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Abstract

Domain Generalization (DG) aims to develop a versa-
tile model capable of performing well on unseen target do-
mains. Recent advancements in pre-trained Visual Founda-
tion Models (VFMs), such as CLIP, show significant poten-
tial in enhancing the generalization abilities of deep mod-
els. Although there is a growing focus on VFM-based do-
main prompt tuning for DG, effectively learning prompts
that disentangle invariant features across all domains re-
mains a major challenge. In this paper, we propose ad-
dressing this challenge by leveraging the controllable and
flexible language prompt of the VFM. Observing that the
text modality of VFMs is inherently easier to disentangle,
we introduce a novel text feature guided visual prompt tun-
ing framework. This framework first automatically dis-
entangles the text prompt using a large language model
(LLM) and then learns domain-invariant visual represen-
tation guided by the disentangled text feature. Moreover,
we also devise domain-specific prototype learning to fully
exploit domain-specific information to combine with the in-
variant feature prediction. Extensive experiments on main-
stream DG datasets, namely PACS, VLCS, OfficeHome,
DomainNet and TerraInc, demonstrate that the proposed
method achieves superior performances to state-of-the-art
DG methods.

1. Introduction

Most of the machine learning methods are built on the
assumption that training and testing data are independently
and identically distributed (i.i.d.) [7, 7, 26, 42]. However, in
real-world scenarios, this assumption does not always hold
where distribution shift between training and testing data
occurs frequently. As a result, Domain Generalization (DG)
task has been proposed, aiming to learn a generalized model
to perform well on unseen target domain only using limited
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Figure 1. The upper portion of the image illustrates the differ-
ences among various domains, which are subsequently disentan-
gled into domain-invariant and domain-specific descriptions via
our text disentanglement process, as depicted in the lower portion
of the image.

source domain data for training. The DG has long been
an essential topic in the machine learning field and attracts
considerable attention.

The main challenge for DG is to learn a model with
good generalization ability, to extract domain-invariant rep-
resentations across source domain datasets. Fortunately,
latest researches show clear evidence that large-scale pre-
trained model could greatly enhance the domain general-
ization power. Specially for the pre-trained VFMs (e.g.,
CLIP), they are trained by utilizing large-scale (image, text)
pairs for robust visual representation, which is inherently
rich in semantic information of prior knowledge. Hence,
such VFMs are able to encode the semantic meanings of vi-
sual descriptions, regardless of the image styles, which is
in line with the goal of DG, i.e., learning uniform visual
semantic representations across different domains.

Most current DG methods use multi-domain training
datasets to train a model generalizes to unseen domains. It
is intuitive that we can also enhance the ability of founda-
tion models by fine-tuning them using these datasets. Re-
cent developments have introduced the idea of fine-tuning
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foundation models with prompts, that achieve better results
on specific downstream tasks with very few training sam-
ples. However, directly applying prompt tuning in the con-
text of domain generalization poses significant challenges.
This is due to the fact that existing prompt tuning meth-
ods tune the foundation model to generate domain and task-
specific features, whereas domain generalization requires
the model to generate domain-invariant features that work
well across different unseen domains. Therefore, in order to
apply prompt tuning to domain generalization effectively, it
is crucial to develop prompts that can guide the foundation
model in disentangling invariant features across all domains
from those specific to certain domains.

In this paper, our solution to this challenge is to fully
leverage a distinctive aspect of VFM, which is the control-
lable and flexible language prompt. We believe the text
prompt plays a vital role to guide the disentanglement of
image feature. Intuitively, the text modality in VFM can
be more easily disentangled, as the text/language is inher-
ently rich in semantic information and well interpretable.
For example, as shown in Fig. 1, given a comprehensive
textual description of an image class ‘sheep’, one can eas-
ily separate the description into two parts. One is the text
describing specific domains (e.g., overall color of the sheep
and image), and the other is the description invariant to the
domain (e.g., the shape and texture of a sheep). The gener-
ation of these class descriptions and their disentanglement
can be easily achieved by leveraging large language models
(LLMs) such as GPT.

As a result, we propose a novel prompt tuning framework
for domain generalization with LLM-assist text prompt
disentanglement and text-guided visual representation dis-
entanglement model. Specifically, domain-invariant and
domain-specific descriptions of each category are first gen-
erated with LLM, which is used for prompt tuning to learn
disentangled textual features. Secondly, the learned disen-
tangled textual features are utilized to guide the learning of
domain-invariant and domain-specific visual features. Nev-
ertheless, effectively leveraging disentangled visual feature
to achieve good performance remains a challenge. Un-
like many conventional methods that concentrate solely on
domain-invariant features, we contend that, in order to clas-
sify images from an unseen domain, leveraging domain-
specific knowledge from similar seen domains is also es-
sential. Specifically, we propose domain-specific prototype
learning (DSPL), where a prototype is learned for each class
from each domain and suitable domain-specific prototypes
will be selected for images from different unseen domains.
The final output of the model is the combination of the pre-
diction of the domain-invariant feature and DSPL.

