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Abstract

Visible-infrared (RGB-IR) image fusion has shown great
potentials in object detection based on unmanned aerial ve-
hicles (UAVs). However, the weakly misalignment problem
between multimodal image pairs limits its performance in
object detection. Most existing methods often ignore the
modality gap and emphasize a strict alignment, resulting in
an upper bound of alignment quality and an increase of im-
plementation costs. To address these challenges, we pro-
pose a novel method named Offset-guided Adaptive Fea-
ture Alignment (OAFA), which could adaptively adjust the
relative positions between multimodal features. Consider-
ing the impact of modality gap on the cross-modality spa-
tial matching, a Cross-modality Spatial Offset Modeling
(CSOM) module is designed to establish a common sub-
space to estimate the precise feature-level offsets. Then, an
Offset-guided Deformable Alignment and Fusion (ODAF)
module is utilized to implicitly capture optimal fusion po-
sitions for detection task rather than conducting a strict
alignment. Comprehensive experiments demonstrate that
our method not only achieves state-of-the-art performance
in the UAVs-based object detection task but also shows
strong robustness to the weakly misalignment problem.

1. Introduction

Visible-infrared (RGB-IR) object detection on un-
manned aerial vehicles (UAVs) has attracted extensive at-
tention [2, 27, 39], due to its ability to make full use of
complementary information and achieve robust around-the-
clock detection. However, the collected RGB-IR images are
typically mismatched in resolutions and field of views own-
ing to disparate imaging principles. Thus, it is challeng-
ing to fuse the corresponding information of target between
multimodal images.

*Corresponding author.

Figure 1. Previous multimodal object detection architectures un-
der weakly misalignment conditions vs. our OAFA. (a) Image-
level alignment method: executing a pixel-level strict alignment
by explicitly extracting the global deformation fields from mul-
timodal images. (b) Feature-level alignment method: explicitly
estimating feature offsets through multimodal features to achieve
strict feature alignment. It can be further classified into global
and local methods based on whether alignment is exclusively per-
formed on target regions. (c) Our OAFA: the basic global offsets
are estimated by the modality-invariant features to eliminate the
impact of modality gap. Based on this offset, we perform adaptive
feature alignment without strict alignment.

To increase the quality of fusion representations, re-
searchers always apply pre-registration techniques, involv-
ing image cropping [43] and affine transformation [47] be-
fore the fusing process. Nevertheless, since distinct imaging
time in multimodal sensors and intricate movements in tar-
gets, it is difficult, or even impossible, to achieve precise
UAVs image alignment [29]. It inevitably leads to local
inconsistencies in multimodal spatial distribution, named
the weakly misalignment problem [41], resulting in a mis-
match of the multimodal target features in corresponding
positions [40]. Since the detection task is sensitive to spatial
locations, the weakly misalignment problem would lead to
significant performance degradation. Several studies have
been carried out to deal with this issue by accomplishing
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a strict alignment based on offset estimation, as shown in
Fig. 1a and Fig. 1b. Although these methods have made
significant progress, there still remain two main challenges:

Inaccurate offset estimation. Conventional methods
devote to predicting spatial offsets by identifying the dis-
tribution and appearance discrepancies in image or feature
level. However, in fact, the discrepancies arise not only
from spatial offsets but also from modality gap [31], which
stems from the differences in imaging principles and wave-
lengths between RGB and IR sensors. This gap could make
it hard to correctly match cross-modality representations in
spatial, leading to misleading offset estimation. Hence, the
first challenge is how to bridge the modality gap to achieve
accurate cross-modal offset estimation.

High dependency on strict alignment. The strict align-
ment is necessary for most existing methods. Unfortunately,
the strict alignment always requires additional annotation
information, such as the ground truth offsets between multi-
modal representations [45]. It will lead to higher implemen-
tation costs that limit real-world applications. Moreover, the
detection performance relies heavily on the quality of align-
ment. However, even the state-of-the-art alignment methods
have the risk of failure in some scenarios [18], which may
cause the error delivery to the detection task. Consequently,
the second challenge is how to enhance the robustness of the
detection model to the weakly misalignment problem with-
out strict alignment.

