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Figure 1. An example of our warping-guided 3D-aware face editing method. Our method supports users to edit 3D faces in an intuitive
way that drags points from multiple perspectives. Moreover, our method can achieve disentangled editing for shape, expression, and view,
while maintaining 3D consistency. Please zoom-in for detailed observation.

Abstract
3D facial editing, a longstanding task in computer vision

with broad applications, is expected to fast and intuitively
manipulate any face from arbitrary viewpoints following the
user’s will. Existing works have limitations in terms of intu-
itiveness, generalization, and efficiency. To overcome these
challenges, we propose FaceEdit3D, which allows users to
directly manipulate 3D points to edit a 3D face, achiev-
ing natural and rapid face editing. After one or several
points are manipulated by users, we propose the tri-plane
warping to directly deform the view-independent 3D rep-
resentation. To address the problem of distortion caused
by tri-plane warping, we train a warp-aware encoder to
project the warped face onto a standardized latent space.
In this space, we further propose directional latent editing
to mitigate the identity bias caused by the encoder and re-
alize the disentangled editing of various attributes. Exten-
sive experiments show that our method achieves superior
results with rich facial details and nice identity preserva-
tion. Our approach also supports general applications like
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multi-attribute continuous editing and cat/car editing. The
project website is https://cyh-sj.github.io/FaceEdit3D/.

1. Introduction

High-quality face editing has long been an important re-
search topic in computer vision with a wide range of appli-
cations, including social media and film production. Pre-
vious methods [16, 36, 43] based on 2D GANs [22, 23]
have demonstrated the capability of editing facial images
with high-fidelity. Recently, benefiting from the impressive
achievements of 3D-aware generative models, especially in
generative digital human [2–4, 11, 15, 32, 33, 41, 45, 51,
53, 55, 56, 64], the field of 3D facial editing has further at-
tracted significant interest due to its promising capacity of
manipulating a 3D representation.

Typically, 3D face editing methods can be generally
classified into three categories: prior-guided conditioning,
parameter-space fine-tuning, and latent-space optimization,
as summarized in Tab. 1. Specifically, prior-guided con-
ditioning methods [18, 46–48] employ an additional well-
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Scheme Methods Intuitiveness Generalization Efficiency
Conditional

control [18, 46, 48] ✓ ✗ ✓

Fine-tuned
models [6, 13, 59] ✓ ✓ ✗

Supervised
directions [1, 36, 43] ✓ ✗ ✗

Unsupervised
directions

[16, 42, 67] ✗ ✓ ✗
[34] (2D) △ ✓ ✗

Ours ✓ ✓ ✓

Table 1. Summary of 3D-aware face editing methods. △ indicates
its instructions are somewhat ambiguous semantically.

designed conditioning module to introduce the control in-
formation, e.g., semantic maps [18, 46] and 3DMM [48,
49], into the 3D-aware models. Although flexible, these
models typically require a large number of face images
with their control labels for training. Parameter-space fine-
tuning methods [6, 13, 59] optimize the pre-trained genera-
tors given the target input, achieving zero-shot editing with
the help of the large language-image model, e.g., CLIP [38]
or Stable Diffusion [39]. However, it is required to main-
tain a particular generator for each specific editing target,
severely constraining their generalization.

Due to the rich distributions learned in the pre-trained
generator, discovering the meaningful directions in the la-
tent space allows for a wide range of editing without the
need to modify the generator and dependence on a large
amount of training data. According to the exploration of
editing direction, latent-space optimization can be achieved
in supervised and unsupervised ways. Supervised meth-
ods [1, 36, 43, 44] search the meaningful directions in the
latent space by learning labeled data for each specific edit-
ing. However, these methods cannot be generalized be-
yond the training domain. In contrast, unsupervised meth-
ods [16, 42, 50, 65–67] discover out-of-domain directions
by analyzing the distribution of the latent space. However,
the editing directions in the latent space are typically not
semantically intuitive for the users. Accordingly, introduc-
ing interactive guidance to bridge the gap between the latent
space and the user’s intuition becomes the main purpose of
the unsupervised methods.