Our main contributions can be summarized as follows:

• We propose a novel prompt tuning framework for domain
generalization with LLM-assist text prompt disentangle-

ment followed by text-guided visual representation disen-
tanglement.

• We also devise the domain-specific prototype learning, to
fully exploit domain-specific information to be combined
with the domain-invariant prediction for final inference.

• Extensive experiments on mainstream DG datasets,
namely PACS, VLCS, OfficeHome, DomainNet and Ter-
raInc, show that the proposed DPR method achieves su-
perior performances to state-of-the-art DG methods.

2. Related Work
2.1. Domain Generalization.

DG involves training a model using one or multiple
source domains to achieve robust performance on un-
seen target domains. Early-stage theoretical methods
have addressed domain shifts from multiple angles, in-
cluding domain alignment, meta-learning, data augmen-
tation, disentangled representation learning, and captur-
ing causal relations. Domain alignment refers to learn-
ing domain-invariant representations by removing domain-
specific knowledge [3, 14, 30, 38, 59]. Meta-learning im-
proves generalization performance by simulating domain
shift through a training procedure that divides the source do-
main into meta-train and meta-test domains [4, 13, 29, 55].
[6, 47, 60] find data augmentation can play a significant role
when augmentations can approximate some variations be-
tween domains. [21, 42, 51] using disentangled representa-
tion learning to disentangle features into a domain-invariant
content space and a domain-specific attribute space, thus
learning a domain-invariant representation from data across
multiple domains. There also contain other works[1, 24]
explore to capture causal relations to solve this problem.
Meanwhile, some work [8–12, 20, 27, 33, 35, 43, 46, 52, 58]
has also made contributions.

2.2. DG with Pre-trained Models.

Recent studies show the pre-trained model can bring out-
of-distribution generalization capabilities [39]. [16] demon-
strates that simple ERM [49] outperforms the majority of
early methods utilizing pre-trained ResNet-50 [17]. [7]
propose a regularization method called MIRO, which aims
to improve model generalization by minimizing the mu-
tual information between the pre-trained and oracle models.
[40] utilizes CLIP [44], a large-scale vision-language pre-
trained model, to extract domain-unified representations by
generating diverse prompts. [26] propose a new gradient-
based method that learns task-specific knowledge while pre-
serving the generalization ability of large-scale pre-trained
models. [32] propose a specialized model-sample match-
ing method for DG. Similarly, our work also employs
pre-trained CLIP, and utilizes LLM to generate domain-
invariant and specific descriptions to guide the training.
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Figure 2. Framework of our proposed method. The process of text disentanglement (a) (Described in Sec. 3.2) involves training both
domain-invariant textual embedding w̃k and domain-specific textual embedding h̃m, which serve as the guidance of the disentangled
visual representations, denoted as z̃Ii and z̃Si in (b) (Described in Sec. 3.3). Subsequently, in step (c) (Described in Sec. 3.4), we employ
prototype learning to effectively capture domain-specific information. The resulting new prediction, denoted as PS

i , is then combined with
the domain-invariant prediction PI

i to obtain the final inference Pi.

2.3. Disentangled Representation Learning.

There are several prior studies of disentangled repre-
sentation learning related to our work. [34, 36, 37] uti-
lizes generative adversarial networks (GANs) [15, 23] and
variational autoencoders (VAEs) [22, 45] to learn an inter-
pretable representation. Another work [42] introduces a
deep adversarial disentangled autoencoder (DADA) and a
novel domain agnostic learning (DAL) schema to achieve
representation disentanglement. Different from existing
work, our proposed method guides the entire training pro-
cess by generating domain-invariant and domain-specific
descriptions through text disentanglement. Moreover, dur-
ing the inference stage, we leverage prototypes to fully ex-
ploit domain-specific information.

