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Figure 1. Visualization of reconstructed 3D point clouds of DDAD [12] scenes. We fuse the results of 10 frames (including the dynamic
object cars) and zoom in on some details for visualization. It shows that our method can achieve high-quality results on both static and
dynamic parts.

Abstract

Multi-view depth estimation has achieved impressive
performance over various benchmarks. However, almost
all current multi-view systems rely on given ideal camera
poses, which are unavailable in many real-world scenarios,
such as autonomous driving. In this work, we propose a
new robustness benchmark to evaluate the depth estimation
system under various noisy pose settings. Surprisingly, we
find current multi-view depth estimation methods or single-
view and multi-view fusion methods will fail when given
noisy pose settings. To address this challenge, we propose
a single-view and multi-view fused depth estimation system,

*Equal contribution.
†Corresponding author.

which adaptively integrates high-confident multi-view and
single-view results for both robust and accurate depth es-
timations. The adaptive fusion module performs fusion by
dynamically selecting high-confidence regions between two
branches based on a wrapping confidence map. Thus, the
system tends to choose the more reliable branch when fac-
ing textureless scenes, inaccurate calibration, dynamic ob-
jects, and other degradation or challenging conditions. Our
method outperforms state-of-the-art multi-view and fusion
methods under robustness testing. Furthermore, we achieve
state-of-the-art performance on challenging benchmarks
(KITTI and DDAD) when given accurate pose estimations.
Project website: https://github.com/Junda24/AFNet/.
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1. Introduction
Depth estimation from images is a long-standing problem in
computer vision with wide applications. For vision-based
autonomous driving systems, perceiving depth is an indis-
pensable module for understanding the correlation of road
objects and modeling 3D environment maps. Since deep
neural networks are applied to solve various vision prob-
lems, CNN-based methods [2–5, 13, 39–42, 44, 46, 48, 52]
have dominated various depth benchmarks.

According to the input formats, they are mainly cate-
gorized into multi-view depth estimation [3, 13, 23, 26,
44, 45, 51, 53] and single-view depth estimation [14–
16, 19, 37, 38]. Multi-view methods estimate depth under
the assumption that given correct depth, camera calibration,
and camera poses, the pixels should be similar across views.
They rely on epipolar geometry to triangulate high-quality
depth. However, the accuracy and robustness of multi-view
methods heavily rely on the geometric configuration of the
camera and the correspondences matching among views.
First, the camera is required to translate sufficiently for tri-
angulation. In autonomous driving scenarios, the car may
stop at traffic lights or turn around without moving for-
ward, which causes failure triangulation. Furthermore, the
multi-view methods suffer from dynamic objects and tex-
tureless regions, which are ubiquitous in autonomous driv-
ing scenarios. Another problem is SLAM pose optimiza-
tion on moving vehicles. Noises are inevitable in exist-
ing SLAM methods, not to mention challenging and in-
evitable situations. For example, one robot or autonomous
car can be deployed for years without re-calibration, caus-
ing noisy poses. In contrast, as single-view methods [14–
16, 19, 37, 38] rely on the semantic understanding of the
scene and the perspective projection cues, they are more ro-
bust to textureless regions, dynamic objects, and not rely on
camera poses. However, its performance is still far from the
multi-view methods because of scale ambiguity. Here, we
tend to think about if both methods’ benefits can be well
combined for robust and accurate monocular video depth
estimation in autonomous driving scenarios.

