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Abstract

Vision-language models (VLMs) have recently shown
promising results in traditional downstream tasks. Evalu-
ation studies have emerged to assess their abilities, with the
majority focusing on the third-person perspective, and only
a few addressing specific tasks from the first-person per-
spective. However, the capability of VLMs to “think” from
a first-person perspective, a crucial attribute for advanc-
ing autonomous agents and robotics, remains largely unex-
plored. To bridge this research gap, we introduce EgoThink,
a novel visual question-answering benchmark that encom-
passes six core capabilities with twelve detailed dimensions.
The benchmark is constructed using selected clips from ego-
centric videos, with manually annotated question-answer
pairs containing first-person information. To comprehen-
sively assess VLMs, we evaluate twenty-one popular VLMs
on EgoThink. Moreover, given the open-ended format of the
answers, we use GPT-4 as the automatic judge to compute
single-answer grading. Experimental results indicate that
although GPT-4V leads in numerous dimensions, all evalu-
ated VLMs still possess considerable potential for improve-
ment in first-person perspective tasks. Meanwhile, enlarg-
ing the number of trainable parameters has the most signif-
icant impact on model performance on EgoThink. In con-
clusion, EgoThink serves as a valuable addition to existing
evaluation benchmarks for VLMs, providing an indispens-
able resource for future research in the realm of embodied
artificial intelligence and robotics.

*Equal contribution, ‡ Project lead, B Corresponding author
Project page: https://adacheng.github.io/EgoThink/
GitHub page: https://github.com/AdaCheng/EgoThink/
Dataset page: https://huggingface.co/datasets/EgoThink/EgoThink/

EgoThink

Object
What is around me?

Activity
What am I doing?

Localization
Where am I?

Reasoning
What about the situation around me?

Forecasting
What will happen to me?

Planning  
How will I do?  

Figure 1. The main categories of our EgoThink benchmark to
comprehensively assess the capability of thinking from a first-
person perspective.

1. Introduction

Benefiting from the rapid development of large lan-
guage models (LLMs) [8, 60, 73], vision-language models
(VLMs) [2, 15, 43, 80] have shown remarkable progress in
both conventional vision-language downstream tasks [2, 15,
43, 80] and following diverse human instructions [13, 42,
48, 81, 89]. Their application has expanded into broader
domains such as robotics [21, 31, 40] and embodied arti-
ficial intelligence (EAI) [71, 78]. As a result, the thorough
evaluation of VLMs has become increasingly important and
challenging. Observing and understanding the world from
a first-person perspective is a natural approach for both hu-
mans and artificial intelligence agents. We propose that the
ability to “think” from a first-person perspective, especially
when interpreting egocentric images, is crucial for VLMs.

However, as shown in Table 1, the ability to think from a
first-person perspective is not adequately addressed by cur-
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Benchmark Capability Perspective Data Source Answer Type Evaluator Size

VL-CheckList [84] Object / Attribute / Relation Third Datasets PS Accuracy 410k
LVLM-eHub [77] General Multi-Modality Third Datasets MC / OE Metrics / LLMs / User 332k
MME [19] General Multi-Modality Third Handcraft MC Accuracy 2,194
Tiny LVLM-eHub [68] General Multi-Modality Third Datasets OE LLMs 2,100
MMBench [54] General Multi-Modality Third Datasets / Handcraft / LLMs MC LLMs 2,974
PCA-EVAL [11] Decision-Making Third Handcraft OE Accuracy / User 300
EgoTaskQA [34] Spatial / Temporal / Causal First Crowdsourcing OE Crowdsourcing 40k
EgoVQA [16] Object / Action / Person Third / First Handcraft MC Accuracy 520
EgoThink (Ours) First-Person Thinking First Handcraft OE LLMs 700

Table 1. Comparison of recent comprehensive evaluation benchmarks of VLMs and our proposed benchmark EgoThink. Third and first
indicate third-person and first-person perspectives. Datasets/Handcraft/LLMs denote existing datasets, manual annotation, and automatic
generation by LLMs. PS/MC/OE indicate pairwise scoring, multi-choice, and open-ended question-answering, respectively.

rent evaluation benchmarks for VLMs. On one hand, most
of these benchmarks (six out of nine, as listed in Table 1)
focus solely on the third-person perspective. On the other
hand, those benchmarks that do consider the first-person
perspective only encompass a limited range of capabilities.
For instance, EgoTaskQA [34] examines spatial, temporal,
and causal aspects, whereas EgoVQA [16] is limited to ob-
ject, action, and person aspects. Therefore, there is a clear
need to develop a comprehensive benchmark to evaluate the
first-person capabilities of VLMs more effectively.