3. Methodology

Problem Definition. Let DS and DT bet sets of the
source domain and target domain. Specifically, DS =
{DS

m}Ns
m=1, where DS

m is a distribution over the input space
X , and Ns is the total number of source domains. For each
source domain, DS

m = {(xi, yi)}
Ns

m
i=1, where each data sam-

ple (xi, yi) consists of the input image xi and its corre-
sponding label yi. The unseen target domain can also be
defined as DT = {DT

m}Nt
m=1, where the number of target

domain is usually set to one in the experiment. The goal of
DG is to build a model ϕθ(·) that can perform well on the
target domain, when only the source domain data are avail-
able during model training. The main challenge is to ad-
dress the domain distribution shift between the source and
target data. Note that, this study is verified on solving the

image classification problem.
Overall Framework of the DPR Method. As shown in

Fig. 2, the overall framework of the proposed DPR method
for DG consists of the following modules: 1) The GPT-
Assist text-disentanglement module; 2) The image dis-
entanglement module; 3) The relevance-inspired domain-
specific prototype learning. The process of text disentan-
glement in Fig. 2 (a) entails training both domain-invariant
and domain-specific text embeddings, which subsequently
serve as guidance for image disentanglement in Fig. 2 (b).
Finally, in Fig. 2 (c), domain-specific information is effec-
tively leveraged to combine with domain-invariant predic-
tion for the final inference. In this way, the proposed DPR
method can capture domain-specific and domain-invariant
information for DG through disentangled prompt tuning.

3.1. Preliminaries

Prompt Tuning on CLIP Model. We adopt CLIP as the
pre-trained vision-language foundation model for prompt
tuning. Since CLIP is trained with 400M (image, text) as-
sociation pairs, it contains two types of encoders: 1) the
visual encoder f(x) to map the input image x into the vi-
sual embedding; 2) the text encoder g(·) to map the text
description t onto the textual embedding. For CLIP-based
prompt tuning, it utilizes the hand-craft prompt or the learn-
able prompt to adapt the pre-trained CLIP model to down-
stream tasks, with frozen visual and text encoders.

For the downstream task with Nc categories, CLIP em-
ploys a hand-craft/learnable prompt, denoted as tk for the
kth class, to generate its corresponding textual embedding
wclip

k = g(tk), and the textual embeddings for all cate-
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gories can be denoted as Wclip = {wclip
k }Nc

k=1. Given an
image xi with corresponding label yi, the visual embedding
can be obtained by the visual encoder f(·) as: zclipi = f(xi),
After that, the prediction probability for image xi can be
computed as follows:

pk(y | zclipi ;Wclip) =
exp(< zclipi ,wclip

k > /τ)∑Nc

k=1 exp(< zclipi ,wclip
k > /τ)

,

(1)
where we can define p = [p1, · · · ,pk, · · · ,pNc

] as the col-
lection of probabilities for classifying xi, and pk in Eq. 1
represents the probability of xi belonging to the kth label.
τ is a hyper-parameter to control the sharpness of the out-
put, and < ·, · > is the dot product which can be termed as
the cosine similarity as the features are normalized. Com-
bined with cross-entropy loss, we can train the CLIP model
or fine-tune it.

Text Prompt Tuning. Although Eq. 1 can be easily ap-
plied to Zero-Shot classification by employing a fixed hand-
craft prompt, (i.e., t =‘a photo of a [class]’), to generate the
textual embedding, it can not be well adapted to the down-
stream task. Therefore, the learnable prompt tuning method
is proposed by learning a set of continuous vectors for gen-
erating task-related textual embedding, e.g., CoOp [62].
Specifically, the learnable prompt for the input of the text
encoder can be expressed as:

tk = [v1,v2, · · · ,vL,CLSk] , ∀k ∈ 1 ∼ Nc, (2)

where vi ∈ Rd is a learnable vector and d is the prompt
dimension, L is the length of the prompt, and CLSk is the
class token for the kth text prompt tk. During training, only
the learnable prompt is updated while the original visual
and text encoder are frozen. The output of the text encoder
can be represented as wk = g(tk). Specifically, we adopt
the CoOp [62] mechanism to learn the text prompt enabling
the CLIP model to better adapt to downstream tasks.

Visual Prompt Tuning. To fine-tune the visual encoder
f(·), we adopt the deep VPT technique [19] to insert a set
of learnable prompts into the transformer layer of the visual
encoder. VPT employs multiple layers of Transformers to
capture the intricate relationship between images and text.
Notably, it inserts learnable prompts between the patch em-
beddings and the class token at the input of each layer.

The VPT model links the output of the last class token
to a fully connected layer and applies a softmax function
to generate a probability over classes. During training, the
model employs cross-entropy loss to compare the predicted
class probability with the ground-truth label. It only up-
dates the learnable prompt parameters while keeping the
pre-trained model parameters unchanged.