Although the fusion-based systems have been explored
in previous work [1, 9], they all assume ideal camera poses.
The consequence is fusion system’s performance is even
worse than single-view depth estimation given noise poses.
To solve this problem, we propose a novel adaptive fusion
network to exploit the advantages of both the multi-view
and single-view methods and mitigate their disadvantages,
which maintain high precision and also improve the ro-
bustness of the system under noisy poses. Specifically, we
propose a two-branch network, i.e. one targets monocular
depth cues, while the other one leverages the multi-view
geometry. Two branches both predict a depth map and a
confidence map. To supplement the semantic cues and edge
details lost in the cost aggregation of the multi-view branch,

we first fuse the monocular features in the decoder part. We
further design an adaptive fusion (AF) module to achieve
the final merged depth. Apart from the predicted confi-
dence, we design another wrapping confidence map by per-
forming the multi-view texture consistency check with the
predicted depth and provided camera poses. We can eas-
ily notice the inconsistency projection when the pose or the
depth is inaccurate, or dynamic objects appear. By using
such proposed confidence maps to perform the pixel-wise
fusion, we can achieve a much more robust depth finally.
Our contributions are summarized below.
• We propose AFNet to adaptively fuse the single-view and

multi-view depth for more robust and accurate depth es-
timation. It achieves the state-of-the-art performance on
both KITTI [11] and DDAD [12] datasets.

• We are the first to propose the multi-view and single-view
depth fusion network for alleviating the defects of the
existing multi-view methods which will fail under noisy
pose. We propose a new robustness testing benchmark to
explore the effectiveness of the multi-view methods given
noisy poses to prove this. Our method outperforms all
other classical multi-view methods under noisy poses.

• Our AF module can improve the performance of the dy-
namic object regions which cannot be well processed by
the classical multi-view depth estimation methods.

2. Related work
Monocular depth estimation. Monocular depth estimation
is a classical problem in computer vision. Recent CNN-
based methods [2, 20, 21, 46, 48, 52] mainly formulate it
as a per-pixel classification [2, 10, 46] or regression prob-
lem [14, 18, 19, 38]. To boost the performance, some meth-
ods [28, 52] propose to aggregate stronger vision features,
some methods propose various losses [2, 46, 48], and some
also propose to leverage mix-data training [7, 47, 49]. Al-
though their performance on various benchmarks has been
improved continuously, the state-of-the-art accuracy is still
far from the multi-view geometry-based methods. In our
work, we integrate the single-view depth estimation mod-
ule in our system because of such methods’ robustness to
low-texture regions and dynamic objects.

Multi-View depth estimation. A variety of works have
been proposed to estimate the depth based on multi-view
observation with known intrinsics and camera poses. [53]
is the first one to bring the power of feature learning into
multi-view stereo, but they process the matching costs with
the traditional aggregation method. [44] proposed to first
construct a differentiable cost volume and then use 3D
CNNs to regularize the cost volume obtaining the most ad-
vanced accuracy at that time. Most recent state-of-the-art
methods follow such a paradigm [3, 23, 26, 51]. But these
methods have a strong dependency on high-parallax motion
and heterogeneous-texture scenes for high accuracy, and
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can’t handle dynamic objects, etc. In addition, these meth-
ods require accurate relative pose between multiple frames
and have poor anti-interference ability to pose noise.

Single and multi-View depth fusion. There are also
some methods [1, 9, 43] for integrating single-view and
multi-view prediction to exploit the properties of these two
methods. But they basically focus on improving accuracy
and efficiency. [9] improves the accuracy by combining the
local structure of single-view and the reliable prediction of
multi-view in high-parallax and high-gradient regions. [1]
first predicts a depth through a single-view network, then
builds a thin cost volume based on this initial depth to re-
duce the high computation overhead and achieve a certain
accuracy improvement. However, the above two methods
all ignore a problem: multi-view branches are highly de-
pendent on the accuracy of the pose. With noisy poses, the
accuracy decreases seriously, even worse than with single-
view methods. [43] proposed an Epipolar Attention Mod-
ule to fuse single-view and multi-view geometric informa-
tion, and installing attention modules at different resolu-
tions can alleviate the problem of pose inexact to a certain
extent. However, this approach can only slightly alleviate
the pose noise problem, the wrong matching information
extracted through the wrong poses is still integrated into the
single-view branch, leading to the decay of accuracy.

Thus, we propose AFNet which adaptively combines the
reliable results of the two branches through the AF module
to enhance the robustness of the system under noisy poses.