To achieve this, several works [12, 34] utilize manipu-
lating points on 2D images to optimize latent code in an
unsupervised way, achieving image editing intuitively. The
most prominent method DragGAN [34] proposes motion
supervision and point tracking to optimize the latent code
in a self-supervised manner, showcasing its flexible and in-
tuitive editing capabilities. Considering their success on 2D
images, it would be highly desirable if we could also ma-
nipulate 3D points to edit a 3D facial representation. How-
ever, it is non-trivial to directly extend point dragging to
3D-aware facial editing, due to the following challenges.
1) These methods ignore the global 3D facial structure and
only focus on the movements of specific points, potentially

leading to exaggerated distortions. 2) These methods em-
ploy an inefficient approach to optimize the latent codes for
image editing. Therefore, extending this procedure to 3D-
aware generators fails to meet the demands of 3D interactive
applications. 3) The controllability of point dragging is less
precise and may cause ambiguous targets, e.g., enlarging
the shape of the mouth may lead the mouth to open.

To overcome these challenges, we propose FaceEdit3D
to learn editing directions guided by 3D-consistent face-
warping, realizing intuitive and rapid 3D-aware facial edit-
ing. (1) First, we propose tri-plane warping on the 3D rep-
resentation to achieve accurate 3D-consistent facial editing,
which allows us to sidestep inaccurate motion supervision.
Further, we introduce 3D landmarks rather than arbitrary
points as face prior to constrain the change in the normal
face distribution. Although tri-plane warping allows for
precise editing, it introduces slight facial distortions. (2)
Hence, we train a warp-aware encoder instead of latent op-
timization to straightforwardly project the warped render-
ings into the standardized space, enabling fast and photo-
realistic editing. Due to the complex semantic information
in the latent space of 3D-aware generators, the obtained en-
coder suffers from inherent bias, resulting in a loss of details
and identity shifting. (3) Therefore, we propose to learn the
hierarchical directional editing in latent space, enabling dis-
entangled face editing with identity and details preservation.

With all the designs above, we successfully introduce
dragging-based edits into 3D face representations. Our
work achieves an efficient and straightforward editing pro-
cess which also enables the decoupling of facial expressions
and shapes. Compared to other face editing approaches,
our method offers a more intuitive bridge but avoids depen-
dence on the 3D annotations. Extensive experiments have
demonstrated the superiority of our method in intuitiveness,
generalization, and efficiency for the task of facial editing.

The main contributions are summarized as follows:
• We design an efficient and straightforward 3D-aware face

editing pipeline that is in line with the user’s intuition.
• We propose to warp the face in the tri-plane feature level,

enabling 3D-consistent face manipulation.
• We propose a warp-aware encoder to better identify the

subtle changes and efficiently solve the problem of dis-
torted face caused by the tri-plane warp.

• We propose directional editing in latent space, achieving
disentangled facial editing with the preservation of iden-
tity and details.

2. Related Works

2.1. 3D-aware GANs

Inspired by the superiority of implicit representation [31],
several attempts [2–4, 11, 15, 32, 33, 41, 45, 53, 55, 64]
deploy radiance fields into generative models and thus en-
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able 3D consistent image synthesis. The capability of learn-
ing 3D representations from unposed single-view 2D im-
ages only empowers these 3D-aware GAN models to gain
wide interests and applications. However, partial 3D-aware
GANs [3, 15, 32, 33, 41, 64] adopt full implicit represen-
tation that lacks pre-computed 3D features before the point
sampling. As a consequence, they need to regenerate the
3D feature when given novel viewpoints, limiting the effi-
ciency of them in interactive applications. To address this
challenge, several works [2, 4, 45, 53] adopt hybrid rep-
resentations that first generate view-independent features,
and enable sampling points on these pre-computed fea-
tures for novel view synthesis. Consequently, these meth-
ods can realize rapid generation and maintain the inherent
3D-consistent representation. Specifically, EG3D [4] intro-
duces the light tri-plane representation into the generator to
raise efficiency and further enhance the image quality. Con-
sidering its efficient representation and mature downstream
techniques, we adopt the EG3D [4] as the base 3D-aware
model to demonstrate the effectiveness of our methods.

2.2. Implicit Representations Deformation

The deformation of 3D implicit representation has long at-
tracted wide focus, as it serves as the foundation of broad
animation applications. Prior researches predominantly in-
troduce an additional deformation field based on the origi-
nal representation to modify the 3D points. Specifically, de-
formation fields can be implemented through proxy-based
editing [14, 21, 35, 57], cage-based editing [17, 37, 54],
and parametric prior-based editing [40, 52, 63], etc. Proxy-
based editing learns a lightweight neural network to com-
pute the translation and rotation of 3D points, enabling the
deformation of original 3D coordinates. The cage-based
methods establish a surrounding cage to fully cover up the
original surface of an implicit representation and then mod-
ify the cage to deform the inherent surface. Parametric
prior-based methods leverage the parametric models such
as SMPL [29] and FLAME [27] as a prior condition of the
deformation network to drive the implicit representations.
However, all of these approaches need to optimize a con-
trollable module for each specific object, lack of efficiency
and generality. In contrast, our work provides a landmark-
based way to directly edit the 3D representation without op-
timization and further compresses the 3D deformation into
2D feature planes to improve efficiency.

