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Abstract

We investigate the impact of deep generative models on
potential social biases in upcoming computer vision mod-
els. As the internet witnesses an increasing influx of AI-
generated images, concerns arise regarding inherent biases
that may accompany them, potentially leading to the dis-
semination of harmful content. This paper explores whether
a detrimental feedback loop, resulting in bias amplifica-
tion, would occur if generated images were used as the
training data for future models. We conduct simulations
by progressively substituting original images in COCO and
CC3M datasets with images generated through Stable Dif-
fusion. The modified datasets are used to train OpenCLIP
and image captioning models, which we evaluate in terms
of quality and bias. Contrary to expectations, our findings
indicate that introducing generated images during training
does not uniformly amplify bias. Instead, instances of bias
mitigation across specific tasks are observed. We further ex-
plore the factors that may influence these phenomena, such
as artifacts in image generation (e.g., blurry faces) or pre-
existing biases in the original datasets.

1. Introduction

Emerging deep generative models, such as DALL-E 2 [39],
Imagen [42], or Stable Diffusion [40], have shown remark-
able capabilities in producing high-quality images. Trained
on extensive datasets gathered from the internet [6, 44, 45,
48], these models can generate visually compelling images
based on user-customized text inputs or prompts, sparking
a surge of enthusiasm for image generation across the on-
line community. However, concerns regarding social biases
have been systematically identified [22], including gender
bias [5, 8, 14, 29, 30, 46, 47, 49, 57, 59, 67], ethnicity
bias [5, 8, 29, 34, 49], and geographical bias [4, 5, 34, 51].
In particular, previous work [5, 8, 30, 59] has highlighted
the tendency of deep generative models to produce biased
images even when prompted with ostensibly neutral in-
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Figure 1. We investigate social biases in the training iterations
of future models by simulating scenarios where generated images
progressively replace real images in the training data.

puts, uncovering unfair associations between specific social
groups and certain attributes [29, 46, 57, 67]. A common
example is the generation of images depicting occupations,
such as doctors and nurses, which have been shown to be
strongly tied to gender and race.

Issues with bias tend to be attributed to the composi-
tion of the training data. Training images are frequently
scraped from the internet with minimal efforts to filter out
problematic samples and address representational dispari-
ties. Moreover, in the current context, generated images
are continuously shared online and mixed with real images,
which means that future computer vision models may in-
advertently incorporate large portions of synthetically gen-
erated images into their training processes. Coupled with
the increasing concerns about the presence of social bias in
deep generative models, this raises the following question:
What consequences might arise if images generated by bi-
ased models become increasingly involved in the training
process of future models?

To address this question, we conduct experiments focus-
ing on vision-and-language (VL) tasks within a scenario
where generated images are progressively integrated into
the training data. Specifically, we generate new images for
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COCO [27] and CC3M1 [48] datasets using Stable Diffu-
sion [40], and we gradually replace the original images in
the datasets with their generated counterparts. Our evalua-
tion covers four types of demographic bias – gender, ethnic-
ity, age, and skin tone – across two tasks: image-text pre-
training and image captioning. For image-text pre-training,
we evaluate the bias introduced by OpenCLIP [7] on two
downstream tasks, i.e. image retrieval [15, 68] and face at-
tribute recognition [58]. For image captioning, we evalu-
ate the performance of ClipCap [32] and Transformer [55]
using bias metrics such as leakage (LIC) [20] and gender
misprediction (Error) [18, 52].

Our experiments show that the behaviors of the evalu-
ated biases are inconsistent and vary as we gradually replace
original images with generated ones. In some cases, biases
increase, while in others, they decrease. To understand this
phenomenon further, we hypothesize two potential causes:
1) as existing datasets inherently contain biases [15, 68], if
the bias introduced by the generated images aligns with the
pre-existing biases in the dataset, it may not aggravate the
existing bias, and 2) artifacts in Stable Diffusion’s genera-
tions, particularly concerning the generation of human faces
(e.g., blurred or poorly defined attributes), may lead models
trained on such data to avoid learning demographic features.
Overall, the key contributions of this paper are:
1. We show that, under our experimental setup, generated

images from current deep generative models do not con-
sistently amplify bias. Our experiments reveal different
levels of bias for gender, ethnicity, age, and skin tone on
both the COCO and CC3M datasets when increasing the
number of generated images.

