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Abstract

This paper proposes a novel task named ”3D part group-
ing”. Suppose there is a mixed set containing scattered
parts from various shapes. This task requires algorithms
to find out every possible combination among all the parts.
To address this challenge, we propose the so called Gradi-
ent Field-based Auto-Regressive Sampling framework (G-
FARS) tailored specifically for the 3D part grouping task. In
our framework, we design a gradient-field-based selection
graph neural network (GNN) to learn the gradients of a log
conditional probability density in terms of part selection,
where the condition is the given mixed part set. This in-
novative approach, implemented through the gradient-field-
based selection GNN, effectively captures complex relation-
ships among all the parts in the input. Upon completion
of the training process, our framework becomes capable
of autonomously grouping 3D parts by iteratively selecting
them from the mixed part set, leveraging the knowledge ac-
quired by the trained gradient-field-based selection GNN.
Our code is available at: https://github.com/J-
F-Cheng/G-FARS-3DPartGrouping.

1. Introduction
Assuming that you purchase multiple unassembled IKEA
chairs and carelessly mix all the parts together, it can
quickly become a nightmare to sort through and assemble
each chair. The task can be especially daunting if the pieces
from different chairs are mixed together, making it chal-
lenging to identify the correct components for each chair.
Similarly, in the field of archaeology, recovering broken
cultural relics can be incredibly difficult, as the fragments
are often intermingled with the pieces from other relics.
In such cases, archaeologists must carefully separate the
mixed fragments and piece them together to reconstruct the
original relics. In a similar vein, the field of LEGO auto-
matic assembly requires AI agents to select different com-
binations of parts from massive LEGO blocks and assemble
them into a shape. All of these examples contain two goals:

The first goal is to identify the correct combinations from
the mixed part set (i.e. part grouping) and the second one
is to assemble them into reasonable shapes (i.e. part assem-
bly). To achieve these two objectives, algorithms must first
be capable of comprehending the geometric relationships
among all the parts. Next, they should be able to separate
the parts by their shapes, and finally, assemble the chosen
parts into reasonable shapes.

For the part assembly, previous works have researched
some methods for assembling a given group of parts. DGL-
Net [15] is the first work to explore the assembly problem
without prior instruction. The DGL-Net algorithm can pre-
dict the 6-DoF poses for each input part, enabling trans-
lation and rotation of the parts to their expected positions.
RGL-Net [27] is another part assembly work that utilizes
sequential information among all the input parts. By assem-
bling shapes in a specific order (e.g., top-to-bottom), RGL-
Net achieves more accurate assembly. IET [41] is a recently
proposed algorithm that utilizes an instance encoded trans-
former and self-attention mechanisms [30, 32, 36, 37, 40]
to enhance the network’s assembly ability.

However, part grouping still remains an unsolved prob-
lem. As previously mentioned, the goal of part grouping is
to use algorithms to identify all possible combinations in a
mixed part set. To address this, we introduce the 3D part
grouping task. The definition of this task is presented in
Fig. 1. Suppose we have a set of mixed parts from N dif-
ferent shapes. The 3D part grouping task mandates the al-
gorithms to process all these parts and categorize them into
groups based on their originating shapes.

Our proposed task 3D part grouping is challenging for
two main reasons. First, the algorithms must understand the
relationships among all the parts. Second, the exact number
of potential groups, N , is unknown. This uncertainty com-
plicates both the problem formulation and the creation of
effective algorithms. To tackle these challenges, we intro-
duce Gradient-Field-based Auto-Regressive Sampling (G-
FARS) framework in this paper. This framework integrates
a gradient-field-based graph neural network for the encoded
parts, aiding in understanding the relationships among all
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Figure 1. The definition of our proposed 3D part grouping task. Assuming we have a set which contains mixed parts from N shapes. Our
goal in this task is to use a grouping algorithm to separate these mixed parts and group them by their respective shapes.

the input parts. Moreover, it can auto-regressively sample
new groups from the mixed set, enabling the algorithm to
identify all the groups, regardless of the number of poten-
tial groups N . More details about G-FARS are in Sec. 4.