In this work, we introduce a new benchmark for VLMs
from a first-person perspective, named EgoThink. The ini-
tial step in developing this benchmark involves determining
the necessary capabilities to assess. Humans, when interact-
ing with the real world, consider a series of questions cen-
tered on themselves, ranging from “What is around me?”,
“What am I doing?”, “Where am I?”, “What about the sit-
uation around me?”, “What will happen to me?” to “How
will I do?”. Drawing inspiration from this, we evaluate six
core capabilities of VLMs, namely object, activity, local-
ization, reasoning, forecasting, and planning. Each capa-
bility corresponds to one of the aforementioned questions,
as illustrated in Figure 1. The next step is constructing the
benchmark. We first categorize the six core capabilities into
twelve detailed dimensions. We then select a minimum of
50 distinct and clear clips from egocentric videos for each
dimension and manually annotate them with relevant first-
person question-answer pairs. This approach ensures the
quality and variety of the benchmark. The final step is eval-
uating VLM performance on this benchmark. Building on
recent studies [7, 12, 68], we use GPT-4 [60] as an auto-
matic evaluator. The Pearson correlation coefficient, when
compared with human evaluation, shows a value of 0.68,
indicating that the evaluation results are dependable.

Based on our proposed EgoThink benchmark, we con-
duct comprehensive experiments to evaluate the first-person
capabilities of twenty-one popular VLMs with varying
model and data compositions. The findings indicate that
GPT-4V stands out as the most effective model in various
aspects. However, it shows less impressive results in spe-

cific capabilities such as activity and counting. Addition-
ally, we observed that no single VLM consistently surpasses
others in every aspect. For instance, GPT-4V is less effec-
tive than BLIP-2-11B for localization. Increasing the lan-
guage model portion of the VLMs generally leads to better
performance, but this improvement is not uniform across all
models. Finally, our results highlight a significant potential
for further enhancing the first-person capabilities of VLMs.

2. Related Work

Vision-Language Models. Inspired by the impressive suc-
cess of LLMs [8, 61, 75], the recent popular VLMs tend
to regard the powerful LLMs as the core backbone. At
the beginning, VLMs usually use large-scale image-text
pairwise datasets [9, 35, 46] or arbitrarily interleaved vi-
sual and textual data [2, 90] to pre-train. Furthermore,
thanks to the availability of enormous image-text instruc-
tion datasets [41, 49], recent studies [13, 42, 48, 81, 89]
further apply instruction tuning to help VLMs generate sat-
isfactory answers. Benefiting from the two-stage training
process, recent VLMs can achieve stunning performance on
downstream vision-language tasks [3, 33, 46, 64].
Evaluations of VLMs. To evaluate the abilities of VLMs,
there are diverse types of vision language downstream
tasks. Conventional benchmarks, such as image caption
tasks [29, 82] and visual question reasoning tasks [23, 67],
mainly probe specific abilities of VLMs from the third-
person perspective. Meanwhile, specialized analytical stud-
ies comprehensively evaluate the performance of VLMs
from the third-person perspective, where Vlue [87] consists
of five fundamental tasks and Lvlm-ehub [77] evaluates six
categories of capabilities on 47 standard vision-language
benchmarks. As for the first-person perspective, there are
some egocentric evaluation benchmarks in the computer vi-
sion field to assess some visual capabilities [32, 53, 83, 88].
In terms of multi-modality, there are a few benchmarks,
such as EgoVQA[16] and EgoTaskQA [34], where mainly
specific tasks without an overall understanding. In this pa-
per, we mainly focus on exploring the comprehensive capa-
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Object

Q: What's in my hands?

A: Radish.

Q: What am I holding in my
hand?
A: Phone.

Localization

Activity

Q: What am I doing now?
A: folding clothes.

Q: What am I doing?
A: Cultivating plants.

PlanningQ: How many bricks that I
am holding?
A: Two.

Reasoning

Forecasting

Q: What will I put in the
washing machine?
A: Clothes.

Q: What am I going to do?
A: Cut lemon from the
branch.

Planning

Planning

Q: How to go to the ATM machine?
A: Go forward to the end, after that turn left and continue to the end,
then turn right to face the ATM.

Q: Where is the stove, on
my left or right?
A: On my right.

Q: What is on my right?
A: A red car.