2.3. Face Editing in GANs

As the latent space learned by the conditioned GANs con-
tains most of the distribution knowledge, many works [1,
42, 43, 50, 69] explore the latent space of a pre-trained gen-
erator for the following facial attribute editing. Specifically,
InterFaceGAN [43] studies the semantics encoded in the la-
tent space and disentangles the facial semantics with linear

projection. To explicitly edit the facial attributes, further
works explore utilizing the intuitive representation, e.g., se-
mantic maps [5, 46, 47, 68] and text prompts [19, 36] for the
optimization or the extension of latent space. Moreover, an
idea that directly drags the face for the editing catches the
wide attention. DragGAN [34] optimizes the latent space
via dragging selected points on the image to the target po-
sitions. However, it is hard to preserve the facial identity
when setting a far distance between the two points, pre-
venting the DragGAN from large-scale editing. Despite the
prominent performance of latent space manipulation, it still
faces a challenge in balancing the identity preservation and
editing amplitude. To further enhance the editing capabil-
ity, several works [6, 13, 24] focus on the parameter space
of a pre-trained generator. While these methods can achieve
out-of-domain editing, they need to maintain a specific gen-
erator for each attribute manipulation, lacking efficiency.
Compared to the methods mentioned above, our method is
an intuitive way of dragging points to deform the 3D rep-
resentations while improving the efficiency and preserving
the identity.

3. Methods
Our proposed framework, FaceEdit3D, aims at multi-view
consistent facial editing in shape, expression, and pose
via warping-guided directional editing, as illustrated in
Fig. 2. To this end, we first review the 3D-aware GAN
that achieves high-resolution face rendering from multiple
views (Sec. 3.1). Based on the 3D-aware generator, we pro-
pose a point-guided feature-space warping method that ma-
nipulates the inherent tri-plane representations while ensur-
ing the 3D consistency (Sec. 3.2). However, directly edit-
ing the tri-plane may lead to distortions in the final rendered
images. Therefore, we train a specifically designed encoder
to project the warped renderings to the standardized latent
space for photo-realistic editing results (Sec. 3.3). Finally,
we delve into the mechanism of latent space and propose
directional editing in latent space that enables the disentan-
gled editing of facial shape, expression, and pose (Sec. 3.4).

3.1. Preliminaries on 3D-aware Face Generator

Our framework is built upon EG3D [4], one of the most
powerful 3D-aware generative models that achieve photo-
realistic 3D face generation. The generator of EG3D in-
troduces a tri-plane representation, which compactly en-
codes the geometry and appearance of a 3D face. Specif-
ically, the tri-plane features can be denoted as F = G(w) ∈
R3×32×256×256, where w is a latent code. To render face
images from a specific viewpoint, the features of 3D coor-
dinates are sampled from the tri-plane features and a shal-
low decoder is leveraged to project the tri-plane feature
F (x, y, z) ∈ R32×3 into volume density σ ∈ R1 and
color feature c ∈ R32. Subsequently, a low-resolution fea-
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Figure 2. Overview of our proposed FaceEdit3D. (a) A detailed illustration of our tri-plane warp. We project 2D key points onto the 3D
face surface and then map them to each corresponding plane within a tri-plane representation. Afterward, we apply warping operations
to each plane to achieve 3D-consistent editing. (b) The full pipeline of our FaceEdit3D. Given a source image Is with its latent code ws,
we first perform the tri-plane warping on it and obtain the warped rendering Ît. Subsequently, we utilize a warp-aware encoder to extract
the latent codes w′

s and w′
t from the source image Is and the warped renderings Ît, respectively. Then, we employ the hierarchical latent

direction to update the target latent code wt. Finally, the edited facial image It can be synthesized via the updated latent code wt.

ture map is generated via volume rendering and then up-
sampled to high-resolution images. The representation abil-
ity of tri-plane features has been verified by several recent
works [7, 20, 24]. Therefore, to achieve 3D-consistent edit-
ing, we choose to operate directly on the tri-plane features.