To this end, the purpose of this paper is to achieve adap-
tive alignment between RGB (sensed modality) and IR (ref-
erence modality) images based on spatial offsets for su-
perior detection performance instead of strict alignment.
Technically, we propose a novel method named Offset-
guided Adaptive Feature Alignment (OAFA) for UAVs-
based multimodal object detection under weakly misalign-
ment conditions. It mainly consists of a Cross-modality
Spatial Offset Modeling (CSOM) module and an Offset-
guided Deformable Alignment and Fusion (ODAF) module
for dealing with the two challenges, respectively. Consid-
ering the first challenge, CSOM establishes a cross-modal
common subspace to obtain the modality-invariant features
for eliminating modality gap. As distributional aligned
mappings, the modality-invariant features could be utilized
to evaluate spatial consistency between multimodal features
for more accurate cross-modal offsets estimation.

As for the second challenge, ODAF is designed to adap-
tively adjust feature positions by implicit offset compensa-
tion, aiming to make full use of the offsets and achieve su-
perior detection performance without strict alignment. In
specific, ODAF involves a learnable deformation compo-
nent that dynamically predicts the offsets of sampling con-
volution kernels. With the help of the offsets provided
by CSOM, ODAF captures optimal sampling positions in
sensed modality features to attain comprehensive target rep-

resentations after fusion. This module predicts the corre-
sponding sampling positions for diverse regions in different
image pairs, contributing to a strong flexibility of OAFA in
handling diverse and complex offsets. Besides, the training
stability of deformable components is improved since the
explicit guidance of the offsets reduces the burden of the
adaptive alignment.

Our contributions can be summarized as follows: (1)
We propose a robust RGB-IR object detection method for
UAVs images under weakly misalignment conditions, ef-
fectively implementing adaptive feature alignment instead
of strict alignment. (2) Considering the difficulty of estimat-
ing cross-modality offset, we build a multimodal common
subspace to reduce the impact of modality gap on multi-
modal spatial matching. (3) An offset-guided deformable
alignment module is exploited to achieve adaptive align-
ment by implicitly capturing optimal fusion positions, en-
hancing the accuracy of the detection task. (4) Extensive
experiments on public dataset show that our OAFA is su-
perior to state-of-the-art models only with a simple fusion
strategy. Moreover, it proves the effectiveness in addressing
the weakly misalignment problem.

2. Related Work
Multimodal object detection under weakly misalign-

ment conditions. A general solution to address the
weakly misalignment problem is to conduct pixel-level pre-
alignment [24, 46, 52], which learn a global mapping func-
tion from multimodal images to correct the pixel coordi-
nates. Many of these methods [3, 16, 26] are supervised
with the deformable fields in order to achieve strict pre-
alignment. To achieve end-to-end training, Zhang et al. [45]
first introduced a data-driven region feature alignment mod-
ule to predict proposal regions offsets from multimodal fea-
tures, which was indispensably constrained by the target lo-
cations in RGB-IR images. On this basis, Yuan et al. [41]
made full use of the oriented multimodal annotations to
realize multimodal target alignment in position, size, and
angle. Due to the requirement of extra supervisions for
the strict alignment process, the above methods are labor-
intensive and costly to implement. Besides, the existing
modality gap at both the pixel-level and feature-level leads
to incorrect estimation of spatial offsets. Consequently, it
is indeed significant to propose a novel method for RGB-IR
object detection under weakly misalignment conditions.

Common subspace learning. Common subspace learn-
ing aims to exploit shared information among multiple data.
In field of multimodal learning, it can be used to bridge
the modality gap by extracting the unified latent repre-
sentations in the inter-modality samples. Works can be
broadly grouped into transformation-based [9, 23, 32, 37],
weight-sharing-based [12, 14, 15], and decoupling-based
methods [13, 20, 38]. The transformation-based methods
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Figure 2. An Overview of OAFA. It consists of two components: a Cross-modality Spatial Offset Modeling (CSOM) module and an Offset-
guided Deformable Alignment and Fusion (ODAF) module. In our implementation, we choose the RGB images as the sensed modality
whose features are shifted to achieve alignment, and the IR images as the reference modality. The CSOM can decouple the original
multimodal features to modality-invariant and modality-specific features and predict a superior spatial offset in a common subspace. The
ODAF utilizes this basic offset to adaptively align the sample positions of the RGB features with IR features, and then fuses the aligned
RGB and original IR features. Finally, the fused features are conducted to generate the ultimate detection results.