3. Method

3.1. Method Overview

We aim to estimate the depth d ∈ RH×W for a reference
image I0 ∈ RH×W×3, given n-1 source images {Ii}n−1

i=1 ,
camera intrinsics and camera poses. Figure 2 overviews
our AFNet, which consists of three parts, i.e. single-view
depth module, multi-view depth module, and adaptive fu-
sion module. Furthermore, we propose a pose correction
module to ensure robustness under large noise poses, the
details can be found in the supplementary materials.

3.2. Single-view and Multi-view Depth Module

In our system, we use ConvNeXt-T [22] as the backbone to
extract 4 scales features F i,l (l = 1, 2, 3, 4), where i is the
index of the image and l is the scale. The extracted 4-scale
feature dimensions are C = 96, 192, 384, 768 respectively.

Single-view branch. Following [43], we construct a
multi-scale decoder to merge backbone features and ob-
tain the depth feature Ds ∈ RH/4×W/4×257. By apply-
ing the softmax along the channel dimension for the first
256 channels of the Ds, we get the depth probability vol-
ume P s ∈ RH/4×W/4×256. The last channel of the feature
serves as the confidence map M s ∈ RH/4×W/4 for the

single-view depth. Finally, the single-view depth is com-
puted by the soft-weighted sum. It is as follows.

ds =
∑
d∈B

d · pd, (1)

where B denotes the bins uniformly sampled in the log
space from dmin to dmax, which represents the depth search
range, pd denotes the corresponding probability in P s.

Multi-view branch. The multi-view branch shares the
backbone with the single-view branch to extract features
F i,l for the reference and source images. We adopt decon-
volutions to deconvolve the low-resolution features to the
quarter resolution and combine them with the initial quar-
ter features F i,1, which is used to construct the cost vol-
ume. By warping the source features into hypothesis planes
of the reference camera follow [44], the feature volumes
are formed. For robust matching information without much
computation, we retain the channel dimension of the feature
and construct 4D cost volume, and then reduce the chan-
nel number to 1 through two 3D convolution layers. The
sampling method of the depth hypothesis is consistent with
the single-view branch, but the sampling number is only
128, i.e. the initial cost volume Cinit ∈ RH/4×W/4×128.
Then we use a stacked 2D hourglass network for regular-
izing to obtain the final multi-view cost volume Cm ∈
RH/4×W/4×256. To supplement the rich semantic informa-
tion of the single-view feature and the details lost due to
cost regularization, we use a residual structure to combine
the single-view depth feature Ds and cost volume to obtain
the fuse depth feature F fuse as follows:

F fuse = Conv {Concat {Cm,Ds}}+Cm. (2)

After using a 2D hourglass network for aggregating the
F fuse, the subsequent operation is exactly the same as the
single-view branch. Confidence map of multi-view branch
Mm ∈ RH/4×W/4 and the final depth prediction dm are
obtained in the same regression way.

3.3. Adaptive Fusion Module

To obtain the final accurate and robust prediction, we de-
sign the AF module to adaptively select the most accurate
depth between the two branches as the final output as shown
in Figure 2. We conduct fusion through three confidence
maps, two of which are the confidence maps M s and Mm

generated by the two branches respectively (Section 3.2),
and the most critical one is the confidence map Mw gener-
ated by forward warping to judge whether the prediction
of the muti-view branch is reliable. We use the camera
pose and the multi-view depth dm as the input to warping
the source images to the reference camera space to obtain{
I

′

i

}n−1

i=1
, and concat with I0. No matter the multi-view

depth is inaccurate, the pose is noisy, or in the dynamic ob-
ject area, the warping source images will be dissimilar with
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Figure 2. Overview of the AFNet, which consists of three parts: single-view branch, multi-view branch, and the adaptive fusion (AF)
module. Two branches share the feature extraction network and have their own prediction and confidence map, i.e. ds, Ms, dm and Mm,
and then fused by the AF module to obtain the final accurate and robust prediction dfuse. The green background in AF module represents
the outputs of the single-view branch and multi-view branch.