Our proposed task and algorithm hold significant po-
tential for the industrial world. In manufacturing environ-
ments, where parts from multiple products are intermixed,
a robotic system utilizing this method can aid in automated
sorting, leading to more efficient production lines. The 3D
part grouping algorithm can also generalize to other do-
mains. For instance, in recycling facilities, this method
could help segregate mixed materials into appropriate cat-
egories for processing, thus improving waste management
practices. Our contributions are concluded as follows:

• We introduce a novel setting termed 3D part group-
ing, which necessitates algorithms to identify all possible
combinations of the input mixed parts.

• We present the Gradient-Field-based Auto-Regressive
Sampling (G-FARS) for the 3D part grouping task. Our
framework addresses two primary challenges in this task:
1. understanding the relationships among parts and 2.
managing the uncertainty of the potential groups.

• Utilizing PartNet [25], we establish benchmarks for our
introduced task and showcase the effectiveness of G-
FARS in the 3D part grouping domain.

2. Related Works

2.1. Combinatorial Optimization

Combinatorial Optimization is an area that studies the task
of finding the best object from a finite set of objects. The

3D part grouping task aims to identify every possible com-
bination in a given set of parts. From this perspective, the
3D part grouping task aligns with combinatorial optimiza-
tion problems, and we can glean insights from combinato-
rial optimization algorithms.

Classic algorithms Research in combinatorial optimiza-
tion can be traced back to the 1960s. Some hallmark al-
gorithms include Dijkstra’s shortest path algorithm [4, 16–
18, 29] and Kruskal’s minimum spanning tree algorithm
[12]. These algorithms provided a robust foundation for
understanding the structure and intricacies of combinatorial
problems.

Heuristic methods have introduced a new dimension to
combinatorial optimization. Genetic algorithms [9–11, 14,
34], inspired by natural selection processes, stand as promi-
nent methods for these problems. They employ mecha-
nisms like mutation, crossover, and selection to pinpoint
solutions. Another significant method is Ant Colony Op-
timization [3, 8, 19, 20, 42], which emulates the behavior of
ants when finding a path from their colony to food sources.

Reinforcement learning-based methods Recently, some
reinforcement learning-based methods also demonstrate
their ability in combinatorial optimization problems [2, 24].
The basic idea behind these methods is to learn a policy to
search the solution space.

Graph neural networks are also making their mark in
addressing combinatorial optimization problems. They
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transpose the problem graph into continuous space, aiding
in the prediction of optimal combinatorial solutions. The
essence of graph neural networks revolves around the use
of message passing and aggregation operations on nodes
and edges to unearth and understand the graph’s layout.
Graph Convolutional Networks (GCNs) are a notable type
of graph neural network that applies convolutional opera-
tions on graphs, capturing local and global structural nu-
ances [21]. Edge Convolution, another variant, focuses
on the features of edges between nodes, amplifying the
model’s capacity to depict complex graphs [38].

2.2. 3D Part Assembly

Although this work does not consider the task of part as-
sembly, it is still worthwhile to review these works, as they
provide insights into identifying the relationships among the
input parts.

3D part assembly is a task proposed by Huang et al. [15]
which aims to assemble separate parts into a complete shape
without any external guidance. The goal of 3D part assem-
bly is to predict a translation vector and a rotation vector
for each part [6, 15, 27, 41]. We introduce two categories of
3D part assembly algorithms, graph neural network based
algorithms and transformer based algorithm:

Graph neural network based methods Huang et al. [15]
propose Dynamic Graph Learning algorithm to achieve the
goal of 3D part assembly task. DGL-Net includes a Point-
Net [28] for part feature extraction. They also propose an it-
erative graph neural network backbone for message passing
among all the part features. Besides, they propose dynamic
relation reasoning modules to learn the relationship among
all the encoded parts. They also have dynamic part aggrega-
tion modules for more direct information exchanges among
geometrically-equivalent parts.

