained model can always achieve better
visual quality than the fully trained model. It means that the
distribution of the partially trained model can be shifted more
easily. Besides, we conduct a user study asking participants
to choose a favorable model that has better performance in
motion, in terms of foreground/background flash and motion
flicker. The results are shown in Table 4. It can be observed
that the motion quality of perturbed fully trained models is
better. The fully trained model can tolerate larger param-
eter perturbations than the partially trained model. These
observations show that the fully trained model has stronger
spatial-temporal coupling.

Module Selection. After selecting the fully trained model
as the base, we use two strategies to identify the most effec-
tive module to fine-tune, resulting in four models in Sec. 3.2.
The visual quality evaluation of these models is shown in the
bottom part of Table 3. The visual quality of F-Spa-DIR and
F-Spa&Temp-DIR is much better than the other two models.
It reveals that directly finetuning spatial modules is the key
to improving picture quality.

Since F-Spa-DIR and F-Spa&Temp-DIR achieve close
visual quality, we conduct a user study on motion quality to

Method Aesthetic Score (↑) Technical Score (↑)

P-base 34.32 42.69
F-base 46.55 51.76

P-Spa-LORA 78.25 72.74
F-Spa-LORA 77.97 59.60

P-Temp-LORA 77.40 54.85
F-Temp-LORA 66.26 50.32

F-Spa-DIR 82.57 70.35
F-Temp-DIR 82.77 65.34

F-Spa&Temp-DIR 83.59 67.75
F-Spa&Temp-LORA 80.44 63.61
F-Spa-DIR-LAION 67.83 54.26

Table 3. Visual quality evaluation of the perturbed T2V models.

Methods Motion Quality

F-Spa-LORA vs P-Spa-LORA 87%
F-Temp-LORA vs P-Temp-LORA 73%
F-Spa-DIR vs F-Spa&Temp-DIR 67%

Table 4. User study on the motion of the perturbed T2V models.

determine the final model. The results are shown in the last
row of Table 4. Directly finetuning the spatial modules only
performs better in motion. As shown in Fig. 5, F-Spa-DIR
is more stable and has better temporal consistency than F-
Spa&Temp-DIR. The latter has obvious flashes in both the
foreground and background.

Influence of Image Data. To verify the effectiveness
of synthesized images, we use the LAION Aesthetics V2
dataset and JDB to directly fine-tune the spatial modules
in the second stage, respectively. The visual examples are
shown in Fig. 6. It shows that the model trained with
JDB composite concepts better than the model trained with
LAION Aesthetics V2. The quantitative evaluation of visual
quality is shown in Table 3. F-Spa-DIR is much better than
F-Spa-DIR-LAION in both aesthetic and technical scores.

5. Conclusion
To overcome data limitations, we propose a method for train-
ing high-quality video diffusion models without using high-
quality videos. We delve into the training schemes of SD-
based video models and investigate the coupling strength
between spatial and temporal dimensions. We observe that
fully trained T2V models exhibit stronger spatial-temporal
coupling than partially trained models. Based on this obser-
vation, we propose disentangling appearance from motion
at the data level, i.e., by exploiting low-quality videos for
motion learning and high-quality images for appearance
learning. Additionally, we suggest using synthetic images
with complex concepts for finetuning, rather than real im-
ages. Quantitative and qualitative evaluations are conducted
to demonstrate the effectiveness of the proposed method.
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