the corresponding pixels in the reference image. So we can
build a warping confidence map Mw ∈ RH/4×W/4 in this
way as follows:

Mw = Conv
{

Concat
{
I0, I

′

1, I
′

2 · · · I
′

n−1

}}
. (3)

M s and Mm in single-view branch and multi-view branch
reflect the overall matching ambiguity, while Mw reflects
the subpixel accuracy. Thus, we take these three confidence
maps as guidance for the fusion of single-view depth ds

and multi-view depth dm, and obtain the final fusion depth
dfuse ∈ RH/4×W/4 by two 2D convolution layers.

3.4. Loss Function

The loss function during AFNet training is mainly com-
posed of two parts, i.e. depth loss and confidence loss.
Depth loss uses a simple L1 loss:

Ld = ∥ds − dgt∥1+∥dm − dgt∥1+∥dfuse − dgt∥1 . (4)

For confidence loss, to prevent outliers from interfering
with training, we first calculate the valid mask as follows:

Ωs = |ds − dgt| < dgt.

Ωm = |dm − dgt| < dgt.
(5)

The final confidence loss is calculated as follows:

Lc =
1

Ns

∑
p∈Ωs

|M s(p)− (1− |ds(p)− dgt(p)|/dgt(p))|

+
1

Nm

∑
q∈Ωm

|Mm(q)− (1− |dm(q)− dgt(q)|/dgt(q))|

(6)

Ns and Nm respectively represent the total number of valid
points in Ωs and Ωm. The total loss is the sum of the above
two losses Ld and Lc.

4. Experiment

4.1. Datasets and Evaluation Metrics

DDAD (Dense Depth for Automated Drivin) [12] is a new
autonomous driving benchmark for dense depth estimation
in challenging and diverse urban conditions. It is captured
with 6 synchronized cameras and contains accurate ground-
truth depth (across a full 360-degree field of view) gener-
ated from high-density LiDARs. It has 12650 training sam-
ples and 3950 validation samples in a single camera view, of
which the resolution is 1936×1216. The whole data from 6
cameras are used in training and testing.

KITTI [11] is a dataset that provides stereo images and
corresponding 3D laser scans of outdoor scenes captured on
a moving vehicle. The resolution is around 1241×376. We
train and test our method on KITTI Eigen split [8]. Metrics
defined in Table 1 are used for evaluation.

10141



Image

IterMVS
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Figure 3. Qualitative results on DDAD [12] test set. Black ellipses highlight obvious improvements achieved by our method.

AbsRel SqRel RMSE
1
N

∑
i
(di−d∗i )

2

d∗i

1
N

∑
i
(di−d∗i )

2

d∗i

√
1
N

∑
i(di − d∗i )

2

Table 1. Quantitative metrics for depth estimation. di is the pre-
dicted depth; d∗i is the ground truth depth; N corresponds to all
pixels with the ground-truth label.

4.2. Implementation Details

We implement our methods with PyTorch [27] and per-
form experiments using NVIDIA RTX 3090 GPUs. We use
AdamW optimizer [24] and schedule the learning rate using
one-cycle policy [31] with lrmax = 1.0× 10−4. We trained
30 epochs on DDAD [12] and 40 epochs on KITTI [8]. Dur-
ing training, our system consumes consecutive 3 frames as
input, i.e, n=3. For the details of multi-view setup, the depth
hypothesis number of planes is 128, the weight of the im-
ages from different views is the same.

4.3. Main Results

To demonstrate the outstanding performance of our method,
we evaluate AFNet on DDAD [12] and KITTI [8].

DDAD [12]. Since most of classical multi-view and
single-view methods are not trained and tested on DDAD,
We employ the same training scheme to all methods (see
Section 4.2 for details). Note that all methods have con-
verged well. In the testing, we evaluate all ring cameras
instead of the front-view camera. Quantitative compar-
isons are reported in Table 11, our AFNet achieves the
state-of-the-art (SOTA) performance on DDAD. Compared
with current SOTA methods [34] and [1], our AFNet can
achieve over 15% improvement on AbsRel error. Quali-
tative comparisons are shown in Figure 3. The proposed
AFNet achieves better results both on dynamic objects and
static objects.