Spatial Relationship

Q: What color is the thing in
my hand?
A: Pink.

Attribute

Affordance

Location

Existence Counting

Comparison

Situated Reasoning

Q: Are there less rocks on my
left or on my right?
A: There are less rocks on my
left.

Q: Which one is closer to
me? The sink or the
rubbish can on the ground?
A: The sink .

Q: How many pots are
there on my right?
A: One.

Navigation

Assistant
Q: How to weigh the thing holding in my hands?
A: Take away the bottle on the scale, make sure the scale is turned on and
set to zero, then place the thing in my hands on the scale's platform and
read the weight.

Q: Where am I?
A: In a grocery.

Q: Where am I now?
A: Gym.

Q: Is the item I'm holding in
my hand rusty or not?
A: It is rusty.

Q: What's the use of the object
on my right side?
A: To block the light.

Q: What is the use of the tool
that I am holding?
A: Mopping.

Q: Why am I putting my hand
there?
A: To feel the temperature of
the pan.

Q: Am I left-handed or
right-handed?
A: Right-handed.

Figure 2. Categories with fine-grained dimensions and their corresponding examples of EgoThink benchmark.

bilities of VLMs to think from a first-person perspective, as
a supplement to previous evaluation benchmarks.

3. EgoThink Benchmark
In this section, we first elaborate on the core capabilities
of thinking from a first-person perspective. Then, we intro-
duce the process to manually construct our proposed bench-
mark EgoThink, which asks VLMs to generate open-ended
answers according to first-person images and questions.

3.1. Core Capabilities

As shown in Figure 2, we specifically design six categories
with twelve fine-grained dimensions from the first-person
perspective for quantitative evaluation.
• Object: What is around me? Recognizing objects in the

real world is a preliminary ability of the human visual sys-
tem [50, 85, 91]. Images from a first-person or egocentric
perspective [53, 65, 88] pay more attention to the objects
surrounding the subject or in hands. Moreover, we further
divide the object category into three fine-grained dimen-
sions: (1) Existence, predicting whether there is an object
as described in the images; (2) Attribute [17, 37], detect-
ing properties or characteristics (e.g., color) of an object;
(3) Affordance [28, 56], predicting potential actions that a
human can apply to an object.

• Activity: What am I doing? Activity recognition is to
automatically recognize specific human activities in video
frames or still images [36, 38, 74]. From the egocen-
tric perspective, we mainly focus on actions or activities
based on object-hand interaction [6, 18, 59].

• Localization: Where am I? In reality, localization is a
critical capability for navigation and scene understanding
in the real world [55, 66]. Here we investigate the local-
ization capability from two aspects, Location and Spatial
Relationship. Location indicates detecting the scene sur-
rounding the subject [14, 26]. Spatial reasoning contains
allocentric and egocentric perspectives [24, 39, 57, 58].
We focus on the egocentric perspective, i.e., the position
of the object with respect to the subject.

• Reasoning: What about the situation around me?
During the complex decision-making process, reasoning
lies everywhere in our lives. Here we mainly focus on
Counting, Comparison, and Situated Reasoning. Due to
the first-person perspective, we generally count or com-
pare objects in our hands or surrounding ourselves. As
for situated reasoning, we employ cases that cannot be
answered directly from the information in the images and
require further reasoning processes.

• Forecasting: What will happen to me? Forecasting [20,
25, 51, 52] is a critical skill in the real world. From an
egocentric view, forecasting always predicts the future of
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VLMs Image Encoder LLM Alignment Module TTP ToP Dataset Size EgoData VideoImage-Text Instruction

API-based Model

GPT-4V [60] Unknown

∼7B Models

OpenFlamingo-7B [2, 5] CLIP-ViT-L MPT7B Attention 1.4B 8.1B 2B - % !

BLIP-2-6.7B [43] EVA-CLIP-ViT-g OPT6.7B Q-Former 108M 7.8B 129M - % %

VideoChat-7B [44] BLIP2-VE Vicuna7B Q-Former 205M 8B 25M 18K % !

LLaVA-1.5-7B [47] CLIP-ViT-L-336px Llama27B MLP 6.8B 7.1B 558k 665k % %

MiniGPT-4-7B [89] BLIP2-VE Llama27B Linear 23M 7.7B 5M 3.5k % %

InstructBLIP-7B [13] EVA-CLIP-ViT-g Vicuna7B Q-Former 189M 7.9B - 16M % %

LLaMA-Adapter-7B [22] CLIP-ViT-L LLaMA7B Early Fusion 14M 7.2B 567k 52k % %

Otter-I-7B [42] CLIP-ViT-L MPT7B Attention 1.4B 8.1B - 2.8B % !