3.2. GPT-Assist Text-Disentanglement

To learn disentangled prompt representation for DG, we
first perform text disentanglement, as the text modality in

1. What does a [category name] look

like in [ style name ] domain?

2. How can you identify a [category

name] in [style name] domain?

3. A caption of an image of a [category

name] in [style name] domain:

GPT

Generating Fine-grained descriptions

Generating Domain-agnostic descriptions

GPT

⋮⋮

What do 

these 

description

s have in 

common?

Original prompt

1. A photo of a umbrella

2. A special picture of a 

umbrella

3. A photo related to 

umbrella

To identify an umbrella,

look for a simple and

recognizable shape with a

curved handle and a

canopy of fabric or paper.

GPT-Guided prompt

GPT

Figure 3. The figure illustrates the two components of text dis-
entanglement. Firstly, fine-grained descriptions are generated for
the input questions. Secondly, these fine-grained descriptions are
summarized to generate domain-invariant descriptions. The right
half of the figure demonstrates the distinction between the hand-
craft description and the domain-invariant description.

the visual foundation model is inherently rich in semantic
information and can be more easily disentangled.

To achieve text disentanglement, we first adopt GPT-3 to
generate fine-grained descriptions for each domain-specific
class and the specific domain itself. Firstly, we design input
questions for GPT-3 to generate fine-grained descriptions
by utilizing the following question formats: 1) ‘What does
a [class] look like in [domain]’; 2) ‘How can you iden-
tify an [class] in [domain]’; 3) ‘A caption of an image of
an [class] in [domain]’, as well as some other prompts:
‘Please provide a detailed description of the object under
this [domain] and [class]’. After generating a sufficient
number of fine-grained descriptions. We employ GPT-3
once more to summarize and analyze the shared and com-
mon attributes among all the fine-grained descriptions, fi-
nally obtaining more robust and domain-invariant descrip-
tions for each class. Meanwhile, we also adopt GPT-3 to
generate descriptions for each domain. Fig. 2 shows the
process of text disentanglement by GPT-3. We can clearly
see that the obtained domain-invariant description for the
‘umbrella’ by our method contains much more semantic in-
formation than the hand-craft descriptions.

After obtaining the domain-invariant description for each
class, we generate the domain-invariant embedding for each
class by the text encoder g(·) of CLIP. Such domain-
invariant embedding wclip

k will later serve as guidance for
learning domain-invariant visual prompts tk. Specifically,
we adopt the L2 distillation loss [18] as follows:

Lkg1 =
1

Nc

Nc∑
k=1

||w̃k −wclip
k ||22,

where w̃k = g(tk),tk = [v1,v2, · · · ,vL,CLSk],

(3)

Nc is the number of class, || · ||22 is the L2 norm. Note
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that wclip
k is obtained by the original CLIP model. To learn

the domain-invariant text prompt, we simultaneously opti-
mize the above-mentioned knowledge distillation loss and
the contrastive learning objective Lce1 between the textual
and visual embeddings as follows:

pk(y | zclipi ;W̃) =
exp(< zclipi , w̃k > /τ)∑Nc

k=1 exp(< zclipi , w̃k > /τ)
, (4)

Lce1 = − 1

N

N∑
i=1

yi · logp(y | zclipi ;W̃), p ∈ RNc , (5)

where yi ∈ RNc in Eq. 5 represents one-hot label and Nc

is the label dimension. For each input image xi, the actual
label yi is assigned as [1, 0, · · · , 0].

Similarly, we learn the domain-specific textual embed-
ding h̃m for mth domain with the learnable prompt un-
der the guidance of hclip

m generated by GPT-Assist domain-
specific textual descriptions. Additionally, define the textual
embedding for all domains as H̃ = {h̃m}Ns

m=1. In line with
training method for domain-invariant text prompts, we em-
ploy contrastive learning objective Lce2 and L2 distillation
loss Lkg2. Finally, the overall loss function arrives at:

Ltext = Lce1 + α1 ∗ Lce2 + β1 ∗ (Lkg1 + Lkg2). (6)