RGL-Net, described in [27], is also a GNN-based algo-
rithm designed for the part assembly task. The key concept
behind RGL-Net is sequential assembly, where the separate
parts are assembled in a specific order, such as a top-to-
down approach. In particular, the authors employ GRUs [7]
to learn the order information, which significantly improves
the assembling performance. However, one potential limi-
tation of RGL-Net is that its performance may be subopti-
mal in non-ordered assembly settings. In other words, when
the parts are assembled in a random or unstructured order,
RGL-Net may not perform as well as it does in the ordered
assembly setting.

Transformer based method Zhang et al. [41] propose a
method that employs a transformer-based framework and
self-attention mechanism to model the relationships be-
tween different parts, while resolving the ambiguity issue

using instance encoding. The method includes four mod-
ules: a shared PointNet for feature extraction, a transformer
encoder for reasoning the relationships between parts, an
MLP predictor for pose estimation, and an instance encoder
for handling the ambiguity between parts. The experimen-
tal results show that IET achieves better performance than
DGL-Net and RGL-Net.

3. Backgrounds of Score-based Modeling
Through Stochastic Differential Equations

Our proposed G-FARS is built upon the score-based mod-
eling through stochastic differential equations (SDEs). It is
necessary to discuss the basic principles of the score-based
modeling before introducing G-FARS.

Score-based modeling through SDEs [33] is a recently
proposed technique for generation tasks. The basic idea be-
hind this modeling method is estimating the gradients of the
data distribution. The new data can be generated by sam-
pling the estimated data distribution. Score-based models
with SDEs are trained to estimate a time-dependent score
Sθ(x(t), t) of a given probability density function pt(x),
which can be described by Sθ(x(t), t) = ∇x log pt(x).
To successfully achieve a score-based model, we need to
set up a diffusion process which can be represented by a
continuous-time stochastic process {x(t) ∈ Rd}Tt=0, where
t ∈ [0, T ]. We choose a diffusion process such that x(0) ∼
p0 and x(T ) ∼ pT , where p0 is the data distribution, pT
is the prior distribution, and both are uncorrelated after the
perturbation by the diffusion process. We can describe our
diffusion process by using the following equation:

dx = f(x, t)dt+ g(t)dw. (1)

In the above equation, f(·, t) : Rd → Rd is the drift co-
efficient of the SDE, g(t) ∈ R represents the diffusion co-
efficient, and w means the standard Brownian motion. To
generate new data, we can sample the score function by re-
versing the diffusion process:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw̄, (2)

where w̄ denotes a Brownian motion with time flowing in
the reverse direction, and dt is an infinitesimal time step
with a negative sign. To successfully train a score-based
model, we optimize the following objective function:

min
θ

Et∼U(0,T )[λ(t)Ex(0)∼p0(x)Ex(t)∼p0t(x(t)|x(0))

[∥Sθ(x(t), t)−∇x(t) log p0t(x(t) | x(0))∥22]], (3)

4. Method
This section introduces our proposed G-FARS framework.
We start by discussing the working principle of the frame-
work. We then explain how we establish its key compo-
nent, referred to as the gradient-field-based selection GNN.
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Following that, we explore the training algorithm for our
framework. Finally, we discuss the sampling algorithm
within the G-FARS framework.

4.1. G-FARS: Gradient-Field-based Auto-
Regressive Sampling Framework

We propose a model, denoted as G-FARS, to solve the 3D
part assembly problem, the workings of which are illus-
trated in Fig. 2. Before we discuss our framework, we in-
troduce the definitions of the mathematical symbols first.

Mathematical symbol definitions Let n denote the index
for iteration, and Pn represents the mixed part set at itera-
tion n. Naturally, P0 is the initial input part set before any
processing by the algorithm. Each part in the mixed part set
is a point cloud which has the dimension of 1000 × 3. The
Boolean vector cn is used for part selection. At iteration n,
this vector determines how to select parts from the mixed
part set Pn to form a new group n. The ultimate goal of our
algorithm is to identify all possible groups.