PandaGPT-7B [70] ImageBind Vicuna7B Linear + LLM LoRA 38M 7.9B - 160k ! !

mPLUG-owl-7B [81] CLIP-ViT-L LLaMA7B Attention 4M 7.1B 204M 158k % %

Video-LLaVA-7B [45] LanguageBind Vicuna7B Linear 6.8B 7.5B 1260k 765k % !

LLaVA-7B [48] CLIP-ViT-L Llama27B Linear 6.7B 7.1B 595k 158k % %

ShareGPT4V-7B [10] CLIP-ViT-L-336px Vicuna7B MLP 6.7B 6.7B 1.2M 665k % %

∼13B Models

InstructBLIP-13B [13] EVA-CLIP-ViT-g Vicuna13B Q-Former 189M 14.2B - 16M % %

PandaGPT-13B [70] ImageBind Vicuna13B Linear+LLM LoRA 52M 13.1B - 160k ! !

LLaVA-13B-Vicuna [48] CLIP-ViT-L-336px Vicuna13B Linear 13.0B 13.3B 595k 158k % %

BLIP-2-11B [43] EVA-CLIP-ViT-g FlanT5XXL Q-Former 108M 12.2B 129M - % %

InstructBLIP-11B [13] EVA-CLIP-ViT-g FlanT5XXL Q-Former 189M 12.3B - 16M % %

LLaVA-13B-Llama2 [48] CLIP-ViT-L Llama213B Linear 13.0B 13.3B 595k 158k % %

LLaVA-1.5-13B [47] CLIP-ViT-L-336px Llama213B MLP 13.0B 13.4B 558k 665k % %

Table 2. Statistics of compared API-based and open-source VLMs, where TTP and ToP indicate Total Trainable Parameters and Total Pa-
rameters, respectively. Moreover, EgoData and Video indicate that there are egocentric visual data and video data for training, respectively.

object-state transformation or hand-object interactions.
• Planning: How will I do? In reality, planning [1, 30, 69]

is an important capability to deal with complex problems,
typically applied in Navigation [62, 63, 72] and Assis-
tance [27, 76]. Navigation is going to a goal location from
a start position, while assistance is offering instructions to
solve daily problems.

3.2. Data Collection

In this section, we mainly introduce the detailed processing
to construct our EgoThink benchmark.
Collecting first-person visual data. Firstly, we leverage
a popular and large egocentric video dataset Ego4D [25],
which is designed to advance the field of first-person per-
ception in computer vision. To obtain a diverse representa-
tion in different scenarios, Ego4D encompasses 3,670 hours
of video from 931 unique camera wearers spanning 74
global locations across 9 countries. To collect first-person
visual data, we begin by extracting every frame from a sub-
set of the Ego4D video dataset, yielding a diverse raw image
dataset. Please note that our current focus is solely on im-
ages, as most VLMs today do not support video input. We
intend to expand our scope to include videos in our future
work. Considering the heavy human labor and the diversity
of scenarios, we sample images every few dozen frames.

Figure 3. This chart illustrates the distribution of various scene
categories within the EgoThink dataset. The ‘others’ category en-
compasses 13 different scene types, each representing less than
one percent of total scenes.

To ensure high quality, we apply strict criteria for select-
ing the extracted frames. We first exclude images that lack
clarity or fail to exhibit egocentric characteristics. Then,
to obtain the high diversity within the dataset, we conduct
a further screening to ensure that at most two images per
video are included in the filtered image set. Finally, we ob-
tain enormous high-quality images with exhibit egocentric
characteristics as first-person image candidates.
Annotating question-answer pairs. Upon receiving a
substantial collection of first-person image candidates, we
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Methods Object Activity Localization Reasoning Forecasting Planning Average
Exist Attr Afford Loc Spatial Count Compar Situated Nav Assist