generally transform one modality (images/features) into an-
other modality by domain transfer [9] or auto-encoder [23,
32, 37]. It is hard to achieve an end-to-end training due
to the requirement of a pre-trained transformation network.
The weight-sharing-based methods devote to designing
the weight-shared network within a two-stream framework
to only capture modality-invariant features [12, 14, 15].
Nevertheless, overemphasis on common features may result
in the underutilization of complementary information. The
decoupling-based methods overcome this obstacle by try-
ing to separate multimodal features into modality-invariant
and modality-specific features with a series of constraint
functions [13, 20, 38]. Inspired by the third category meth-
ods, we develop a decoupled multimodal learning network
with three constraints for the detection task. Moreover, due
to the complexity of UAVs-based multimodal features, we
design the network with partial weight sharing and custom
encoder architecture to achieve effective disentanglement.

Deformable convolution. Convolutional neural net-
works (CNNs) are inherently limited in modeling geometric
transformations because of their fixed kernel structures. To
enhance the transformation modeling capability of CNNs,
Dai et al. [8] designed the deformable convolution, which
has shown superior performance in several high-level vi-
sion tasks [1, 28, 51]. In recent years, it has also been

used in the field of video super-resolution [5, 30, 33, 34].
As a pioneer work, Tian et al. [30] adopted the deformable
convolution to align the features of adjacent frames in the
temporal domain. It demonstrates that deformable convolu-
tion can effectively capture the motion cues of the targets.
Nonetheless, Chan et al. [4] has proved that the deformable
alignment is difficult to train. Training instability frequently
leads to offset overflow, degrading the final performance in
downstream task. Therefore, we construct a basic offset as
explicit guidance to reduce the burden of deformable align-
ment training.

3. Method
3.1. Overview

Our method aims to enhance the accuracy and robustness
of the RGB-IR object detection model under weakly mis-
alignment conditions. As shown in Fig. 2, a pair of weakly
misaligned RGB-IR images are fed into a two-stream net-
work to acquire the multiscale multimodal representations.
Subsequently, a decoupled learning network is designed to
develop a common subspace to figure out the modality-
invariant and modality-specific features. To mitigate the
influence of modality gap on offset estimation, we exclu-
sively employ the modality-invariant features to predict spa-
tial offsets. Then, this basic offsets are utilized to implic-
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itly adjust the spatial positions of the modality-invariant and
modality-specific features. It accomplishes adaptive feature
alignment that is tailored for RGB-IR object detection task
without any extra supervisions. Finally, the aligned RGB
and original IR features are fused with a concatenation op-
eration to generate final detection results.

3.2. Cross-modality Spatial Offset Modeling Mod-
ule

Given the RGB features Frgb and IR features Fir, CSOM
predicts the spatial offsets ϕc as basic knowledge for the
subsequent alignment module. The CSOM consists of a de-
coupled multimodal learning submodule and a spatial offset
modeling submodule.

Decoupled multimodal learning. This submodule
mainly builds a common subspace C̃ = [Crgb,Cir] and
a specific subspace S̃ = [Srgb,Sir], as shown in Fig. 2a.
For each input RGB-IR image pair Irgb ∈ RH×W×3 and
Iir ∈ RH×W×1, we map it to the multimodal representa-
tions Fm(m ∈ {rgb, ir}) by a basic pyramid feature ex-
tractor Bm. The Fm is the bounded random samples on the
interval [a, b]N . Then, the modality-invariant features Fc

m

and modality-specific features Fs
m projected from C̃ and S̃

are figured out by the encoding functions:

Fs
m = Sm(Fm; θsm), Fc

m = Cm(Fm; θc), (1)

where the invariant feature encoder Cm shares the param-
eters θc across two modalities, whereas the specific feature
encoder Sm assigns separate parameters θsm for each modal-
ity. Considering the diversity information in UAVs images,
we not only design the decoupled network in objective func-
tion but also in network architecture.