Working principle Our framework consists of two key
components: a PointNet and a gradient-field-based selec-
tion graph neural network (GNN). The PointNet is em-
ployed to encode all the input parts. The gradient-field-
based selection GNN is constructed with Edge Convolution
layers [38], which enables the framework to understand the
relationships among all the input parts. We can use this net-
work to sample new selection vectors for the encoded parts.
Our framework operates as an auto-regressive algorithm.
Assuming we are at iteration n, we begin with using the
PointNet to obtain the encoded per-part features Fn

P . Fol-
lowing that, our gradient-field-based selection GNN is used
to sample a selection vector cn. The sampled vector cn al-
lows us to identify group n, while the complementary vector
cn (obtained via a bitwise NOT operation) determines the
unselected parts. These unselected parts then form the input
parts Pn+1 for the subsequent iteration n+ 1.

Auto-Regressive Sampling As stated in the Introduction
section, one critical issue in the 3D part grouping task is that
the number of groups N is not certain. Our framework is
able to solve this problem as it can auto-regressively sam-
ple new groups from the mixed part set. As stated in the
working principle part, our framework is able to sample a
new group at each iteration. In this case, our algorithm does
not care the number N in the mixed part set, and it only
stops when the mixed part set is cleaned or the algorithm
reaches the maximum iterations.

4.2. Gradient-Field-based Selection Graph Neural
Network

We have already discussed the main working principle of
G-FARS. The problem remaining here is how to obtain

the key component (i.e., the gradient-field-based selection
graph neural network Sc

θ ) in our proposed framework. In
our designed GNN, the nodes are the per-part features Fn

p

encoded by the PointNet. These nodes are fully connected
to facilitate message passing.

The learning objective Designing a suitable learning ob-
jective for the gradient-field-based selection graph is key to
achieving success in auto-regressive sampling. Recalling
the principle of G-FARS, we expect our designed model to
predict the correct selection for the input parts Pn at itera-
tion n. To achieve this, we design our gradient-field-based
GNN to learn the distribution of selections conditioned on
the input parts. Mathematically, our gradient-field-based se-
lection GNN learns a conditional probability p(cn | Fn

p ).
After the training process, the GNN learns all the ways of
selecting for the mixed part set. In this case, at each it-
eration, we can use the trained GNN to sample a correct
selection for the mixed part set.

4.3. Training

After confirming our learning objective, our next task is to
achieve our goal of estimating the distribution p(cn | Fn

p ).
Specifically, our gradient-field-based selection GNN is de-
signed to approximate the gradients of the target log con-
ditional probability density. Mathematically, we expect our
model to satisfy Sc

θ = ∇c log pt(cn | Fn
P ).

To achieve this goal, we basically follow the training
steps proposed by Song et al. [33], and we have discussed
this in the Backgrounds section (Sec. 3). However, we still
need to modify the training objective function to the condi-
tional form. We present the general form of the loss func-
tion in the following equation:

L(x,y) = λ(t)∥Sc
θ (x(t), t)−∇x(t) log p0t(x(t) | x(0),y)∥22,

(4)

where x(0) is the original data, x(t) is the perturbed data, y
represents the condition and t is time index. The next step
is to train G-FARS through Algorithm 1. In the training
algorithm, we first use PointNet to get the per-part feature
Fn
P . Following that, we sample time index t from the uni-

form distribution U(0, T ). Then the cn(t) can be obtained
through the perturbation. After that, we calculate the loss
function and perform back propagation. At the end of the
iteration, we optimize the parameters for both PointNet
and Sc

θ .