API-based model

GPT-4V 62.0 82.0 58.0 59.5 86.0 62.0 42.0 48.0 83.0 55.0 64.0 84.0 65.5

∼7B Models

OpenFlamingo-7B 16.0 55.0 37.0 15.0 34.0 34.0 21.0 40.0 21.0 31.0 11.0 11.0 27.2
BLIP-2-6.7B 49.0 29.0 39.0 33.5 60.0 31.0 3.0 21.0 33.0 25.0 8.0 6.0 28.1
VideoChat-7B 46.0 44.0 36.0 45.0 61.0 42.0 36.0 39.0 32.0 26.5 13.0 21.0 36.8
LLaVA-1.5-7B 33.0 47.0 54.0 35.5 35.0 49.0 20.0 47.0 37.0 27.0 29.0 54.0 39.0
MiniGPT-4-7B 50.0 56.0 46.0 39.0 55.0 49.0 14.0 48.0 31.0 41.5 14.0 44.0 40.6
InstructBLIP-7B 50.0 33.0 45.0 47.5 77.0 38.0 18.0 43.0 67.0 40.5 19.0 31.0 42.4
LLaMA-Adapter-7B 37.0 60.0 46.0 34.5 48.0 51.0 29.0 39.0 25.0 41.5 42.0 57.0 42.5
Otter-I-7B 48.0 56.0 39.0 44.0 60.0 44.0 39.0 48.0 42.0 38.0 31.0 55.0 45.3
PandaGPT-7B 40.0 56.0 41.0 37.0 61.0 52.0 19.0 52.0 53.0 43.0 39.0 61.0 46.2
mPLUG-owl-7B 56.0 58.0 47.0 53.0 60.0 53.0 25.0 49.0 44.0 49.5 33.0 58.0 48.8
Video-LLaVA-7B 56.0 60.0 53.0 45.0 86.0 60.0 39.0 38.0 60.0 46.5 11.0 38.0 49.4
LLaVA-7B 63.0 58.0 50.0 47.0 81.0 45.0 24.0 36.0 47.0 49.5 35.0 60.0 49.6
ShareGPT4V-7B 67.0 75.0 53.0 55.5 77.0 62.0 30.0 38.0 66.0 47.0 41.0 63.0 51.9

∼13B Models

InstructBLIP-13B 52.0 55.0 49.0 54.0 63.0 49.0 11.0 33.0 59.0 44.0 19.0 25.0 42.8
PandaGPT-13B 35.0 52.0 41.0 40.5 68.0 31.0 32.0 40.0 47.0 45.5 16.0 69.0 43.1
LLaVA-13B-Vicuna 54.0 62.0 52.0 46.0 53.0 46.0 26.0 44.0 29.0 44.0 35.0 66.0 46.4
BLIP-2-11B 52.0 62.0 41.0 49.5 90.0 66.0 25.0 50.0 70.0 48.0 18.0 24.0 49.6
InstructBLIP-11B 74.0 68.0 48.0 49.5 86.0 52.0 32.0 49.0 73.0 53.0 16.0 17.0 51.5
LLaVA-13B-Llama2 65.0 61.0 45.0 56.0 77.0 53.0 34.0 34.0 66.0 50.5 49.0 71.0 55.1
LLaVA-1.5-13B 66.0 55.0 51.0 55.0 82.0 57.0 32.0 56.0 67.0 48.5 39.0 55.0 55.3

Table 3. Combined single-answer grading scores on zero-shot setups for various dimensions. The bold indicates the best performance while
the underline indicates the second-best performance. Exist, Attr, Afford, Loc, Spatial, Count, Compar, Situated, Nav and Assist represent
existence, attribute, affordance, location, spatial relationship, counting, comparison, situated reasoning, navigation, and assistance.

engage six annotators to manually label question-answer
pairs. Given that the EgoThink benchmark is composed
of twelve dimensions, annotators were responsible for two
specific dimensions. The annotators can access all the im-
age candidates and are asked to select appropriate images to
annotate their corresponding question-answer pairs to rele-
vant categories. Once the image is selected, it will be re-
moved from the candidates to ensure no repetition. More-
over, to ensure the correctness of our annotations, we have
three additional annotators to review the question-answer
pairs after the first annotation process. The annotation will
not be reserved until the three annotators all agree that the
first-person visual data and the assigned question-answer
pairs meet the definition of a specific dimension.
Statistics. The EgoThink benchmark comprises a collec-
tion of 700 images across six categories with twelve fine-
grained dimensions. These images are extracted from 595
videos, ensuring a broad representation of scenarios. To
guarantee diversity, a wide range of scenes and concepts
has been deliberately selected. As depicted in Figure 3,
the dataset encompasses a diverse range of scenes, cover-
ing key scenarios relevant to EAI. Furthermore, we have
meticulously crafted question and answer for each image
in the EgoThink benchmark, aiming to closely replicate
real-life conversations. This involves employing different

question types, varying questions in length and complex-
ity, paired with well-reasoned and accurate answers. In ad-
dition, the size of the dataset is a well-balanced trade-off
between benchmark diversity and high cost of open-ended
QA evaluation. We ensure our 700 examples were diverse
in concepts, scenes, and videos to provide a robust perfor-
mance estimation within practical limits. Detailed statistics
of the EgoThink benchmark are presented in Appendix A.