2. Through a set of follow-up experiments, we explore the
underlying reasons behind these results, offering valu-
able insights into the dynamics between image genera-
tion models and existing datasets.

3. We propose recommendations for handling biased gen-
erated images in the training process of future models,
contributing to the ongoing discourse on responsible and
unbiased AI development.
While bias is not consistently amplified in our experi-

ments, we find the presence of bias amplification in mul-
tiple instances concerning. Moreover, as our experiments
are conducted on moderate-scale datasets with about 3 mil-
lion images, representing about 130 times less data than
the original CLIP [38], the impact of generated images on
large-scale training remains uncertain. We believe that, as
a community, addressing bias and ensuring models are safe
for everyone should be a top priority. We hope our findings
contribute to increased awareness of fairness in computer
vision and inspire the creation of models with unbiased and
equitable representations.

1CC3M is also known as Google Conceptual Captions or GCC.

2. Related work

Bias in pre-trained vision-and-language models Pre-
trained VL models are not only used in downstream tasks
through fine-tuning [24, 28, 65] but also in guiding model
training [35, 40, 70] and serving as evaluation metrics
[19, 61, 70]. With the proliferation of VL models, there
is an increasing awareness about the inherent biases present
in them [9, 15, 50, 58, 69]. For example, Wolfe et al. [58]
evaluated the proximity of neutral text (e.g., “a photo of a
person”) and an attributive text (e.g., “a photo of a white
person”) in the CLIP embedding space [38]. The differ-
ences between demographic groups served as indicators of
biases in the models. Chuang et al. [9] and Garcia et al. [15]
explored performance gaps among demographic attributes
(e.g., man and woman for gender, and lighter and darker
for skin tone) in downstream tasks, such as classification
and image retrieval. Overall, previous work [9, 15, 41, 58]
has provided methodologies for detecting and evaluating
bias in pre-trained VL models, especially in relation to gen-
der and ethnicity. We leverage these approaches to antici-
pate potential bias in forthcoming datasets, particularly in
scenarios where generated images dominate a significant
portion of the online image sources, which is a plausible
but underexplored scenario.

Synthetic data and pre-trained models Synthetically
generated data is increasingly influencing the pre-training
and fine-tuning processes of VL models, whether intention-
ally or unintentionally. On the one hand, synthetic data
is used as an additional training resource when the orig-
inal dataset is insufficient [60, 63, 66] or unreliable [54].
On the other hand, the widespread dissemination of syn-
thetic images on the internet can inadvertently contaminate
datasets [22]. Taori et al. [53] explored the data feedback
loop and found that incorporating generated data into sub-
sequent model training rounds could exacerbate dataset bi-
ases. Furthermore, Hataya et al. [17] showed that models
trained on large portions of synthetic data dropped their per-
formance. Building upon these insights, we study the reper-
cussions of synthetic data on social bias in VL models.

3. Dataset contamination process

VL models are trained on pairs of images and text. The
process for collecting this type of data typically begins with
scraping the internet to gather a set of images X = {x},
where x is an image. For smaller or moderately sized
datasets [23, 27, 37], textual descriptions y for each image
x are manually generated by crowdsourcing or in-house an-
notators, resulting in the set Y = {y}. However, for large-
scale datasets [6, 44, 45, 48], where generating specific an-
notations is unfeasible, text accompanying the images in the
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original websites is used, often from the ALT2 text. Subse-
quently, some form of filtering is applied to remove inap-
propriate content. Formally, let pI(x) and pT (y) represent
the distributions of collected images and corresponding de-
scriptions. All x ∈ X and y ∈ Y can be seen as samples
from pI(x) and pT (y), respectively. The textual descrip-
tion y is derived from x ∼ pI(x) through a framing process
y = f(x), which determines what aspects of x to describe.

Biases in the dataset-creation process are introduced
from three main sources [12]. Firstly, biases are inherited
from the original population of images on the internet,3 in
which content from specific demographic groups and ge-
ographical regions is overrepresented. Secondly, additional
biases are introduced by the image descriptions provided by
annotators or website authors, reflecting their stereotypes.
Lastly, the filtering process itself can introduce additional
bias; for instance, in the CC3M dataset, entities appearing
less than 100 times were filtered out, potentially removing
content from minority groups.