3.2. Multi-view Consistent Face Warping

For 3D face editing, it is a flexible way for users to directly
drag points on the rendered images. Different from 2D-
level editing that limits to one specific viewpoint, 3D-level
manipulation should support editing from an arbitrary view-
point and achieve 3D-consistent editing effects. To achieve
this, we propose a framework based on point-guided tri-
plane warping, where users manipulate one or several points
from a desirable viewpoint, and the tri-plane features are
warped according to the point displacements.

Point Manipulation by Users. Ideally, users can di-
rectly modify arbitrary points in a rendered face to achieve
editing. Nevertheless, the potential conflicts among exces-
sive control points may lead to undesirable distortions of the
facial structure during the joint point manipulation, conse-
quently yielding results that deviate from realistic human
appearances. To address this issue, we constrain the users
to manipulate a set of meaningful 3D facial landmarks to
guarantee a natural face structure.

Specifically, given a latent code ws and a pre-trained
EG3D generator G, the portrait is first rendered in the
front view with camera intrinsic K. Then, 2D facial
landmarks are detected by a pre-trained detector and pro-
jected on the facial surface to obtain 3D landmarks P =
{p0,p1, · · · ,pn} ∈ Rn×3, and pi = {px

i ,p
y
i ,p

z
i } ∈ R3.

Consequently, users can render images from an arbitrary
viewpoint with extrinsic R ∈ SO(3) and select any spe-

cific points for editing. Take the selected point pi as an
example, we set the movement of the point ∆pi is perpen-
dicular to the rendering direction. The updated 3D point p′

i

is represented as:

p′
i = pi +R−1K−1Z∆pi, (1)

where Z is the depth of the selected point in the pose
R. After manipulating specific points within the facial
structure, we obtain a set of new 3D landmarks P′ =
{p′

0,p
′
1, · · · ,p′

n}.
Tri-plane Warping. After the users have manipulated

the key points, we apply 3D warping on the tri-planes to edit
the 3D representation. Individually considering each of the
tri-plane features [7], we can extend the editing in 3D space
onto three 2D planes to enhance efficiency. Therefore, we
begin by projecting the 3D landmarks onto the three feature
planes, and then individually apply a similar warping trans-
formation on each of these feature planes, as illustrated in
Fig. 2 (a). Take the xy-plane Fxy as an example, given
n source projected points Pxy = {pxy

0 ,pxy
1 , · · · ,pxy

n } ∈
Rn×2, pxy

i = {px
i ,p

y
i } and their target points P̂xy =

{p̂xy
0 , p̂xy

1 , · · · , p̂xy
n }, we employ thin-plate spline interpo-

lation [9] to compute the grid sampler with:

g(q) =

n∑
i=1

wiϕ (∥q− p̂i∥) + vTq+ b, (2)

where ϕ(r) = r2 log(r) is the kernel function and g(q) pro-
vides the inverse mapping of the location p to the original
plane coordinates q. The parameters v,b are the parame-
ters to minimize a certain definition of curvature. Similarly,
by applying such inverse mapping to all three planes, we
complete the tri-plane warping and achieve the inherently
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3D-consistent modification. Compared to the manipulation
of the sampled 3D coordinate space [60, 62], our method
directly manipulates the 3D representation, empowering to
simultaneously edit from multiple viewpoints without addi-
tional steps.

3.3. Warp-Aware Encoding

After tri-plane warping, the editing results exhibit 3D con-
sistent modification. However, directly applying warping
operation on tri-plane features may not conform to the fa-
cial distribution in the latent space, leading to a severely
distorted appearance. To solve this problem, our solution
is to encode the distorted facial image Ît into a standard-
ized latent space that learns the natural counterpart w′

t of
the distorted face with an encoder E :

w′
t = E(Ît). (3)

To train the encoder, we sample images from the pre-
trained generator to generate image and latent code pairs.
Specifically, the portrait Is is generated from the randomly
sampled latent code and the camera poses c. Subsequently,
the portrait Is is projected to latent code w′

s by the encoder
E , and then the corresponding image I′s is generated by the
same frozen generator G and pose c. The optimization ob-
jective of the encoder is the combination of L1 Loss, LPIPS
loss [61], and identity loss [10]:

Lo = L1(Is, I
′
s) + LLPIPS(Is, I

′
s) + LID(Is, I

′
s). (4)