4. Experiments
4.1. Experimental Setups

Vision-Language Models. We collect the most popular
eighteen types of representative VLMs to assess as shown
in Table 2. Due to the possible effects of model parameters,
we divide models into ∼7B and ∼13B for a fair compari-
son. Detailed information about VLMs can be found in Ap-
pendix B. We conduct zero-shot setups for all VLMs across
our EgoThink benchmark. The prompts used for each VLM
are shown in Appendix C.
Single-answer grading. Considering evaluating open-
ended model generations is not a trivial problem [54, 68],
we propose to use GPT-4 [60] as the automatic evalua-
tor [86] to better measure generated answers. In this pro-
tocol, we want to measure how close one model output
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Image Original Question & Answer

Question: Am I holding chopsticks in my
right hand?

Answer: Yes.

Model Predictions

GPT-4V: No, (you are not holding chopsticks in your right hand.
It looks like you are holding a pair of tongs.)
InstructBLIP-11B: Yes.
LLaVA-7B: Yes, you are holding chopsticks in your right hand.

Changed Question Format & Answer

Question: What am I holding in my right hand?
Answer: Chopsticks.

Model Predictions

GPT-4V: In your right hand, you’re holding what appears to be
a pan with a handle, and it looks like you’re cooking some food,
possibly a stir-fry or sauteed vegetables.

Figure 4. Case study (wrong) of GPT-4V in the existence dimen-
sion of the object ability. In both the question formats of yes/no
and what, GPT-4V can not correctly detect the chopsticks in my
right hand, while InstructBLIP-11B and LLaVA-7B can.

is to the reference. Different from traditional similarity-
based methods, GPT-4 pays more attention to semantics.
In the detailed implementation, we format the question, the
model output, and the reference in a prompt as shown in Ap-
pendix D and feed it into the GPT-4 evaluator. The GPT-4
evaluator is asked to assign a score of 0 (wrong), 0.5 (par-
tially correct), or 1 (correct) to the model output. Addition-
ally, we further discuss to use of GPT-3.5-Turbo, Claude-2,
and humans as evaluators in Section 5.2.

4.2. Results

We first present the overall results of the evaluated models
on our EgoThink benchmark as shown in Table 3. Despite
having improved over the years, VLMs are still difficult to
think from a first-person perspective, even GPT-4V. Among
the six categories, only the scores on planning and local-
ization are relatively high, the performance in other capa-
bilities can only reach around 60 points at best. Among
the better models, GPT-4V generally performs much better
than other models, only falling short in localization dimen-
sion compared to BLIP-2-11B. We will further introduce
the detailed scores across different dimensions. More case
studies can be found in Appendix E.
Results on object. In detail, we evaluate through
three dimensions, including existence, attribute, and affor-
dance. For existence, InstructBLIP-11B and ShareGPT4V-
7B achieve the top-2 performance, indicating that they can
predict the object precisely from the first-person perspec-

Image Question & Answer

Question: What is the shape of the object
I am holding in my left hand?

Answer: Rectangular.

Model Predictions

GPT-4V: Rectangular.
InstructBLIP-11B: Pen.
BLIP-2-11B: A paint brush.
PandaGPT-13B: I am holding a paintbrush in my left hand.

Image Question & Answer

Question:What am I doing?

Answer: Peeling the avocado.

Model Predictions

GPT-4V:Peeling vegetables.
BLIP-2-11B: Slicing an avocado.
InstructBLIP-11B: Chopping.
LLaVA-13B-Vicuna: You are cutting up an avocado in a
kitchen sink.