In terms of the network architecture, an accepted as-
sumption is that the input features are more related in the
low layers, while the high-layer features tend to be uncor-
related [48]. Thus, Cm is constructed with a convolutional
layer followed by the SiLU activation function. In contrast,
Sm contains a convolutional layer and a C3 module with
three convolutional and a series of bottleneck layers to ob-
tain deeper features.

As for the objective functions, inspired by [13], we
apply three types of constraints for decoupled multimodal
learning: Similarity Loss, Difference Loss, and Semantic
Loss. First, we employ a similarity loss Lsim to minimize
the distance between Fc

rgb and Fc
ir to learn common sub-

space C̃. The Lsim is defined by a state-of-the-art distance
metric named central moment discrepancy [42] to measure
the distribution dissimilarity between two features:

Lsim =
1

|b− a|
∥∥E(Fc

rgb)− E(Fc
ir)

∥∥
2

+

K∑
k=2

1

|b− a|k
∥∥CK(Fc

rgb)− CK(Fc
ir)

∥∥
2
,

(2)

where E(·) is the empirical expectation vector, CK(·) is the
vector of k-th order sample central moments, and ∥·∥2 rep-
resents the Euclidean norm.

Second, we present a difference loss Ldif for highlight-
ing the dissimilarity between Fs

rgb and Fs
ir to capture com-

plementary information. Additionally, as Fc
m and Fs

m are
expected to be mutually independent, Ldif should be ex-
tended to them as well. These discrepancies are achieved
by the squared Frobenius norm:

Ldif =
∑

m∈{rgb,ir}

√
Tr(((F s

m)TF c
m)T ((F s

m)TF c
m))

+
√

Tr(((F s
rgb)

TF s
ir)

T ((F s
rgb)

TF s
ir)),

(3)

where Tr(·) is trace of the matrix.
Third, only restrained by the above objectives, there

exists a potential risk that Cm learns useless noisy cues,
whereas Sm acquires almost all modality information. To
address this issue, we add a semantic loss Lsem to enforce
Cm to learn discriminative features:

Lsem =
∑

m∈{rgb,ir}

(Lcls(Fc
m) + Lreg(Fc

m) + Lobj(Fc
m)),

(4)
where Lcls, Lreg, and Lobj are the detection loss functions
of the YOLOv5 [17]. It should be noted that this object
detection branch, serving as an auxiliary task, is not incor-
porated during the inference stage to enhance the efficiency
of our OAFA. Finally, the total loss of the decoupled multi-
modal learning submodule can be defined as:

Ldec = λ1Lsim + λ2Lsim + λ3Lsem, (5)

where λi is the trade-off weights. In this study, we set λ1,
λ2, and λ3 to 0.03, 0.01, and 0.03 respectively.

Spatial offset modeling. We model the spatial offsets
ϕc by the estimating spatial differences between Fc

rgb and
Fc

ir. In the field of change detection [49], the differences are
calculated directly by subtracting or concatenating two fea-
tures. However, it would introduce significant noises when
dealing with intricate backgrounds in UAVs images. To
solve this problem, a feature difference enhancement mod-
ule is presented to filter out irrelevant changes and concen-
trate on shift objects. As shown in Fig. 2b, Fc

m is firstly
fed into a spatial attention module to capture the represen-
tations of the target and crucial background areas in each
modality. The structure of the spatial attention module is
the same as [35]. In this case, the spatially enhanced uni-
modal feature F c,p

m can be computed as:

Fc,p
m = σ(f7×7(Cat(Max(Fc

m),Mean(Fc
m))))⊙Fc

m,
(6)

where σ is the sigmoid function, fi×j denotes the i × j
convolution layer, Cat(·) refers to the concatenation op-
eration, and ⊙ indicates the Hadamard product operation.
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We conduct a concatenation instead of subtraction strategy
to extract the changing features Fdif to mitigate the influ-
ence of complex background. Then, a channel difference
enhanced module is introduced to further suppress chan-
nel noise. Specifically, we employ simultaneous average-
pooling and max-pooling to generate distinct spatial con-
text descriptors. Following this, channel attention can be
derived by transmitting the spatial context descriptors to a
shared multilayer perceptron network fmlp. Fc,p

m are com-
bined with the channel attention map to get the spatial-
channel enhanced features Fc,e

m . The above operation is
represented as:

Fc,e
m = σ(fmlp(AvgPool(Fdif ))+

fmlp(MaxPool(Fdif )))×Fc,p
m + Fc,p

m .
(7)

Finally, ϕc is obtained through a fusion of the Fc,e
rgb and

Fc,e
ir along with a nonlinear layer.