3.3. Image-Disentanglement Guided by Text

After achieving the text disentanglement, we keep the
text encoder and its domain-invariant and domain-specific
text prompt fixed. Then, we perform the image disentan-
glement under the guidance of the disentangled textual em-
beddings. Specifically, we adopt the deep VPT as the visual
encoder to extract the domain-invariant and domain-specific
image features, denoted as z̃Ii and z̃Si :

z̃Ii = fI(xi;EI),

z̃Si = fs(xi;Es),
(7)

where EI and Es represent the learnable visual prompts in
the domain-invariant and domain-specific visual encoders
(i.e., fI and fs), respectively. To finetune the visual encoder
fI(·) in Eq. 7, we adopt the following loss terms: 1) the
contrastive learning objective Lce1 between z̃Ii and w̃k to
optimize EI ; 2) the domain confusion regularization Lmix:

pm(yd | z̃Ii ; H̃) =
exp(< z̃Ii , h̃m > /τ)∑Ns

m=1 exp(< z̃Ii , h̃m > /τ)
, (8)

Lmix = − 1

N

N∑
i=1

oi · logp(yd | z̃Ii ; H̃), p ∈ RNs , (9)

where yd in Eq. 8 and Eq. 9 is the domain label for each
input image xi. To train the domain confusion regula-
tion, we set one-hot domain label oi ∈ RNs in Eq. 9 to

[1/Ns, 1/Ns, · · · , 1/Ns] for all the images from different
domains. 2) Similarly, to enhance the generalization ability
of z̃Ii , we also utilize the Lkg loss [54] to reduce the distance
between z̃Ii and zclipi : Lkg = ||z̃Ii − zclipi ||22.

sketch

quickdraw

clipart 

real

painting

infograph

Figure 4. This figure demonstrates the distribution of distances be-
tween the quickdraw domain and the other five domains (sketch,
clipart, infograph, painting, and real) within the same category in
the DomainNet dataset. It is evident that quickdraw exhibits closer
proximity to the sketch and clipart domains, while it is compara-
tively farther from the infograph domain.

In addition, we also train domain-specific visual encoder
fs(·) in order to generate the prototype in Sec. 3.4 for sub-
sequent steps. We employ the contrastive learning objective
Lce2 to guide the training of domain-specific visual prompt.
Finally, the overall loss function can be written as follows:

Limg = Lce1 + α2 ∗ Lce2 + β2 ∗ Lkg + β3 ∗ Lmix. (10)

3.4. Domain-Specific Prototype Learning

To fully exploit the domain-specific information for DG,
we further propose the relevance-inspired domain-specific
prototype learning mechanism to devise a domain-specific
predictor. As shown in Fig. 4, The domain-specific predic-
tion is built on the observation that the distance between dif-
ferent domain distributions varies. Given an unseen domain
image, we can intuitively adopt relevance-inspired proto-
type prediction to well utilize the domain-specific image
feature, which could reduce the distribution shift between
source and target domains during inference.

Prototype Initialization. Given the pre-trained domain-
specific visual encoder fs(·), we generate the prototype for
each class within each specific domain. Specifically, given
Nc classes under Ns source domains, we can obtain a pro-
totype tensor: C ∈ RNcNs×d as follows:

Cm,k,: =
1

M

∑
xi∈DS

m,

∑
yi=k

fs(xi;Es), (11)

23599



where d is the feature dimension, yi is the corresponding
label of the input image xi, M is the total number of in-
stances in the mth source domain DS

m with class label yi.
For simplicity, we re-write the prototype tensor C as a two-
dimensional matrix as C ∈ RNcNs×d in the following and
store it in the memory bank during model training.

After constructing the prototype memory bank, we also
transfer their corresponding labels into one-hot encoding as
each prototype corresponds to one class label. Therefore,
we can term the prototype learning as a key-value cache
model [56], where the key is the prototype for each class
C ∈ RNcNs×d, and their corresponding value is the label
set Lc ∈ RNcNs×Nc . During inference, given a test image
xi which serves as the query for retrieving from the cache
model, we first extract the domain-specific image features
fs(xi;Es) ∈ R1×d by the visual encoder fs(·). Then the
domain-specific prediction PS

i can be calculated as follows:

PS
i = φ(xi, C)Lc, (12)

where φ(xi, C) ∈ R1×NcNs denotes the affinities between
the query feature fs(xi) and the prototypes C ∈ RNcNs×d

stored in the memory bank. It can be calculated as:

φ(xi, C) = exp(−β(1− fs(xi;Es)C⊤)), (13)

where β is a modulating hyper-parameter to control the
sharpness of the similarity output. fs(xi;Es)C⊤ can be
viewed as the cosine similarity between the test image fea-
ture fs(xi;Es) and the prototypes C for all domain classes,
as both of the key and query features are L2 normalized. Af-
ter that, the domain-specific prediction based on the cache
model can be obtained by the linear combination of the
domain-specific cache values Lc weighted by query-key
similarities, as illustrated in Eq. 12.