We define dataset contamination with generated images
(hereafter referred to as dataset contamination) as a dataset
wherein part of its population is replaced with generated
images. That is, someone uploads to the internet images
x′ = g(y′) generated by a generative model g with a prompt
y′. In this process, we operate under two assumptions: (1)
a mental image x̄ that people aim to achieve with a gen-
erative model also conforms to the distribution pI(x), and
(2) the image description process from the mental image x̄
to a prompt y′ has the same framing and bias as f . Given
these assumptions, we infer that y′ adheres to the distribu-
tion pT (y) as y′ = f(x̄) and x̄ ∼ pI(x). Therefore, the
distribution pG(x) of generated images is given by:

pG(x) =
∑
y

pT →G(x|y)pT (y), (1)

where pT →G(x|y) corresponds to the generative process
g(y). This means that we can generate images from de-
scriptions y ∈ Y as described in [17]. Eventually, we create
a dataset D(α) by sampling images x with a prior α from:

D(α) = {x ∼ (1− α)pI(x) + αpG(x)}. (2)

This process of dataset contamination allows us to eval-
uate the impact of the generative model while keeping the
other sources of bias consistent with the original dataset.

4. Bias evaluation tasks
The range of tasks in the scope of VL is extensive and di-
verse. For a survey, please refer to [31, 64]. In this work, we

2ALT text refers to the text in the ALT attribute of HTML tags.
3If the scraping is random sampling, the population is identical to

pI(x), but typically this is not the case because of filtering.

examine the effects of dataset contamination on two funda-
mental tasks: image-text pre-training and image captioning.
Next, we outline bias evaluation in each of them.

4.1. Image-text pretraining

Image-text pertaining involves training a model to learn
semantic correspondences between visual appearance and
text, such as associating the word “rabbit” with and im-
age of a rabbit. Models like CLIP [38] and its variants
[7, 13, 25, 33, 62] are trained on large-scale image-text pairs
sourced from the internet. CLIP-like models are reported to
exhibit social biases, including gender [9, 15, 16, 41, 58],
ethnicity [9, 15, 58], age [15, 58], and skin tone [15], and
are susceptible to additional biases introduced by dataset
contamination. We use OpenCLIP [7], an open-source vari-
ant, and assess its performance on text-to-image retrieval,
self-similarity, and person preference.

Text-to-image retrieval Following Garcia et al. [15],
where CLIP was shown to perform differently for differ-
ent demographic attributes (e.g. images of men showed a
higher recall at k (R@k) than images of women), we eval-
uate text-to-image retrieval performance. Text-to-image re-
trieval consists on finding the corresponding image given an
input text. We compute R@k for different demographic at-
tributes on PHASE [15] and COCO [27] datasets for Open-
CLIP models trained on datasets D(α).

Self-similarity Proposed by Wolfe et al. [58], self-
similarity evaluates how images of an attribute group are
distributed in the embedding space. The core idea is that if
a CLIP-like model is trained on numerous images of a spe-
cific group with diverse descriptions in the contrastive train-
ing process, its encoders will attempt to distribute these im-
ages within a larger volume in the embedding space to dif-
ferentiate them. Otherwise, images of an underrepresented
group may occupy a smaller volume.

Formally, let Ea ⊂ E denote the subset of the entire test
set E , containing only samples of a certain attribute group
a. Self-similarity SS(Ea) for group a is given by:

SS(Ea) =
1

|Ea|2 − |Ea|
∑
x,x′

c(x, x′), (3)

where |Ea| gives the number of samples in Ea, c(x, x′) de-
notes the cosine similarity between x and x′ in the embed-
ding space,4 and the summation is computed over all com-
binations of two samples x and x′ in Ea. A higher self-
similarity means images in Ea are concentrated in the em-
bedding space.

4Letting eV denote the CLIP visual encoder, c(x, x′) is defined as
c(x, x′) = cos(eV(x), eV(x

′)) where cos gives the cosine similarity.
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Different treatments of attribute groups appear in the dif-
ference of SS(Ea)’s among a in attribute A.5 Self-similarity
is defined over the learned embedding space, and the sam-
ples in that space give different distributions for differ-
ent datasets; therefore, self-similarity cannot be compared
across models. As we are interested in how broad the dis-
tribution for a ∈ A are in comparison with others in A, we
normalize self-similarity scores as:

S̄S(Ea) =
SS(Ea)∑

a∈A SS(Ea)/|Ea|
− 1. (4)

Person preference Another possible reflection of bias in
the embedding space is whether a neutral description of an
image represents images of a specific attribute group, i.e.,
if a certain group is well-represented in a dataset, a neutral
description may cover the attribute group. Person prefer-
ence [58] evaluates this skew by comparing the similarities
among a neutral description (e.g., “a photo of a person”), a
description with a specific attribute group (e.g., “a photo of
a white person”), and images of the group. Formally, let tN
and ta denote the neutral description and one attributed by
a. The person preference score over Ea is given by:

PP(Ea) =
1

|Ea|
∑
x∈Ea

1[c(x, tN) > c(x, ta)] (5)

where 1 is the indicator function, and we abuse notation c
to represent the cosine similarity between an image and a
description, embedding them with appropriate encoders.