Unfortunately, we find that the encoder trained with
the aforementioned method poses difficulties in identify-
ing subtle modifications due to the inherent complexity of
3D-aware generators. Hence, we further introduce the tri-
plane warping as the data augmentation to enhance the over-
all perception of subtle edits. Similar to the above training
pipeline, we apply the encoder onto the warped rendering
Ît to obtain the latent code w′

t, thus generating its inverted
image I′t. The loss is calculated between I′t and Ît:

Lw = L1(Ît, I
′
t) + LLPIPS(Ît, I

′
t) + LID(Ît, I

′
t). (5)

Besides, following GOAE [58], we utilize a discrimina-
tor D to ensure the latent codes w′

t and w′
s in the standard-

ized latent space:

Ld = E[f(D(w′
t)) + f(D(w′

s))]

+ E[f (−D (wc))] + γ||∇D (wc) ||2,
(6)

where f(x) = −log(1 + exp(−x)), and γ is a hyper-
parameter in R1 regularization. wc are pre-sampled stan-
dardized latent codes by the frozen generator. The final ob-
jective linearly combines the aforementioned losses:

L = Lo + Lw + Ld. (7)

After the training process, the edited rendering is pro-
jected into latent space and then passed to the generator to
yield a more reasonable editing result in the target view ct:

It = G(w′
t, ct). (8)

3.4. Directional Editing in Latent Space

Warp-aware encoder solves the problem of severely dis-
torted appearance caused by the tri-plane warp, however,
it additionally introduces identity bias into the latent codes
as the encoder cannot faithfully inverse faces. Besides,
it is still hard to handle the ambiguity during the point-
manipulation. Therefore, we here propose directional edit-
ing learning to further overcome these two challenges.

To begin with, we adopt the difference between the la-
tent codes that are extracted from the images before and
after warping by the encoder as the direction guidance. In
this way, we mitigate the identity bias and bypass the prob-
lem caused by the encoder. Furthermore, we follow Style-
CLIP [36] to explore the semantics of layers in the W+
latent space of EG3D [4], empowering our method with the
disentangled editing of the expression and shape. Accord-
ing to the hierarchical mechanism, we can obtain free edit-
ing results by applying editing directions in the variant lay-
ers to the same warping facial image, successfully avoiding
the ambiguity caused by the tri-plane warp.

The full pipeline is shown in Fig. 2 (b). Given a latent
code ws and the frozen EG3D generator G, the facial tri-
plane can be generated. Specifically, the warp-aware en-
coder projects these two images to standardized latent codes
w′

s and w′
t with Eq. (3), respectively. The target edited la-

tent code wt can be calculated with:

wt = ws +H(w′
t −w′

s), (9)

where H(·) is a feature selection module for disentangling
latent direction. Finally, the modified portrait It can be ren-
dered from any perspective ct with It = G(wt, ct).

4. Experiments
In this section, we evaluate the efficiency and the qual-
ity of our 3D-aware face editing model. We first intro-
duce the implementation details of our work (Sec. 4.1).
Subsequently, we compare our method with the SOTA 3D
face editing methods qualitatively (Sec. 4.2) and quantita-
tively (Sec. 4.3). Then, we conduct ablation studies to ana-
lyze the effect of each component (Sec. 4.4). Finally, we in-
troduce the potential applications of our method (Sec. 4.5).

4.1. Implementation Details

We build our approach on the EG3D [4] pre-trained on the
FFHQ dataset [22]. We employ the Mediapipe [30] to de-
tect 2D landmarks and select 29 points for user manipula-
tion. To obtain 3D landmarks, we first detect 2D landmarks
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Figure 3. Qualitative comparisons with current SOTA methods for 3D face shape and expression editing. (a), (b), and (c) are the results of
synthetic samples, and (d) showcases the results of a real-world portrait.

in the frontal view, and then compute the 3D coordinates
by the locations of maximum density value on their corre-
sponding emitted rays. We adopt Swin-transformer [28] as
the encoder structure to enhance the detail perception. In
the encoder training, the standardized latent codes are sam-
pled to generate the face images under random views, con-
sisting of totally 100000 identities. We adopt the Adam op-
timizer [25] and set the learning rates as 1e− 4 for both the
encoder and the discriminator. All the implementations are
based on the PyTorch and set up on Nvidia A6000 GPUs.