Finally, to exploit the domain-invariant and specific infor-
mation for DG, we make the final prediction by combining
the domain-invariant and specific predictions as follows:

Pi = PI
i + α3 ∗PS

i , (14)

where PI
i is the domain-invariant prediction and can be cal-

culated as PI
i = p(y | z̃Ii ;W̃) by utilizing the domain

invariant visual features and the corresponding textual em-
beddings. α3 is the trade-off parameter.

Besides, we further treat the prototypes C ∈ RNcNs×d

in the memory bank as learnable parameters with the mean
features as initialization illustrated in Eq. 11, then we fine-
tune C via SGD for several epochs. Updating the prototypes
in the memory bank can boost the estimation of affinities,
which is able to calculate the cosine similarities between
the test feature and the prototypes more accurately. In con-
trast, the values Lc are one-hot encodings representing the
ground-truth annotations and should be kept frozen to well
memorize the category information during training.

4. Experiments
4.1. Datasets and Evaluation Protocols

In the experiment, we follow experimental settings of
DomainBed. We adopt five commonly used datasets in do-
main generalization tasks for evaluation: PACS [28] (4 do-
mains, 9,991 samples, 7 classes), VLCS [28] (4 domains,
10,729 samples, 5 classes), OfficeHome [50] (4 domains,
15,588 samples, 65 classes), DomainNet [41] (6 domains,
586,575 samples, 345 classes) and TerraIncognita [5] (4 do-
mains, 24,788 samples, 10 classes). In domain generaliza-
tion experiments, it is customary to designate one domain as
the target domain while considering the remaining domains
as the source domains. To ensure reliable results, we calcu-
late the average performance across multiple experiments.

4.2. Implementation details

We choose ViT-B/16 as a backbone network, the same as
the baseline model (CLIP) [44]. To construct prompts for
the text and visual encoders, we refer to the open-source
implementations of CoOp and VPT. In our experiments, we
adopt a few-shot training strategy where each class is ran-
domly sampled with 16 shots. For DPR, we set the text and
visual prompt lengths to 16 and 2, respectively. The hyper-
parameter α1 and β1 in Eq. 6 for text disentanglement is
set to 1.0 and 8.0. The hyper-parameter α2, β2, and β3 in
Eq. 10 for image disentanglement is set to 0.8, 2.0, and 0.8.
The hyper-parameter α3 in Eq. 14 for DSPL is set to 5.0.
The models are trained for 10 epochs using a batch size of
128 and a learning rate of 0.002 for each stage. We uti-
lize the SGD optimizer and conduct the training on a single
NVIDIA RTX3090 GPU. To ensure the reliability of our
proposed algorithms, we independently repeat all experi-
ments three times and report the average results obtained
from these trials.

4.3. Comparison with SOTA Methods

The test accuracies of DPR and recent domain gener-
alization (DG) methods [2, 7, 14, 25, 26, 31, 40, 44, 48,
49, 53, 57, 61] on five benchmark datasets are reported
in Tab. 1. Notably, DPR achieves the highest average
performance and set new state-of-the-art (SOTA) results
at 97.45%, 86.43%, 86.13%, 62.05%, and 57.10% on all
benchmark datasets. The proposed method has three main
advantages: (1) Unlike DADA [42], our method fully uti-
lizes the disentangled descriptions and does not require the
design of complex disentangling losses. (2) DPR fully
leverages both domain-specific and domain-invariant infor-
mation and cleverly combines them during inference. (3)
Distinguished from other methods that use large-scale pre-
trained models, we achieve superior generalization perfor-
mance by using less training data. Overall, our method suc-
cessfully leverages the generalization ability of large-scale
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Table 1. Comparsion with the state-of-the-art methods on PACS, VLCS, OfficeHome, DomainNet and TerraInc.

Method Venue PACS VLCS OfficeHome DomainNet TerraInc Avg

ResNet-50 Pre-trained by ImageNet.

DANN [14] IJCAI’16 83.60 ±0.4 78.60 ±0.4 65.90 ±0.6 38.30 ±0.1 46.40 ±0.5 65.56
Fish [48] ICML’22 85.50 ±0.3 77.80 ±0.3 68.60 ±0.4 42.70 ±0.2 45.10 ±1.3 63.94
DAC-SC [25] CVPR’23 87.50 ±0.1 78.70 ±0.3 70.30 ±0.2 44.90 ±0.1 46.50 ±0.3 65.60
SAGM [53] CVPR’23 86.60 ±0.1 80.00 ±0.1 70.10 ±0.1 45.00 ±0.1 48.80 ±0.1 66.10

ViT-B/16 Pre-trained by CLIP.