4.2. Image captioning

Image captioning is the task of generating descriptions for
an input image. Descriptions generated by image caption-
ing models [24, 32] have been found to reproduce bias, es-
pecially concerning gender and skin-tone [20, 52, 68]. We
assess image captioning models trained on data contamina-
tion in terms on caption quality, LIC, and gender mispredic-
tion.

Caption quality Several automatic metrics have been
proposed for evaluating captions quality, including BLEU
[36], ROUGE [26], METEOR [3], CIDEr [56], and SPICE
[1], which mainly involve a lexical comparison between the
generated caption and the correspondent ground-truth cap-
tion. Alternatively, CLIPScore [19] evaluates the fidelity of
a generated caption to the original image. In our experi-
ments, we adopt BLEU-4, CIDEr, SPICE, and CLIPScore.

LIC To evaluate social bias amplification in image cap-
tioning models, Hirota et al. [20] proposed LIC. This metric
evaluates whether the generated captions are more biased

5For instance, the binarized gender attribute in PHASE [15] is given by
A = {male,female}.

than the captions in the original trained dataset. For LIC,
a set of captions is assumed to be biased if a protected at-
tribute can be predicted without being explicitly mentioned.
Specifically, an attribute classifier ha(y), which gives the
likeliness of an attribute group a from a caption y, is trained
on a training set CT = {(y, a)}, where a is the ground-truth
attribute group. All attribute-specific words6 in the caption
y are masked so that the prediction is not trivial. Then, given
a validation set CV, again with all attribute-specific words
being masked, the model’s leakage score is computed as:

LICM =
1

|CE|
∑

(y,a)∈CE

ha(y)1[argmax
a′

ha′(y) = a] (6)

LICM gives a higher value if the attribute group is cor-
rectly predicted with a higher confidence value even for the
masked captions in CE, suggesting that the attribute group
can be easily predicted from captions.

The leakage score is also computed for the captions in
the original dataset, i.e., LICD for Y . The final amplification
metric LIC is defined as the difference between the dataset
and the model leakage as:

LIC = LICM − LICD. (7)

Gender misprediction Another bias evaluation metric
for image captioning is the Gender missprediction or Er-
ror [18, 52], which measures gender mispredictions in the
generated captions as:

Error =
N

M
, (8)

where M is the number of generated captions, and N is
the number of captions among the M generated captions
whose gender group is incorrectly predicted. Gender is
considered incorrectly predicted if it contains any words
in the attribute-specific word list for the gender opposite to
the ground truth gender. For example, for the ground-truth
group man, the gender in the generated caption is consid-
ered correct if there are no words from the woman-specific
word list, such as girl.

5. Results on OpenCLIP
We train OpenCLIP [7] using various versions of the
CC3M [48] dataset, each with different levels of dataset
contamination. For dataset contamination, we use Stable
Diffusion v1.5 [40] to generate images using the original
captions as prompts. Due to the nature of the CC3M dataset,
where images are provided as URL links and many of these
links have expired, we are only able to retrieve 2, 772, 289
valid images for our training data. Consequently, we gen-
erate images solely for the prompts corresponding to the

6We use the same list of attribute-specific words as [20].
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Figure 2. Image retrieval results on COCO 2014 test set and
Flickr30k test set for different α. The performance of OpenCLIP
remains consistent across different levels of dataset contamination.

available images. We randomly replace 20%, 40%, 60%,
80%, and 100% of original images with the images we gen-
erate, i.e. D(α) for α = 0.0 (the original CC3M dataset),
0.2, 0.4, 0.6, 0.8, and 1. Evaluation is conducted on five
datasets, two for performance evaluation and three for bias
evaluation. For performance evaluation, we use the COCO
2014 1K test set [27] and the Flickr30k test set [37]. For
bias evaluation, we use the CC3M validation set using
PHASE demographic annotations [15], the COCO valida-
tion set using gender and skin-tone annotations [68], and the
whole FairFace dataset [21]. We run all experiments three
times with different random seeds and report the average.