4.2. Qualitative Evaluation

We conduct a qualitative comparison between our work
and several SOTA 3D face editing methods with intuitive
manipulation, i.e., StyleGAN-NADA [13] guided by the
text prompts and IDE-3D [46] controlled by the semantic
maps. Besides, we also introduce the point-based warping
approach into the qualitative comparison. We adopt simi-
lar editing objectives and use their official codes to ensure
fairness. Fig. 3 shows the multi-view results of the shape
and expression editing, demonstrating the superiority of our
method on fine-grained modification. The warp can accom-
plish obvious editing, but it suffers from facial distortion.
IDE-3D [46] achieve satisfied results in most cases. How-
ever, the coupling of different facial attributes in the seman-
tic maps leads to changes beyond the target attributes. For

instance, the baby in Fig. 3 (c) shows the shift of age and
identity when trying to elongate his chin. Besides, IDE-3D
only supports single-view editing, limiting its availability.
StyleGAN-NADA [13] fails to edit the facial shape based
on the EG3D despite its great success in style transfer and
texture editing. In contrast, our method supports the user
to simultaneously manipulate the face from multiple views
and enables intuitive editing for facial shapes, expressions,
and poses without the sacrifice of identity and detail. In
addition to the editing quality, our method has another ad-
vantage that it does not require additional training for gen-
erative models, demonstrating its generalization.

Furthermore, we also compare our method with a re-
cent 2D method, DragGAN [34], which employs a similar
point-guided operation to ours. Since DragGAN is limited
to 2D editing, we compare the results in two aspects, i.e.,
fixed view editing and novel view synthesis, as shown in
Fig. 4. In the aspect of fixed-view editing, the results of
DragGAN [34] in Fig. 4 (a) show a tendency to open the
mouth and change the identity when shortening the nose, al-
though a mask limiting the editable region is applied. In the
aspect of novel view synthesis, DragGAN severely changes
the identity due to ambiguous point dragging in Fig. 4 (b).
Compared to DragGAN, our method succeeds in achieving
the expected editing target while maintaining the identity
and irrelevant parts unchanged.
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Methods Scheme Inference Time (s)↓ MSEi↑ MSEo↓ MSEi / MSEo↑ ID Consistency↑
DragGAN [34] 2D 5.231 1.992 0.224 8.893 0.579
Ours 2D 0.356 2.049 0.186 11.016 0.716
Our warp 3D 0.269 2.455 0.328 7.485 0.707
IDE-3D [46] 3D 0.383 1.841 0.987 1.865 0.649
Ours 3D 0.624 1.679 0.342 4.909 0.712

Table 2. Quantitative comparison with several face editing methods on efficiency and effectiveness. The best results are labeled in bold
except for our direct warp due to its distortion results. The unit of MSEi and MSEo are 10−2.

Figure 4. Qualitative comparisons with DragGAN [34] on portrait
editing. Red and blue points represent the source and target points
in the manipulations, respectively. The semi-transparent region
indicates the mask used for DragGAN, while not in our method.

4.3. Quantitative Evaluation

We also conduct quantitative experiments to verify the effi-
ciency and effectiveness of our method, as shown in Tab. 2.
We adopt editing time as the metric to evaluate the effi-
ciency because it severely influences the user experiences.
As shown, DragGAN [34] spends a large amount of time
on latent optimization, resulting in lower efficiency. IDE-
3D [46] and our method exhibit similar efficiency in sup-
porting real-time editing. Despite the fastest method, the
method of direct warp causes facial distortion, and thus we
exclude it from the comparison.

Furthermore, to assess the capability of disentangled
editing, we measure the pixel-wise mean square error
(MSE) inside and outside the target editing regions as the
metric. The main objective is to successfully edit the target
regions while preventing the outside regions from modifica-
tion. As shown, our approach achieves better editing disen-
tanglement than IDE3D [46] with minimized ratio of MSEi

and MSEo. It is worth noting that the editability of 3D
GANs is inferior to that of 2D GANs, and thus our method
falls behind the DragGAN [34]. Considering the efficiency
and the ability to multi-view editing of our method, the gap
between ours and the DragGAN is acceptable. To fairly
compare these two methods without the interfere of base
generators, we further extend our method to the same 2D
generator and it performs better than DragGAN [34] in this
setting. Additionally, we also compare the identity similar-
ity. The results indicate that our method can better maintain

Figure 5. The ablation study of our loss functions for training the
encoder. The first row aims to widen the double eyelids while
keeping the eyes open, and the second is to lengthen the bangs.
The numbers in the corners represent the identity similarity mea-
sured by ArcFace [10]. Please zoom-in for detailed observation.

the identity character than other methods.