SWAD [7] NIPS’21 91.30 ±0.1 79.40 ±0.4 76.90 ±0.1 51.70 ±0.8 45.40 ±0.5 68.94
CLIP [44] - 96.20 ±0.1 81.70 ±0.1 82.00 ±0.1 57.50 ±0.1 33.40 ±0.1 70.16
SMA [2] NIPS’22 92.10 ±0.2 79.70 ±0.2 78.10 ±0.1 55.90 ±0.2 48.30 ±0.7 70.82
ERM [49] ICLR’21 93.70 ±0.1 82.70 ±0.1 78.50 ±0.1 53.80 ±0.1 52.30 ±0.1 72.20
DUPRG [40] ICLR’23 97.10 ±0.2 83.90 ±0.5 83.60 ±0.3 59.60 ±0.3 42.00±1.3 73.24
CoOp [61] IJCV’22 96.20 ±0.1 77.60 ±0.2 83.90 ±0.1 59.80 ±0.1 48.8 ±0.1 73.26
MIRO [7] ECCV’22 95.60 ±0.8 82.20 ±0.3 82.50 ±0.1 54.00 ±0.3 54.30 ±0.4 73.72
SEDGE [31] - 96.10 ±0.1 82.20 ±0.1 80.70 ±0.2 54.70 ±0.1 56.80 ±0.3 74.10
DPL [57] - 97.30 ±0.2 84.30 ±0.4 84.20 ±0.2 56.70 ±0.1 52.60 ±0.6 75.02
GESTUR [26] ICCV’23 96.00 ±0.0 82.80 ±0.1 84.20 ±0.1 58.90 ±0.1 55.70 ±0.2 75.52

Ours - 97.45 ±0.1 86.43 ±0.3 86.13 ±0.2 62.05 ±0.1 57.10 ±0.2 77.83

Table 2. Ablation study on individual components of our method
on VLCS (VL), OfficeHome (OH), and DomainNet (DN).

GPT-Assist VPT Lmix DSPL VL OH DN Avg.

Text-Disentanglement only.

– – – – 77.6 83.9 59.8 73.8
✓ – – – 79.0 85.2 61.5 75.3

Image-Disentanglement only.

– ✓ – – 84.9 85.2 59.8 76.6
– ✓ ✓ – 85.1 85.4 60.1 76.9
– ✓ – ✓ 85.5 85.5 60.5 77.2
– ✓ ✓ ✓ 86.0 85.7 60.6 77.4

Image and Text-Disentanglement.

✓ ✓ – – 85.3 85.5 61.5 77.4
✓ ✓ ✓ – 85.6 85.7 61.8 77.7
✓ ✓ – ✓ 86.0 85.9 62.0 78.0
✓ ✓ ✓ ✓ 86.4 86.1 62.1 78.2

pre-trained models and demonstrates the effectiveness of
our hypothesis compared to other baseline methods.

4.4. Ablation Study

To validate the effectiveness of each component of our
method, we conduct an ablation experiment on VLCS, Of-
ficeHome, and DomainNet datasets in Tab. 2. Our base-
line (see 1st row) for text disentanglement involves CoOp
with learnable domain-invariant and domain-specific text
prompts but does not incorporate the guidance of GPT-
Assist disentangled descriptions.

The effectiveness of Text-Disentanglement. Our text
disentanglement achieves improvements of +1.4%, +1.3%,
and +1.7% with baseline (see 1st row and 2nd row in Tab. 2)
and our Image-Disentanglement achieved improvements of
+0.5%, +0.3% and +0.7% with text guidance (see 4th row
and 8th row in Tab. 2). This observation indicates that the
text modality is easy to disentangle and the text prompt
plays a vital role in guiding the process of image disentan-

Table 3. Analysis of the influence of the parameter La on text
disentanglement. Here, La represents the number of responses
generated by GPT-3 for each input question.

method VL OH DN Avg.