3.3. Offset-guided Deformable Alignment and Fu-
sion Module

We have obtained the offsets ϕc from CSOM, which rep-
resents the spatial differences between Frgb and Fir. In-
spired by [5], the ϕc can be an effectively initialized offset
to unsupervised alignment task. Hence, ODAF is designed
to adaptively capture optimal fusion location with the help
of the basic knowledge ϕc, incorporating desired comple-
mentary information for the subsequent detection task. It
is composed of two submodules: offset-guided deformable
alignment and decoupled feature fusion.

Offset-guided deformable alignment. We mainly ap-
ply a deformable convolution to achieve implicit offset
compensation and adaptive alignment for the detection task.
Unlike the default deformable convolution that learns off-
sets of convolution kernels from their original features, the
offsets generated from our module are mapped from the ba-
sic offsets ϕc, which allows for more effective feature cor-
rection and reliable model training. Considering different
contributions from each offset region for the detection task,
we add a modulation scalar ∆mk that is learned from ϕc to
dynamically aggregate information around the correspond-
ing position p. As shown in Fig. 2c, given the center sam-
pling value x(p) in the sensed features Fn

rgb(n ∈ {s, c})
and the basic offsets ϕc, each counterpart y(p) in aligned
features Fn,a

rgb can be obtained as follows:

y(p) =

K∑
k=1

ωk · x(p+ ϕc + pk +∆pk) ·∆mk, (8)

where K, pk, and wk denote the number of kernel weights,
the k-th fixed offset, and the k-th kernel weight, respec-
tively. For instance, pk ∈ {(−1, 1), (−1, 0), ..., (1, 1)} do-
nates a regular grid of a 3 × 3 kernel defined with K = 9.

∆pk denotes the implicit compensation to ϕc of the k-th lo-
cation. It is estimated with conv(x)[p + ϕc] where ϕc can
be regarded as a prior of ∆pk in the standard deformable
convolution. Besides, since the location p+ϕc + pk +∆pk
may be fractional, we adopt bilinear interpolation to obtain
the final sampling values.

Decoupled feature fusion. In traditional fusion process,
Fc

m and Fs
m are directly concatenated to obtain the fused

features Ff [6]. Unfortunately, the similarity constraint be-
tween Fc,a

rgb and Fc
ir leads to much redundancy. To eliminate

duplicate information and increase discriminative represen-
tations, Fc,a

rgb and Fc
ir should be combined and optimized

before fusion. Thus, the fused features Ff are defined as:

Ff = Cat(f1×1(Cat(Fc,a
rgb,F

c
ir)),F

s,a
rgb,F

s
ir). (9)

3.4. Model Training

Training loss. The overall method is based on a super-
vised detection framework. The purpose of our multimodal
alignment is not to form a strict alignment but to achieve op-
timal adjustment between multimodal features to improve
the performance of the subsequent detection task. Thus, the
alignment subtask is integrated into the main detection task
instead of adding extra alignment loss. The total loss func-
tion of our OAFA can be represented as follows:

Ltotal = Lcls + Lreg + Lobj + Ldec. (10)

Two-stage training strategy. A premise for effective
feature alignment is that Fc

m contains sufficient spatial in-
formation, thereby estimating more accurate basic offsets.
To this end, we adopt a two-stage learning strategy to train
our OAFA end-to-end. In stage I, to gain effective Fc

m, we
try to ensure that pre-decoupling features Fm contain more
comprehensive target representations. Technically, we only
train the feature extraction and fusion module with Lcls,
Lreg , and Lobj . Specifically, a pair of Irgb and Iir are fed
into a two-stream network to extract multiscale features Fm

and gain fusion features Ff with the concatenation oper-
ation. Then, the Ff is put into the detection network to
obtain the detection results. In stage II, we apply all the
proposed modules to our network. In this process, the uni-
modal feature extraction network Bm is initialized with the
weights from stage I. Then, the joint optimization of the uni-
modal feature extraction and multimodal feature alignment
network is carried out effectively with Ltotal.