4.4. Ablation Study

Effectiveness of Loss Functions. We investigate the ef-
fectiveness of each loss function in the encoder training
process, as depicted in Fig. 5. The Lw introduced by
the warp-assisted data augmentation facilitates the accurate
identification for user’s manipulations, and the Ld helps to
maintain identity information. The combination of them
achieves the best editing results.
Effectiveness of Directional Latent Editing. We conduct
an ablation study to verify the effectiveness of our direc-
tional latent editing. We begin with applying tri-plane warp-
ing on source identities to obtain the warped results. Subse-
quently, we extract the directions of different layer groups,
i.e., shape direction, expression direction, and the combined
directions, respectively. Fig. 6 shows that the individual
directional latent code has the capacity to disentangle the
attributes, while the combination of them can realize inte-
grated editing. However, directly mapping warped render-
ing to latent space without our directional latent module re-
sults in identity shifting and detail deficiency. These results
can verify the effectiveness of our directional latent editing.

4.5. Applications

Generalization of Learned Latent Directions. The edit-
ing direction learned for one face can generalized to other
instances, and we can further control the degree along the
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Figure 6. The ablation study of our directional editing. “w/o Dir.”
represents results generated by directly projecting the warped re-
sults to latent space.

Figure 7. The interpolated editing results along the directions
learned in the case of Fig. 3 (a) and (d), i.e., “wider face” and
“close mouth” respectively. It shows that the learned editing di-
rection in one face can be generalized to other instances.

direction to linearly interpolate the editing results. Fig. 7
shows the interpolation results guided by the directions
learned in the cases of Fig. 3, i.e., wider face and closed
mouth. With the degree rising from -2.0 to 2.0, both of
the two identities show a gradual trend to change along
their directions, although the directions are initially learned
for other cases, demonstrating the generalization of these
learned latent directions.

Continuous Editing. Continuous editing is important to
real-world applications. Therefore, we conduct an exper-
iment to show our capability of overlying modification.
Fig. 8 shows the results with multiple editing targets, i.e.,
smaller eyes, closed mouth, smaller nose, and wider face.
The natural and ID-consistent results demonstrate the ef-
fectiveness of our method of continuous editing.

Generalization to Other Generators. To show the gen-
eralized application of our method, we extend it to 3D cat
editing and 2D car editing. We introduce our method to
the pre-trained EG3D [4] on AFHQ Cats [8] dataset and
StyleGAN [23] trained on Stanford Cars [26] dataset, re-
spectively. As shown in Fig. 9, our approach can also suc-
cessfully manipulate the 3D cats and 2D cars according to
the user’s point-based instructions.

Figure 8. We showcase the mixing results with multiple attributes,
demonstrating the continuous editing ability of our method.

Figure 9. The extension of our method to cat and car editing.

5. Conclusion
In this paper, we propose FaceEdit3D, an intuitive method
to edit the 3D facial shape and expression from any per-
spective. Our approach involves a tri-plane warping to en-
sure the inherent 3D-consistent editing. To mitigate facial
distortions led by the warping, we train a warp-aware en-
coder to project the warped face into standardized distribu-
tion and further explore the hierarchical mechanism in la-
tent space to achieve disentangled editing. Extensive exper-
iments demonstrate the effectiveness and efficiency of our
method. The additional applications also show the general-
ization and potential of our method across different applica-
tions. To sum up, our method provides a brand new way to
manipulate the 3D representation, opening up new avenues
for rapid and convenient real-image editing.
Limitations. Since our method is based on warping the
3D representation, it is hard for our work to achieve texture
editing and some semantic editing, such as wearing glasses.
Broader Impacts. Despite not our intention, our 3D-aware
facial editing capability could potentially be abused. We
are committed to privacy protection, preventing the misuse
of facial editing for criminal purposes.
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hofer, and Christian Theobalt. Stylerig: Rigging stylegan for
3d control over portrait images. In CVPR, pages 6142–6151,
2020. 2

[50] Andrey Voynov and Artem Babenko. Unsupervised discov-
ery of interpretable directions in the gan latent space. In
ICML, pages 9786–9796, 2020. 2, 3

[51] Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin
Bao, Tadas Baltrusaitis, Jingjing Shen, Dong Chen, Fang
Wen, Qifeng Chen, et al. Rodin: A generative model for
sculpting 3d digital avatars using diffusion. In CVPR, pages
4563–4573, 2023. 1