Baseline 77.64 83.92 59.83 73.80
+ hand-craft description 78.02 84.48 60.45 74.32

La = 1 + fine-grained 78.24 84.67 60.66 74.52
+ domain-invariant 78.56 84.95 61.01 74.84

La = 3 + fine-grained 78.35 84.83 60.84 74.67
+ domain-invariant 78.74 85.17 61.27 75.06

La = 5 + fine-grained 78.51 84.99 60.98 74.83
+ domain-invariant 78.89 85.22 61.39 75.17

La = 7 + fine-grained 78.55 85.09 61.04 74.89
+ domain-invariant 79.00 85.24 61.57 75.27

La = 9 + fine-grained 78.54 85.11 61.10 74.91
+ domain-invariant 78.95 85.29 61.49 75.24

La = 11 + fine-grained 78.59 85.07 61.08 74.91
+ domain-invariant 78.91 85.33 61.54 75.26

glement. We further investigate the impact of text descrip-
tions on disentanglement in Tab. 3. Under the conditions of
hand-craft, fine-grained, and domain-invariant descriptions,
we find that using domain-invariant descriptions achieves
the best performances. Furthermore, we demonstrate that
as the descriptions La generated by GPT-3 increases, the re-
sults also improves. This result indicates that by increasing
the generation of fine-grained descriptions, we can extract
a larger number of domain-invariant descriptions, which in
turn leads to improved classification performance.

The effectiveness of Image-Disentanglement. Our im-
age disentanglement achieves +0.2%, +0.2% and +0.3% im-
provement without text disentanglement (see 4th row and
6th row in Tab. 2) and achieves +0.3%, +0.2% and +0.3%
improvement with Text-Disentanglement (see 7th row and
8th row in Tab. 2). We select three domains: real, clipart,

23601



0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

(a) Baseline
R-C negative
R-C positive

0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

(b) Baseline
R-S negative
R-S positive

0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

(c) Baseline + Disentanglement
R-C negative
R-C positive

0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

(d) Baseline + Disentanglement
R-S negative
R-S positive

Figure 5. The distance distributions of randomly selected positive
and negative pairs between the real domain and clipart domain,
as well as between the real domain and sketch domain in the Do-
mainNet dataset, were visualized.
and sketch from DomainNet and define samples in different
domains but the same category as positive pairs and those in
different categories as negative pairs. We calculate the dis-
tances with 34,500 positive and negative pairs before and
after disentanglement in Fig. 5. The results show signifi-
cant decrease in the distance between positive samples after
disentanglement, which confirms the correctness of our as-
sumption regarding text disentanglement.
Table 4. Analysis of the influence of both training and training-
free conditions on DSPL.

method VL OH DN Avg.

DSPL (training-free) 85.39 85.53 60.28 77.07
DSPL (training) 85.99 85.65 60.66 77.43

The effectiveness of Domain-Specific Prototype
Learning. The DSPL module provides a performance gain
of +0.9%, +0.3%, and +0.5% when directly adding it to our
baseline (see 4th row and 6th row in Tab. 2). When based
on the text disentanglement, the DSPL further improves
the performance of +0.8%, +0.4%, and +0.3% (see 8th

row and 10th row in Tab. 2). This indicates that utilizing
partial domain-specific information is advantageous for
classification. Furthermore, we conduct experiments to
evaluate the effectiveness of DSPL under two different
conditions: ‘training-free’ and ‘training-based’ in Tab. 4.
The experimental results indicate that, under the given
training conditions, the performance improvement achieved
by DSPL is +0.60%, +0.12%, and +0.38%, respectively,
compared to the training-free baseline.

4.5. Parameter Analysis.

The proposed method includes six parameters in DPR,
i.e., α1 and β1 in Eq. 6, α2, β2 and β3 in Eq. 10, α3 in
Eq. 12. To study the effect of the above six parameters, we
set them to different values, as shown in Fig. 6. We evaluate
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Figure 6. Parameter analysis of α1, α2, β1, β2 β3 and α3.

the effect of α1 when β1 = 8.0 in Fig. 6 (a). We evaluate
the effect of β1 when α1 = 1.0 in Fig. 6 (b). We evaluate
the effect of α2 when β2 = 2.0, β3 = 0.8 in Fig. 6 (c). We
evaluate the effect of β2 when α2 = 0.8, β3 = 0.8 in Fig. 6
(d). We evaluate the effect of β3 when α2 = 0.8, β2 = 2.0
in Fig. 6 (e). Finally, we find when α1 = 1.0, β1 = 8.0,
α2 = 0.8, β2 = 2.0, β3 = 0.8, and α3 = 5.0, our method
achieves the best performance.

5. Conclsion

In this paper, we propose the disentangled prompt rep-
resentation based on pre-trained LLM for DG. Our method
leverages GPT-Assist text disentanglement to learn domain-
invariant and domain-specific visual representations. Fur-
thermore, through analyzing the distributional differences
between domains, we introduce relevance-inspired domain-
specific prototype learning to effectively utilize domain-
specific information. Extensive experiments on the Do-
mainBed dataset have demonstrated that our framework
outperforms existing state-of-the-art DG methods.
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