KITTI [11]. KITTI Eigen split [8] is an important
benchmark for single-view and multi-view depth estima-
tion. We compare with the state-of-the-art methods on it
and show results in Table 11. Our AFNet achieves 0.039
AbsRel, outperforming recent methods by a large margin.

It is worth mentioning that the AbsRel error of AFNet is
reduced by 27.8% compared with the SOTA method [1].

4.4. Ablation Study

To demonstrate the effectiveness of each component of
AFNet, we ablation on DDAD. Following [43], we design
a two-branch network and employ the ConvNeXt-T [22] as
the backbone. In this section, the following variants are dis-
cussed to verify the effectiveness of the proposed AFNet:
• Base: Baseline is a multi-view depth estimation

model [43], which has the same backbone as ours.
• Results Fusion: We add a decoder to the baseline model

(Base) for the single-view branch to get single-view pre-
diction and use Ground Truth for supervision, and dfuse

is obtained by directly fusing the results of the two
branches through two convolutional layers, denoted as
Base-RF.

• Feature Fusion: We integrate the depth features of the
single-view branch into the multi-view branch for com-
plementing semantic and depth cues, denoted as Base-FF.

• Adaptive Fusion: Our proposed AF module adaptively
selects the most accurate depth between the two branches,
demoted as Base-AF.
Ablation on results fusion. The comparison results are

shown in Table 3. Compared with ‘Base’, adding a decoder
to the single-view branch and supervising the output can
extract more robust features for the epipolar attention, lead-
ing to the SqRel error of the multi-view prediction (‘Base
(Multi)’ v.s. ‘Base-RF (Multi)’) reduced by 6.3%. How-
ever, a naive fusion of the single-view and the multi-view
branch will drop the final performance, i.e. the accuracy of
‘Base-RF (Fuse)’ is lower than ‘Base-RF (Multi)’.

Effectiveness of the feature fusion. According to the
previous analysis, single-view and multi-view extract fea-
ture through different modes, which can be complementary.
Therefore, by introducing the single view depth feature into
the multi-view branch, ‘Base-FF (Multi)’ reduces the SqRel
error of multi-view branch prediction by 10.7% compared
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Type Model DDAD [12] KITTI [11]

AbsRel↓ SqRel↓ RMSE↓ AbsRel↓ SqRel↓ RMSE↓

Single
View

Monodepth2 [12] 0.194∗ 3.52∗ 13.32∗ 0.106 0.806 4.630
FeatDepth [30] 0.189∗ 3.21∗ 12.45∗ 0.099 0.697 4.427

DORN [10] - - - 0.088 0.806 3.138
BTS [19] 0.169∗ 2.81∗ 11.85∗ 0.059 0.245 2.756

AdaBins [2] 0.164∗ 2.66∗ 11.08∗ 0.058 0.190 2.360
Metric3D [50] 0.183∗ 2.92∗ 12.15∗ 0.053 0.174 2.243

Multi
View

PMNet [33] 0.141∗ 2.23∗ 10.56∗ - - -
Deepv2d [32] - - - 0.091 0.582 3.644
CasMVS [13] 0.129∗ 2.01∗ 9.87∗ 0.066∗ 0.228∗ 2.567∗

MVSNet [44] 0.109∗ 1.62∗ 8.21∗ - - -
IterMVS [34] 0.104∗ 1.59∗ 7.95∗ 0.057∗ 0.178∗ 2.234∗

MVS2D [43] 0.132∗ 2.05∗ 9.82∗ 0.058∗ 0.176∗ 2.277∗

SC-GAN [36] - - - 0.063 0.178 2.129
MaGNet [1] 0.112∗ 1.74∗ 9.23∗ 0.054 0.162 2.158

AFNet 0.088 1.41 7.23 0.039 0.121 1.743

Table 2. Quantitative evaluation on DDAD [12] and KITTI [11]. Note that the ∗ marks the result reproduced by us using their open-source
code, other reported numbers are from the corresponding original papers.