4. Experiments
4.1. Experimental Settings

Datasets and metrics. We evaluate our method on
DroneVehicle dataset [29], which is a large-scale multi-
modal dataset for vehicle detection in UAVs images. It con-
tains 28,439 image pairs with 953,087 vehicles, covering
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Figure 3. Four Examples of detection results on the test set of DroneVehicle dataset under weakly misalignment conditions. The confidence
threshold is set to 0.25. The results of fusion methods are visual in IR images to correspond to the supervisory label. Red, green, and pink
rectangles represent car, freight-car, and truck targets, respectively. Objects correctly detected are represented in green dashed circles,
while incorrectly detected objects are represented in red dashed circles.

different viewing angles, heights, lighting conditions, and
scenarios. The dense-oriented annotations are made for five
categories: car, truck, bus, van, and freight-car. Though
the DroneVehicle performs pre-registration on each RGB-
IR image pair, the weakly misalignment problem still ex-
ists. As shown in Fig. 4, about 35% bounding boxes exhibit
deviation issues in DroneVehicle dataset, and the shift dis-
tance mostly ranges from 0 to 15 pixels.

This dataset is divided into 17,990 image pairs for train-
ing, 1,469 image pairs for validating, and the remaining
8,980 image pairs for testing. Following the standard evalu-
ation metrics, we report the mean average precision (mAP)
with intersection over union (IoU) threshold of 0.4 on the
validation set.

Training details. The experiments are carried out on
a single NVIDIA RTX A6000 GPU with 48 GB of mem-
ory. We implement our algorithm with Pytorch toolbox and
SGD optimizer with a momentum of 0.937 and a weight
decay of 0.0005. The initial learning rate is set to 0.01 and
eventually reduced to 0.002 by cosine annealing [22]. The
input size of our model is set to 640×640 in the preprocess-
ing stage and the batch size is 16. The training epoch is set
to 150 with 50 and 100 epochs in the first and second stages,
respectively. We use the ground truth of the IR images as
the training label, owning to the more comprehensive target

(a) Statistics of misalignment ratio (b) Statistics of shift value

Figure 4. The statistics of ground truth bounding-boxes misalign-
ment ratio and shift value within RGB-IR image pairs on Dron-
eVehicle dataset.
annotations available in the IR modality.

4.2. Results Comparisons

Compared methods. We compare our method with
the state-of-the-art unimodal and multimodal object de-
tection methods. Unimodal methods: We choose a se-
ries of oriented object detection methods for comparison,
including the one-stage methods: RetinaNet [19], S2A-
Net [11], and YOLOv5s [17]; and the two-stage methods:
Faster R-CNN [25], Oriented R-CNN [36], and RoITrans-
former [10]. RGB and IR images are separately used
as training data to evaluate the detection performance of
each algorithm. Multimodal fusion methods: We also
compare our method with eight recent fusion methods:
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Table 1. Detection results (mAP, in %) on DroneVehicle dataset. Note that all detectors locate and classify vehicles with OBB heads. The
speed refers to the speed of network inference without post-processing (batch size = 1). In speed, our method is only compared with the
fusion methods. Best results are highlighted in bold. And the second one is marked with underline.

Detectors Modality Car Truck Freight-car Bus Van mAP (%) ↑ Speed (fps) ↑
RetinaNet [19]

RGB

78.5 34.4 24.1 69.8 28.8 47.1 -
Faster R-CNN [25] 79.0 49.0 37.2 77.0 37.0 55.9 -

Oriented R-CNN [36] 80.1 53.8 41.6 85.4 43.3 60.8 -
S2A-Net [11] 80.0 54.2 42.2 84.9 43.8 61.0 -

RoITransformer [10] 61.6 55.1 42.3 85.5 44.8 61.6 -
YOLOv5s [17] 78.6 55.3 43.8 87.1 46.0 62.1 -
RetinaNet [19]

IR

88.8 35.4 39.5 76.5 32.1 54.5 -
Faster R-CNN [25] 89.4 53.5 48.3 87.0 42.6 64.2 -

Oriented R-CNN [36] 89.8 57.4 53.1 89.3 45.4 67.0 -
S2A-Net [11] 89.9 54.5 55.8 88.9 48.4 67.5 -