5.1. OpenCLIP performance

We first evaluate the performance of OpenCLIP trained
under our experimental settings on two standard datasets:
the COCO 2014 test set and the Flickr30K test set. We
report text-to-image retrieval performance as R@k with
k = 1, 5, 10. Results are shown in Figure 2, from which
we observe that:
• Image retrieval results remain relatively constant for all

levels of dataset contamination, from D(0.0) to D(1.0),
in both datasets and for R@1, R@5, and R@10.

• Our reported results on OpenCLIP are considerably lower
than those of the original CLIP. We attribute this differ-
ence to the disparity in the size of the training set. While
our training is conducted with less than 3 million image-
text pairs, the original CLIP model is trained on about 400
million samples.
In summary, the use of generated images for training

OpenCLIP on the CC3M dataset appears to have minimal
influence on the retrieval performance of its encoders. Next,
we proceed to evaluate the impact of dataset contamination
on the bias metrics.

5.2. Bias in OpenCLIP

As described in Section 4.1, text-to-image pertaining bias
is evaluated on three metrics: text-to-image retrieval, self-
similarity, and person preference. For text-to-image re-

trieval, we report results on the CC3M validation set
with age, gender, skin-tone and ethnicity annotations from
PHASE [15] (Figure 3) and the COCO validation set with
gender and skin-tone annotations from [68] (Figure 4). For
self-similarity and person preference, we report results on
the FairFace dataset (Figures 5 and 6). From these results,
we find the following trends with respect to bias:

• Consistent bias amplification: We observe instances of
consistent bias amplification, as illustrated in Figure 3c,
where the text-to-image performance gap between the dif-
ferent age groups widens with increasing levels of dataset
contamination.

• Consistent bias mitigation: In Figures 3a and 5a, we
observe instances of consistent bias mitigation, where the
gender gap is reduced for both text-to-image performance
and self-similarity metrics. The gap in self-similarity for
the age attribute is also consistently reduced, as shown
in Figure 5b, indicating a bias mitigation effect with the
increase of the dataset contamination parameter α.

• Unaffected bias: In some cases, bias remains unchanged.
This is observed in Figure 3b, where the gap in text-to-
image retrieval performance between lighter and darker-
skin tone images remains constant for the different values
of α from 0.0 to 1.0.

• Ambiguous bias trends: Across most instances, we do
not discern a clear bias trend. In Figures 3a, 3d, 4b,
5c, 6a and 6c, we find no consistent pattern of bias
changes, representing half of our experimental results.
Unlike unaffected bias, the bias in these six experiments
fluctuates, showing alternating increases and decreases.
For instance, in Figure 6a, both the woman and man
groups intermittently achieve the highest person prefer-
ence scores. This suggests that multiple factors contribute
to bias changes: some amplify bias, while others mitigate
it, making bias changes unstable.

It is worth noting that the person preference scores show
substantial variations in different experiments, surpassing
0.9 in gender and age (Figures 6a and 6b), while dropping
to 0.2 for ethnicity (Figure 6c), despite the unclear trend
of bias changes. This observation may be attributed to po-
tential challenges associated with the generation of facial
images with Stable Diffusion.

6. Results on image captioning

To analyze bias behavior in image captioning models
trained with dataset contamination, we consider two mod-
els: Transformer7 [55] and ClipCap [32]. Each model is
trained on the COCO 2014 train set [27] with different
levels of dataset contamination, ranging from D(0.0) to

7Transformer refers to a captioning model with a Transformer-based
encoder-decoder where the encoder is ViT-B16 [11], and the decoder is
BERT-base [10].
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Figure 3. R@5 on CC3M using PHASE annotations for different α. Bias is highlighted in gray as the difference between groups. We
observe different trends: bias mitigation in Fig. 3a, consistency in Fig. 3b, amplification in Fig. 3c, and no clear trend in Fig. 3d.

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15
Man Woman

(a) gender

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15
Darker Lighter

(b) skin tone

Figure 4. R@5 on COCO 2014 test set for different α. Bias is
highlighted in gray as the difference between groups. Both gender
and skin tone bias show ambiguous trends.