Model RF FF Single Multi Fuse
Base - 1.90 -

Base-RF Conv 2.68 1.78 1.99
Base-FF Conv ✓ 2.66 1.59 1.79
Base-AF Adaptive ✓ 2.66 1.59 1.55

Table 3. Results of ablation experiments for each strategy in our
method on DDAD [12]. Single represents the result of single-view
branch prediction, Multi represents the result of multi-view branch
prediction, Fuse represents the fusion result dfuse. The reported
numbers are SqRel error.

with ‘Base-RF (Multi)’.
Effectiveness of the Adaptive Fusion. As shown in Ta-

ble 3, the accuracy of the fusion result ‘Base-FF (Fuse)’ is
lower than ‘Base-FF (Multi)’ since the previous method of
direct convolution fusion was too crude. Thus, we propose
an adaptive fusion (AF) module to replace this naive fusion
way. Comparing ‘Base-AF (Fuse)’ with ‘Base-FF (Fuse)’,
using the AF module for results fusion has a 13.4% perfor-
mance improvement. In addition, the fusion result ‘Base-
AF (Fuse)’ reduces the SqRel error by 2.5% compared with
multi-view branch prediction ‘Base-AF (Multi)’.

Ablation on other strategies. Compared with Base-AF
(denoted as BASE for ease of description in this section),
our AFNet mainly consists of the following two adjust-
ments: 1) parameter sharing of feature extraction network
of single-view and multi-view branch, denoted as BASE-
PS; 2) replace Epipolar Attention Module in [43] with cost
volume illustrated in Section 3.2 to extract matching infor-
mation, denoted as BASE-PS-cost. As shown in Table 4,
compared with BASE, our BASE-PS-cost has a 9.0% per-

Model Single Multi Fuse
BASE 2.66 1.59 1.55

BASE-PS 2.62 1.53 1.49
AFNet

(BASE-PS-cost) 2.62 1.44 1.41

Table 4. Ablation results on feature extraction network parameter
sharing and methods for extracting matching information. The re-
ported numbers are SqRel error.

formance improvement for the final result, which is also our
final network model, denoted as AFNet.

4.5. Discussions

In this section, we discuss the robustness of AFNet in dy-
namic regions, on zero-shot datasets, and under noise poses.

4.5.1 Performance in Dynamic Object Region

By adaptively fusing monocular depth, our AF module can
alleviate the problem that multi-view methods cannot han-
dle dynamic objects. This is because the dynamic object
region does not satisfy the projection relation, warping con-
fidence map Mw in AF module has certain ability to recog-
nize the dynamic object region, so it can adaptively fuse the
single-view result in this region for better prediction. The
method of obtaining the mask of the dynamic object region
can be found in the supplementary material. As shown in
Table 5, our fusion result ‘AFNet(dfuse)’ has a 21.0% im-
provement on SqRel error compared with multi-view pre-
diction ‘AFNet(dm)’. We also compare with the SOTA
single-view and multi-view fusion method [1], [1] improve
depth accuracy by fusing single-view depth probability with
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multi-view geometry, but this kind of multi-view geometry
in dynamic object region is inaccurate which could bring
into wrong guidance, and it can be seen that our system per-
forms better in the dynamic object region.

Model AbsRel↓ SqRel↓ RMSE↓
MVS2D [43] 0.163 2.362 7.325
MaGNet [1] 0.169 2.500 7.783
AFNet(dm) 0.158 1.879 6.024

AFNet(dfuse) 0.145 1.484 5.675

Table 5. Performance comparison in dynamic object region on
DDAD. AFNet(dm) denotes the results of multi-view branch.
AFNet(dfuse) denotes the fusion result.