RoITransformer [10] 90.1 60.4 58.9 89.7 52.2 70.3 -
YOLOv5s [17] 90.0 59.5 60.8 89.5 53.8 70.7 -

UA-CMDet [29]

RGB+IR

87.5 60.7 46.8 87.1 38.0 64.0 9.1
Halfway Fusion [21] 90.1 62.3 58.5 89.1 49.8 70.0 20.4

CIAN [44] 90.1 63.8 60.7 89.1 50.3 70.8 21.7
AR-CNN [45] 90.1 64.8 62.1 89.4 51.5 71.6 18.2
MBNet [50] 90.1 64.4 62.4 88.8 53.6 71.9 21.7

TSFADet [41] 89.9 67.9 63.7 89.8 54.0 73.1 18.6
C2Former [40] 90.2 68.3 64.4 89.8 58.5 74.2 -
SLBAF-Net [7] 90.2 72.0 68.6 89.9 59.9 76.1 63.2

Ours 90.3 76.8 73.3 90.3 66.0 79.4 33.1

UA-CMDet [29], Halfway Fusion [21], CIAN [44], MB-
Net [50], AR-CNN [45], TSFADet [41], C2Former [40],
and SLBAF-Net [7]. Among them, UA-CMDet, MBNet,
TSFADet, and C2Former all consider the weakly misalign-
ment problem during the fusion process, which affirms the
universality and significance of this problem. For each com-
pared method, we use their original experimental settings to
ensure equity.

Quantitative comparison. The results are shown in
Tab. 1. In the unimodal methods, benefitting from a well-
designed multiscale feature extraction network, YOLOv5s
has comparable detection accuracy (62.1% in RGB im-
ages and 70.7% in IR images), even better than some fu-
sion methods. Correspondingly, the multimodal methods
SLBAF-Net, constructed upon the two-stream YOLOv5
framework, has also yielded excellent results. Compared
with all methods, we can find that our OAFA achieves the
best average performance on the validation set, which is
3.3% higher than the second place. It is worth noting that
our method has obvious advantages in distinguishing con-
fusing categories (truck and freight-car). The reason may
stem from the fact that OAFA excels in identifying the opti-
mal spatial correspondences of multimodal features, obtain-
ing reliable features of the target after fusion.

Qualitative comparison. Our baseline model is
SLBAF-Net, a two-stream framework based on YOLOv5s
where RGB and IR branches are fused with a concatena-
tion operation in multiscale features. Among the compared
methods mentioned above, we select the optimal unimodal

YOLOv5s and the baseline model as the qualitative com-
parative model. We provide visual detection results of the
compared methods in Fig. 3. It can be observed that, given
the constraint of the IR labels, the objects are successfully
detected by OAFA when the target positions are shifted,
while both unimodal and baseline model experience clas-
sification and localization errors or fail to detect, especially
for occluded and few-shot object detection. The underlying
causes can be speculated that the weak misalignment prob-
lem confuses the fusing model to learn discriminative fea-
tures. In contrast, our method has the capability to capture
aligned and reliable features, improving the performance in
classification and localization processes.

Speed comparison. We compare the speed of OAFA
with other fusion detection methods to prove the efficiency
of our method. For a fair comparison, all the detection
models are tested with batch size 1, and the input size is
set to 640×640. As shown in Tab. 1, our proposed OAFA
achieves a speed of 33.1 FPS, outperforming most existing
multimodal object detection methods. Although our method
requires more computational time compared to SLBAF-
Net, it would be worthwhile to invest this additional time
to achieve superior performance. Furthermore, it can be
seen that OAFA can accomplish real-time detection on the
NVIDIA RTX A6000 platform.

4.3. Ablation Study

In this section, we conduct several ablation studies to
validate the effectiveness of the different components in our
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proposed method. The results are shown in Tab. 2.
Effect of CSOM module. We first analyze the effect

of the CSOM module as it provides the fundamental off-
set estimation, which determines the stability of the model
training. We perform ablation experiments on both the de-
coupled multimodal learning (DML) module and the spatial
offset modeling (SOM) module separately. As presented
in the first to third rows of Tab. 2, the performance of the
baseline model is improved by 0.4% and 1.6% after incor-
porating the SOM and DML modules, respectively. It veri-
fies that both coarse-grained feature alignment and increas-
ing fusion flexibility through decouple learning are effective
for the detection task. Besides, when integrating these two
submodules, the performance improvement of model over
baseline is 2.1%, which indicates that the quality of the fea-
ture alignment can be enhanced by mitigating modal gap.