D(1.0). Evaluation is conducted in terms of caption quality
and bias on the original COCO validation set using gender
and skin-tone annotations from [68].

6.1. Image captioning performance

Image captioning results are presented in Table 1. Observ-
ing the image quality metrics (i.e., BLEU-4, CIDEr, SPICE,
and CLIPScore) we note the following:
• All lexical similarity-based metrics (i.e., BLUE-4, CIDEr,

and SPICE) either experience a gradual decrease or re-
main relatively stable from α = 0, the original dataset, to
0.8. However, there’s a significant drop between 0.8 and
1.0, suggesting that even a small amount of real images is
necessary to maintain captioning performance.

• In contrast, the semantic similarity-based metric (i.e.,
CLIPScore) remains unaffected by variations in dataset
contamination, particularly evident in the case of the
Transformer model. While ClipCap slightly improves in
CLIPScore, we hypothesize that it is because of the use
of CLIP in both image generation and image captioning
processes. That is, Stable Diffusion uses CLIP to obtain
the text embedding for a caption, so the generated image
is strongly tied to it. Therefore, the training set D(α) with
larger α gives image-caption pairs that are close to each
other in the CLIP embedding space. ClipCap trained with

such a dataset thus only needs to learn the inverse process
of the CLIP text encoder, i.e., from an embedding to a
caption, for these pairs, which can be easier than learning
to fill the gap between images to captions. Thus, Clip-
Cap may easily generate captions that match well with
the corresponding images in the CLIP embedding space,
consequently increasing CLIPScore.

6.2. Bias metrics in image captioning

With regard to the bias metrics, which include LIC for gen-
der (LIC-gender), LIC for skin-tone (LIC-skin), and gender
mispredictions (error), the results are also presented in Ta-
ble 1. We summarize our observations as follows:
• No trend for gender bias: LIC scores for gender show

no noticeable trend across different values of α. In terms
of gender mispredictions, similar to the LIC score, there
is no clear tendency across the contamination ratios. Un-
der our settings, we cannot draw any definitive conclusion
about gender bias.

• Skin-tone bias amplification: While LIC for skin-tone
on Transformer appears stable, on ClipCap it increases
from 1.1 at α = 0 to 3.1 at α = 1. This trend could
be attributed to Stable Diffusion accentuating the skin-
tone bias present in the original dataset. For example, it
has been found that, in the COCO dataset, indoor images
tend to feature white people while black people tend to
appear indoors [68]. Similar contextual biases have been
observed in Stable Diffusion generations [5, 34].

7. Analysis

Through our experiments, we observe the existence of dif-
ferent trends in the biases as we progressively replace real
images with generated ones. To comprehend the underly-
ing reasons behind this phenomenon, we explore potential
factors based on our observations. We primarily focus on
two possible explanations: (1) the inherent biases present
within the original training datasets, and (2) the limitations
of current deep generative models.
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Figure 5. Self-similarity score of each group in the FairFace dataset for different α. Bias is highlighted in gray.
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Figure 6. Person preference score of each group in the FairFace dataset for different α. Bias is highlighted in gray. None of the three
figures show a clear tendency. Besides, the changes in bias are relatively small compared with the person preference scores.

Table 1. Captioning performance and bias metrics for ClipCap and Transformer.

ClipCap Transformer

Bias (↓) Quality (↑) Bias (↓) Quality (↑)

α LIC-Gender LIC-Skin Error BLEU-4 CIDEr SPICE CLIPScore LIC-Gender LIC-Skin Error BLEU-4 CIDEr SPICE CLIPScore

0 3.6 1.1 5.0 31.9 105.0 20.4 76.4 3.6 2.2 11.0 28.3 92.0 18.2 72.8

0.2 3.8 1.9 4.7 31.8 105.1 20.4 76.8 7.6 1.6 12.1 28.4 92.1 18.0 73.1

0.4 5.1 1.6 4.8 31.5 104.5 20.4 77.0 6.1 0.6 14.6 27.3 88.7 17.7 72.6

0.6 3.9 1.6 4.5 31.4 104.1 20.3 77.2 5.3 2.0 10.7 26.5 88.0 17.4 73.1

0.8 4.1 2.0 4.6 30.7 102.4 20.0 77.4 3.9 1.9 11.1 26.8 87.7 17.3 72.8

1.0 3.5 3.1 4.1 23.8 84.6 17.7 78.3 2.2 2.2 13.2 21.0 70.3 14.9 72.9

Inherent biases in original datasets Even though Sta-
ble Diffusion is known to produce biased images [5, 8,
29, 30, 34, 51, 57, 67], the original datasets, CC3M and
COCO datasets, have also been found to be strongly un-
balanced [15, 68]. For example, the CC3M validation set
shows large gaps in perceived skin tone, with 3, 166 images
of lighter v.s. 318 images of darker skin-tone people, and
perceived ethnicity, with 2, 231 images of White people v.s.
16 images of Middle Eastern people [15]. Similarly, the
COCO validation set, has been annotated with 7, 466 im-
ages of man v.s. 3, 314 images of woman and 9, 873 im-