Model AbsRel↓ SqRel↓ RMSE↓
IterMVS[34] 0.123 0.056 0.332
MVS2D [43] 0.098 0.044 0.276
MaGNet [1] 0.112 0.051 0.314

AFNet 0.091 0.039 0.253

Table 6. Zero-shot performance on ScanNet [6]. All the models
are trained on the DDAD dataset and tested on ScanNet. The pro-
posed adaptive fusion network shows a better cross dataset gener-
alization ability.

4.5.2 Generalization

The integration of single-view feature into multi-view
branch for complementary and the use of adaptive fu-
sion module to select more accurate depth operations are
conducive to network robustness and generalization. To
observe the generalization of our network, we evaluated
AFNet through cross-dataset testing, i.e. testing our model
trained on DDAD directly on ScanNet, as shown in Table 6,
it shows our model has better performance than the current
SOTA methods on ScanNet [6].

4.5.3 Robustness under Noise Poses

Noise is inevitable in various SLAM methods to retrieve
pose, but whether the pose is accurate or not greatly affects
the accuracy of multi-view depth estimation. Therefore, in
practical applications, the robustness of the depth estima-
tion network under noisy poses is critical. We provide two
kinds of noise to test the robustness of the proposed AFNet,
including different levels of synthetic noise and real-world
noise generated by SLAM systems. To reflect the anti-noise
ability more comprehensively, we added noise to the input
pose in the training process of all the methods in Table 7 and
Table 10 to enable the networks to adapt to various modes
of accurate poses and noise poses simultaneously.

Synthetic noise. We propose a new robustness testing
benchmark to explore the effectiveness of the multi-view
methods given noisy poses. One model is required to be
evaluated under different noise levels of the pose, which is

Method δ = 0 δ = 0.01 δ = 0.025 δ = 0.05 ID R-Rel
PMNet [33] 0.144 0.235 0.354 0.382 0.246 0.359

CasMVS [13] 0.131 0.165 0.195 0.215 0.181 0.206
MVSNet [44] 0.112 0.160 0.189 0.208 0.177 0.202
MVS2D [43] 0.133 0.159 0.179 0.184 0.173 0.184
IterMVS [34] 0.107 0.154 0.178 0.187 0.175 0.189
MaGNet [1] 0.115 0.162 0.185 0.191 0.183 0.195
AFNet(dm) 0.095 0.137 0.163 0.175 0.170 0.178

AFNet 0.092 0.125 0.155 0.164 0.165 0.168

Table 7. Performance comparison of AFNet and some state-of-
the-art networks under noisy poses on DDAD [12]. The reported
numbers are AbsRel error at different settings, δ represents the in-
tensity of the noise which increases from 0 gradually. “ID” means
that we set the input relative pose to the identity pose, and the in-
put source images are the same as the reference image. R-rel is the
proposed robustness-aware relative error. AFNet(dm) denotes the
results of multi-view branch dm, i.e, without AF module.

Sequence 04 05

Pose GT
ORB2 ORB1

GT
ORB2 ORB1

(ATE=0.15) (ATE=0.98) (ATE=0.4) (ATE=5.6)

MoRec[35] 0.075 0.088 0.345 0.068 0.085 0.381
IterMVS[34] 0.068 0.078 0.182 0.073 0.080 0.169
MaGNet[1] 0.066 0.071 0.077 0.069 0.077 0.082

AFNet 0.059 0.061 0.064 0.063 0.066 0.070

Table 8. Performance comparison under Ground Truth poses and
SLAM system poses (ORB1 and ORB2 represents the monocular
version and stereo version of ORBSLAM2[25] respectively) on
KITTI [11] Odometry dataset. ATE represents the absolute tra-
jectory error between the estimated poses and the Ground Truth
poses. The reported numbers are AbsRel error.