[52] Sijing Wu, Yichao Yan, Yunhao Li, Yuhao Cheng, Wenhan
Zhu, Ke Gao, Xiaobo Li, and Guangtao Zhai. Ganhead: To-
wards generative animatable neural head avatars. In CVPR,
pages 437–447, 2023. 3

[53] Jianfeng Xiang, Jiaolong Yang, Yu Deng, and Xin Tong.
Gram-hd: 3d-consistent image generation at high resolution
with generative radiance manifolds. In ICCV, pages 2195–
2205, 2023. 1, 2, 3

[54] Tianhan Xu and Tatsuya Harada. Deforming radiance fields
with cages. In ECCV, pages 159–175, 2022. 3

[55] Yinghao Xu, Sida Peng, Ceyuan Yang, Yujun Shen, and
Bolei Zhou. 3d-aware image synthesis via learning structural
and textural representations. In CVPR, 2022. 1, 2

[56] Yan Yichao, Cheng Yuhao, Chen Zhuo, Peng Yicong, Wu
Sijing, Zhang Weitian, Li Junjie, Li Yixuan, Gao Jingnan,
Zhang Weixia, Zhai Guangtao, and Yang Xiaokang. A sur-
vey on generative 3d digital humans based on neural net-
works: representation, rendering, and learning. SCIENTIA
SINICA Informationis, pages 1858–, 2023. 1

[57] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. Nerf-editing: geometry editing of
neural radiance fields. In CVPR, pages 18353–18364, 2022.
3

[58] Ziyang Yuan, Yiming Zhu, Yu Li, Hongyu Liu, and Chun
Yuan. Make encoder great again in 3d gan inversion through
geometry and occlusion-aware encoding. In ICCV, pages
2437–2447, 2023. 5

[59] Chi Zhang, Yiwen Chen, Yijun Fu, Zhenglin Zhou, Gang Yu,
Billzb Wang, Bin Fu, Tao Chen, Guosheng Lin, and Chun-
hua Shen. Styleavatar3d: Leveraging image-text diffusion
models for high-fidelity 3d avatar generation. arXiv preprint
arXiv:2305.19012, 2023. 2

[60] Jianfeng Zhang, Zihang Jiang, Dingdong Yang, Hongyi Xu,
Yichun Shi, Guoxian Song, Zhongcong Xu, Xinchao Wang,

925



and Jiashi Feng. Avatargen: a 3d generative model for ani-
matable human avatars. In ECCV, pages 668–685. Springer,
2022. 5

[61] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, pages 586–595,
2018. 5

[62] Xuanmeng Zhang, Jianfeng Zhang, Rohan Chacko, Hongyi
Xu, Guoxian Song, Yi Yang, and Jiashi Feng. Getavatar:
Generative textured meshes for animatable human avatars.
In ICCV, pages 2273–2282, 2023. 5

[63] Yufeng Zheng, Victoria Fernández Abrevaya, Marcel C
Bühler, Xu Chen, Michael J Black, and Otmar Hilliges. Im
avatar: Implicit morphable head avatars from videos. In
CVPR, pages 13545–13555, 2022. 3

[64] Peng Zhou, Lingxi Xie, Bingbing Ni, and Qi Tian.
Cips-3d: A 3d-aware generator of gans based on
conditionally-independent pixel synthesis. arXiv preprint
arXiv:2110.09788, 2021. 1, 2, 3

[65] Jiapeng Zhu, Ruili Feng, Yujun Shen, Deli Zhao, Zheng-Jun
Zha, Jingren Zhou, and Qifeng Chen. Low-rank subspaces
in gans. NeurIPS, pages 16648–16658, 2021. 2

[66] Jiapeng Zhu, Yujun Shen, Yinghao Xu, Deli Zhao, and
Qifeng Chen. Region-based semantic factorization in gans.
In ICML, pages 27612–27632, 2022.

[67] Jiapeng Zhu, Ceyuan Yang, Yujun Shen, Zifan Shi, Bo Dai,
Deli Zhao, and Qifeng Chen. Linkgan: Linking gan latents
to pixels for controllable image synthesis. In ICCV, pages
7656–7666, 2023. 2

[68] Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka.
Sean: Image synthesis with semantic region-adaptive nor-
malization. In CVPR, pages 5104–5113, 2020. 3

[69] Peiye Zhuang, Oluwasanmi Koyejo, and Alexander G
Schwing. Enjoy your editing: Controllable gans for im-
age editing via latent space navigation. arXiv preprint
arXiv:2102.01187, 2021. 3

926