ages of lighter v.s. 1, 096 images of darker skin-tone people
[68]. If the disparities in representation within the origi-
nal datasets resemble the biases in the images generated
by Stable Diffusion, it is plausible that the biases remain
unchanged as real images are progressively replaced with
generated ones.

Failure of generation in Stable Diffusion Deep gener-
ative models like Stable Diffusion present several limita-
tions beyond bias concerns. One prominent issue is the ten-
dency for faces to become blurred when generating multi-
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Figure 7. Blurry faces in the generated images. When this hap-
pens, the attributes (e.g., gender and age) on the faces are hard to
distinguish and further used in the model’s training.

Real

Generated

senior man with a mustache
wearing a yellow and white

turban

boy sitting on the back of an
elephant with a girl floating

on a leaf

portrait of tribal dancer ,
beautiful woman in the ethnic

style on a textured background

Figure 8. Stereotyping in the generated images. The words in blue
may cause Stable Diffusion to generate stereotyped images.

ple people. Moreover, Stable Diffusion has been shown to
stereotype certain culturally-associated words [51]. When
examining the generated images in the training dataset, we
find similar issues, as shown in Figures 7 and 8. These is-
sues can impact bias: blurred faces may diminish gender or
age biases, while stereotyping could potentially exacerbate
ethnicity bias. This phenomenon could elucidate the gen-
der bias mitigation observed in Figures 3a and 5a. Overall,
due to the complexity of how bias originates and propagates
across tasks, there is no one-size-fits-all solution to explain
its causes and remedies.

8. Recommendations

From our experiments and analysis, we found that while
images generated by Stable Diffusion exhibit bias across
different demographic attributes, their use for training does
not consistently amplify bias. This finding aligns with re-
cent studies [2, 13, 43, 54] that use generated data from
deep generative models for training. These studies high-
light the diversity of effects that the generated data can have
on model performance, potentially leading to performance
improvements. Since the impact of generated data may de-
pend on the original dataset and target task, we propose the

following recommendations:

• Bias-filtering preprocessing: Considering the possibil-
ity that bias in the original dataset could be more pro-
nounced than in deep generative models, we advocate for
bias-filtering preprocessing during data collection from
the internet, regardless of whether generated images are
involved.

• Caution with generation issues: While generation is-
sues like blurry faces may aid in bias mitigation in some
tasks, they could potentially lead to bias amplification in
others. Moreover, it is important not to regard genera-
tion issues as features, as they may be resolved in future
iterations of generative models.

9. Limitations
• Due to the scale of current vision-and-language datasets

like LAION-400M [44] and LAION-5B [45], our com-
putational resources are insufficient for generating im-
ages and training models on such large datasets. Instead,
our experiments are conducted using COCO and CC3M
datasets, limiting the scope of insights to be drawn.

• The use of Stable Diffusion for image generation may
overlook potential findings that could arise from other
models with either more biased generations or better bias
filtering capabilities.

• Our bias evaluation is focused on gender, age, ethnicity,
and skin tone. The study does not explore all potential
types of bias and leaves out the exploration of intersec-
tional bias, leaving room for further investigation into ad-
ditional dimensions of bias and fairness.

10. Conclusion

We investigated the impact of synthetic images generated
by Stable Diffusion on bias in future models. We simu-
lated a scenario where the generated images are progres-
sively integrated into future datasets and evaluated bias in
two downstream tasks: image-text pertaining with Open-
CLIP and image captioning. Our findings revealed that the
inclusion of generated images resulted in diverse effects on
the downstream tasks, ranging from bias amplification to
bias mitigation. Further visualization and analysis provided
potential explanations underlying this phenomenon, includ-
ing the inherent bias in the original datasets and the genera-
tion issues associated with Stable Diffusion.
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