Effect of ODAF module. We then verify the necessity
of the ODAF module in addressing the weak misalignment
problem. The results demonstrate that despite ODAF has
poor stability in model training without dependable offset
guidance, incorporating ODAF into the baseline can pro-
vide +1.7% significant improvement. It is owing to adap-
tively adjust the optimal sampling position for acquiring re-
liable information in RGB images.

Effect of two-stage training. The two-stage training
strategy provides comprehensive unimodal representations
for multimodal alignment and fusion. We can observe
that the accuracy decreases to 77.3% if we directly train
the whole network without two-stage training. It is 0.9%
and 0.5% lower than exclusively incorporating CSOM and
ODAF, respectively. The reason could be that the inappro-
priate initialization in feature extraction network leads to
training instability and makes it hard to obtain abundant
representations in spatial and semantic. After undergoing
a two-stage training process, our method attains a perfor-
mance level of 79.4%, surpassing the capabilities of any in-
dividual module. It demonstrates that the two-stage training
strategy effectively enhances training accuracy and stability.
The superior method to fully exploit the strengths of CSOM
and ODAF will be further studied in future work.

All in all, not only each independent module but also the
entire proposed framework can contribute to the multimodal
object detection under weakly misalignment conditions.

4.4. Robustness to Position Shift

To quantitatively assess the robustness of our method
to the weakly misalignment issue, we conduct experiments
on DroneVehicle by manually simulating positional offsets.
The tested model is trained on the original training image
pairs and validated on the shifted image pairs. In our ex-
periments, we hold the IR images constant while introduc-
ing spatial offsets along the x-axis and y-axis for RGB im-
ages. The variations in pixel values are defined within the

Table 2. Ablation study on DroneVehicle dataset. The base-
line model is SLBAF-Net, a two-stream framework based on
YOLOv5s where RGB and IR branch are fused with a multiscale
concatenation operation. The D denotes DML, S denotes SOM, C
denotes CSOM, and O denotes ODAF.

Method
CSOM

ODAF
Two-stage
Training

mAP (%) ↑
DML SOM

Baseline 76.1
Baseline+S ✓ 76.5
Baseline+D ✓ 77.7
Baseline+C ✓ ✓ 78.2
Baseline+O ✓ 77.8

Baseline+C+O ✓ ✓ ✓ 77.3
OAFA ✓ ✓ ✓ ✓ 79.4

(a) SLBAF-Net (Baseline) (b) Our method

Figure 5. Surface plot visualization of the position shift experi-
ments. Horizontal coordinates indicate various shift steps along
the x-axis and y-axis. Vertical coordinate denotes the detection
performances in terms of mAP.

range {(∆x,∆y) | ∆x,∆y ∈ [15,−15];∆x,∆y ∈ Z}.
The quantitative outcomes of this experiment in baseline
and our model are discernible from Fig. 5. It can be seen
that in response to larger position shifts, our method consis-
tently exhibits minor fluctuations in performance, whereas
the baseline model experiences a noticeable performance
decline. This result demonstrates the robustness of OAFA
under weakly misalignment conditions.

5. Conclusion
In this paper, we propose a robust RGB-IR object de-

tection method OAFA for UAVs images under weakly mis-
alignment conditions. Different from previous methods,
OAFA can achieve adaptive multimodal feature alignment
without strict alignment. To mitigate the impact of the
modality gap on multimodal spatial matching, the modality-
invariant features are acquired in a common subspace to es-
timate accurate offsets. Taking the offsets as basic knowl-
edge, the adaptive alignment implicitly captures optimal fu-
sion positions and steadily carries out feature-level correc-
tions with a deformable alignment module. Experimental
results on DroneVehicle dataset demonstrate the superior
performances of OAFA compared with the state-of-the-art
methods. Moreover, our method shows robustness against
the weakly misalignment problem in position shift experi-
ments.
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