obtained by converting the relative poses into Euler angles
and translations and then multiplying the Euler angles and
translations by a disturbance coefficient. Different coeffi-
cient corresponds to different noise level, respectively: 1)
accurate pose, denoted as δ = 0; 2) the disturbance coef-
ficient of 50% test samples is (1 + 0.01), and the remain-
ing 50% samples is (1 − 0.01), denoted as δ = 0.01; 3)
the disturbance coefficient of 50% samples is (1 + 0.025),
and the remaining 50% samples is (1 − 0.025), denoted
as δ = 0.025; 4) the disturbance coefficient of 50% test
samples is (1 + 0.05), and the remaining 50% samples is
(1 − 0.05), denoted as δ = 0.05; 5) set input relative pose
as identity pose, and the input source images are the same
as the reference image, denoted as ID. The mean relative er-
ror (µ) and the standard deviation (σ) are calculated based
on all noise pose levels. Finally, a robustness-aware relative
error (R-Rel) is defined as µ+ σ. The lower the better.

As shown in Table 7, our AFNet outperforms other clas-
sical multi-view methods for the ability to resist input pose
noise. When pose has larger noise, the accuracy of classical
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Figure 4. Visualization comparison results on DDAD [12]. The black boxes show the robustness of our AFNet. With the gradual increases
of pose noise, the accuracy of [34] which is mainly based on multi-view matching decreased dramatically, while we remained stable.

cost volume-based multi-view methods [13, 33, 44] is even
much lower than that of single-view methods, such as Ad-
aBins [2] and BTS [19] whose AbsRel errors are 0.164 and
0.169 as shown in Table 11. This is because [13, 33, 44] ob-
tain depth by regression based on the matching information
which is false when poses fail. Some current SOTA multi-
view methods also integrate single-view information, such
as MVS2d [43] and MaGNet [1]. However, since they do
not have the structure to autonomously judge when they can
rely on the results of the multi-view methods, thus, when
the pose is seriously disturbed, the multi-view branch will
introduce wrong guidance. We overcome this with the pro-
posed adaptive fusion module, AFNet has the highest preci-
sion in all noisy pose settings and always remains above the
level of the single-view method. There is also an apprecia-
ble improvement in robustness-aware relative error (R-Rel)
compared with the SOTA fusion system[1, 43], which is an
overall assessment of the robustness of the system.

Whats more, by comparing the result of the multi-view
branch (denoted as AFNet(dm)) with the result after fusing
(denoted as AFNet), it can be seen that the effect of AF
module will be more obvious when under noisy poses.

Real-world noise poses generated by SLAM sys-
tems. To more comprehensively evaluate the robustness of
our system under noise poses, we tested the depth accu-
racy under poses obtained by different SLAM systems on
KITTI [11] Odometry dataset. We selected a representa-
tive slam system, i.e. ORBSLAM2[25], and used two ver-
sions of it to obtain poses respectively, one monocular ver-

sion (denoted as ORB1) and one stereo version (denoted
as ORB2). The monocular version will sometimes crush,
and we compare the depth accuracy of the image sequences
before crush. The pose noise of the monocular version is
larger than that of the stereo version, which can be reflected
by the absolute trajectory error. As shown in Table 10, our
AFNet has the highest accuracy under different poses, and
is also the most robust. The results of the remaining se-
quences in the KITTI Odometry dataset can be found in the
supplementary materials.

5. Conclusion

In this paper, we propose a new multi-view and single-
view depth fusion network AFNet for alleviating the de-
fects of the existing multi-view methods, which will fail un-
der noisy poses in real-world autonomous driving scenarios.
We propose a new robustness evaluation metric and testing
benchmark to explore the effectiveness of the multi-view
methods under different noise levels. We fuse the single-
view and multi-view depth by the proposed adaptive fusion
module, improving the accuracy and robustness of the sys-
tem. AFNet achieves state-of-the-art performance on both
KITTI [11] and DDAD [12] datasets with accurate pose
while also outperforms all other classical multi-view meth-
ods on robustness testing benchmark under noisy poses.
Acknowledgement. This work is supported by Na-
tional Natural Science Foundation of China (62122029,
62061160490, U20B200007).
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