Figure 5. Case studies (wrong) in the attribute, affordance, and
activity dimensions. The top case demonstrates some VLMs locate
the wrong place in the attribute and affordance dimension. The
bottom case illustrates that in the activity dimension, some VLMs
fail to detect the specific action.

tive. As for GPT-4V, as illustrated in Figure 4, we observe
that its performance in handed object detection leaves room
for improvement. As for both attribute and affordance, the
GPT-4V model has demonstrated superior performance, es-
pecially in the attribute dimension. In both dimensions,
some open-source models as shown at the top of Figure 5
locate the wrong place or only answer the type of the object
rather than its attribute or affordance.
Results on activity. The performance of GPT-4V out-
performs all open-source VLMs in the activity dimension.
Among the ∼7B models, ShareGPT4V-7B and mPLUG-
owl-7B significantly outperform other VLMs and even
achieve superior or comparable performance to ∼13B mod-
els. Overall, ∼13B models tend to perform better than ∼7B
model in the activity dimension, but their scores are just
below the passing line. The most possible reason is that de-
tecting the specific action is difficult for VLMs as shown at
the bottom of Figure 5.
Results on localization. In general, BLIP-2-11B has
shown obvious advantages among all VLMs, even surpass-
ing GPT-4V in both location and spatial relationship dimen-
sions. In the location dimension, BLIP-2-11B, GPT-4V, and
InstructBLIP-11B demonstrate superior ability to achieve
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Image Question & Answer

Question: How many plates are there on
my left?

Answer: One.

Model Predictions

GPT-4V: One plate.
BLIP-2-6.7B: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
BLIP-2-11B: 2
InstructBLIP-11B: 2
LLaVA-7B: There are two plates on my left.
PandaGPT-13B: There are two plates on my left.

Image Question & Answer

Question: Why am I putting my hand
there?

Answer: To feel the temperature of the
pan.

Model Predictions

GPT-4V: To feel the pan’s warmth.
InstructBLIP-7B: cleaning pots and pans.
InstructBLIP-11B: Cook.
BLIP-2-11B: I am putting my hand there to stir the pots and
pans.

Figure 6. Case studies (wrong) in counting (top) and situated rea-
soning (bottom) dimensions. The top case shows VLMs can count
but can not understand their relative position. The bottom case
displays that the question requires commonsense knowledge and
image understanding where only GPT-4V can answer it correctly.

around 90 points. However, perceiving the spatial relation-
ship of an object relative to oneself is much more difficult.
This phenomenon can be also reflected in the top of Figure 5
where VLMs hard to distinguish left or right hand.
Results on reasoning. Counting is the most difficult
ability [80] among all evaluated dimensions. The best-
performing model, GPT-4V, only scores 42.0, far away
from satisfaction. Under the first-person perspective setup,
VLMs need to not only count but also understand the rel-
ative position to oneself, as shown in the top case of Fig-
ure 6. Meanwhile, the comparison dimension also reflects
the high difficulty, where the best score of 56.0 is ob-
tained by LLaVA-1.5-13B. As for situated reasoning, GPT-
4V demonstrates its strong commonsense reasoning ability
to answer complex questions at the bottom of Figure 6.
Results on forecasting. Achieving high performance
seems to be challenging as the best score achieved by GPT-
4V is only 55.0. InsturctBLIP-11B achieves a relatively
high score of 53.0 which is close to that of GPT-4V. We ob-
serve that the VLMs mainly suffer from two problems: rec-
ognizing objects incorrectly or forecasting too far as shown

Image Question & Answer

Question: What will I do next?

Answer: Open the car door.

Model Predictions

GPT-4V: You might open the car door.
LLaVA-7B: Next, I will wipe down the car to remove any dirt or
debris.
InstructBLIP-11B: Wash car.
mPLUG-owl-7B: I will continue to clean the car’s exterior and
interior.

Image Question & Answer

Question: How to get outside?

Answer: Walk forward to the end, turn
right, and walk a few steps until the glass
door is on the left. Turn left, open the glass
door, and walk out of the room.

Model Predictions

GPT-4V: To get outside, you might want to exit through the door
which is visible in the background, leading from the living space to
the outdoor area. Please ensure that you have everything you need
before leaving and that it’s safe to go outside.
LLaMA-Adapter-7B: You can use the door in the room to exit
the house.
LLaVA-7B: To get outside, the person in the image needs to open
the sliding glass door.
InstructBLIP-11B: Door.

Figure 7. Case studies (wrong) in the forecast (top) and navigation
dimension (bottom). The top case shows VLMs might detect the
glove as a cloth, while the bottom case indicates VLMs lack navi-
gation details and overlook image information.

in the top of Figure 7.
Results on planning. In both navigation and assistance di-
mensions, the highest scores are achieved by GPT-4V with
60.0 and 84.0, respectively. LLaVA-13B-Llama2 behaves
well in both dimensions with the second-best performance
but its score is still 10 points lower than that of GPT-4V.
The most possible reason is that answers provided by most
open-source VLMs lack crucial details or overlook impor-
tant information given in the images, as illustrated at the
bottom of Figure 7.

5. Analysis
5.1. Effects of Components

As shown in Table 2, VLMs consist of multiple key com-
ponents. In this section, we probe the influence of different
components on our EgoThink benchmark.
The total parameters of LLMs. Here we compare the per-
formance of ∼7B and ∼13B variants of four VLMs. Note
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Figure 8. Impact of LLMs sizes (above the dash-line) and
instruction-tuning (below the dash-line) on model performance.
Average scores across all capabilities are reported.

that the increase in the number of parameters mainly falls in
the LLMs. Firstly, as shown in the top part of Figure 8, scal-
ing does not lead to significant improvement for PandaGPT
and InstructBLIP, while LLaVA (LLaVA-7B and LLava-
13B-Llama2) and LLaVA-1.5 benefit a lot from scaling. We
hypothesize that this is because LLaVA series models do not
freeze their language models during instruction tuning, in-
dicating that enlarging the number of trainable parameters
can help improve both performance and generalization. In
other words, one can see that simply scaling up language
models without better alignment may not help.
Instruction tuning. We directly compare the performance
of BLIP-2-11B and InstructBLIP-11B, because these two
models differ only in instruction tuning and additional
instruction-aware tokens. As presented in the bottom part
of Figure 8, InstructBLIP-11B outperforms BLIP-2-11B af-
ter instruction tuning, despite an unexpectedly small mar-
gin. This may be because much of the instruction tuning
data employed by InstructBLIP is collected from specific
downstream tasks, whose data distributions are very differ-
ent from our first-person perspective data.
The information of image encoder. Considering that there
is no ablation version of VLMs for image encoder, follow-
ing Set-of-Mark [79], we probe the effect of visual ground-
ing information (i.e., a set of marks) in our setups. As
presented in Figure 9, GPT-4V with additional segmenta-
tion information can correctly detect the mentioned loca-
tion and objects, indicating that supplemented image infor-
mation can be helpful in some situations. More discussion
about quantitative experiments can be found in Appendix F.

5.2. Agreements between Human and Evaluators

In this section, we further assess the model performance
on object and planning dimensions using GPT-3.5-Turbo,
Claude-2, and human annotators. Due to the heavy human
labor, we ask three annotators to evaluate the performance
of GPT-4V, which is the overall best model. Human anno-

Image Image + SoM Question & Answer

Question: What am I
holding in my right hand?

Answer: An iron.

Model Predictions

GPT-4V: A wine glass.
GPT-4V+SoM: You are holding an iron in your right hand.

Figure 9. Case study (wrong) in the adding visual grounding in-
formation with images. The segmentation can help VLMs better
locate the objects in question.

tators consider the following aspects to evaluate: accuracy,
completeness, logical soundness, and grammatical correct-
ness. Our annotation system and detailed guidelines can be
found in Appendix G. We further conduct GPT-3.5-Turbo
and Claude-2 with the same evaluation prompt as GPT-
4. The Pearson correlation coefficients between automatic
evaluators (i.e., GPT-4, GPT-3.5-Turbo, Claude-2) and hu-
mans are 0.68, 0.43, and 0.68, respectively. The Cohen’s
Kappa coefficient among the three annotators is 0.81. This
shows that evaluations made by GPT-4 and Claude-2 have
a high correlation with humans. We hypothesize that recent
well-performant LLMs can evaluate highly aligned with hu-
mans, given that most answers in our benchmark are rela-
tively short and precise. Detailed scores of all evaluators
and their correlations are discussed in Appendix H.

6. Conclusion
To pave the way for the development of VLMs in the field
of EAI and robotics, we introduce a comprehensive bench-
mark, EgoThink. Designed to evaluate the capacity of
VLMs to “think” from a first-person perspective, EgoThink
encompasses six core capabilities across twelve detailed di-
mensions. We assess eighteen popular VLMs and find that
even the top-performing VLMs in most dimensions achieve
only around a score of 60. GPT-4V achieves the best overall
performance, but can not consistently surpass other open-
source VLMs across all dimensions. In the analysis, we
further probe the impact of various components on model
performance and find that the total number of trainable pa-
rameters in LLMs has the most significant effect. Despite
the human agreement with automatic evaluators being high,
the evaluation of planning is difficult due to the detailed
information in the answers. In future research, we aim to
improve the evaluation method and further explore the es-
sential capabilities of VLMs in the EAI and robotics fields.
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