4.4. Sampling Algorithm

As stated above, our framework auto-regressively sam-
ples new selections to choose parts from the given part set.
In this case, a suitable sampler for our framework is the key
to achieve high performance of 3D part grouping. We use
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Figure 2. The auto-regressive sampling procedure of our proposed framework. First, we obtain the per-part feature by using a PointNet
[28] to encode all the input parts Pn at the iteration n. Then, we use the gradient-field-based (G-F-based) selection GNN to sample a
selection vector cn to obtain part group n, and use cn to get the rest parts Pn+1. Pn+1 will be the next input parts at the next iteration.
The auto-regressive sampling stops when Pn+1 is empty, or n reaches the maximum iteration.

Algorithm 1 The training algorithm
Input: Training dataset Dtrain

Parameter: T , N epochs
Output: Sc

θ , PointNet

1: for N epochs do
2: for each Pn, cn in Dtrain do
3: Fn

P ← PointNet(Pn);
4: Sample t ∼ U(0, T );
5: Add perturbation on cn(0) to obtain cn(t);
6: Calculate loss L(cn, Fn

P );
7: Perform back propagation;
8: Optimize the parameters of PointNet and Sc

θ ;
9: end for

10: end for
11: return G-F Selection GNN Sc

θ , PointNet;

Predictor-Corrector (PC) [33] as our sampler. We demon-
strate a simplified version in Algorithm 2. This method en-
sures that the generated samples are close to the desired dis-
tribution. Since our application requires a conditional PC
sampler, we have provided the algorithm in 2. After the
sampling procedure, we use a threshold Th = 0.5 to trans-
form the selection vector cn(0) to a boolean vector.

5. Experiment

5.1. Datasets

As 3D processing task, PartNet [25] can be a good op-
tion for us to conduct our experiments. We apply 6,323

Algorithm 2 Predictor-Corrector sampler
Input: Fn

P

Parameter: T , σ, N , C
Output: the sampled result cn(0)

1: Sample cn(T ) ∼ N (0, 1
2 log σ (σ

2T − 1)I).
2: for n← N − 1 to 0 do
3: tp ← (n+1)T

N t← nT
N

4: for i← 1 to C do
5: cn(tp)← Corrector(cn(tp), F

n
P )

6: end for
7: cn(t)← Predictor(cn(tp), F

n
P )

8: end for
9: return the sampled result cn(0)

chairs, 8,218 tables and 2,207 lamps from PartNet [25] in
our experiments. We apply random mixing method to cre-
ate our mixed part sets. We illustrate our mixing method in
Fig. 3. First, we randomly selected N shapes from the Part-
Net dataset (N is also a random number). Next, we mixed
all the parts into a single part set. Finally, we shuffle all
the parts to obtain our mixed set. For more statistics of our
mixed datasets, please refer to our Supplementary.

5.2. Evaluation Metrics

We use precision, recall and F1 score to evaluate the perfor-
mance of the algorithms in 3D part grouping task.

Definitions for TP, FP and FN in 3D part grouping task
Before the evaluation, it is necessary to define the TP, FP
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Figure 3. The random mixing method to create a mixed part set.
We randomly selected N shapes from the PartNet dataset. We
then mix all the parts into a single set. The sequence of parts are
shuffled.

and FN in 3D part grouping task. We here assume we have
one predicted group and the corresponding ground truth
group. TP, FP and FN are defined as:
• TP: The parts selected by the predicted group are also in

the ground truth group.
• FP: The parts selected by the predicted group are NOT in

the ground truth group.
• FN: The parts which are NOT selected by the predicted

group are in the ground truth group.

Single set average VS overall average To fully investi-
gate the performance of the algorithms, we provide two av-
eraging methods in the evaluation. We present the defini-
tions as follows:

• Single set average: We calculate the TP, FP and FN in one
part set, and calculate and record the corresponding pre-
cision, recall and F1 score of this single part set. After all
the input part sets are processed, we calculate the average
precision, recall and F1 score.

• Overall average: We calculate the TP, FP and FN for all
the part sets and record them. After all the input part

sets are processed, we calculated precision, recall and F1
score based on the accumulated TP, FP and FN.

Jaccard similarity matching In the evaluation proce-
dure, a critical issue is that the sequence of the predicted
part groups is not certain. In this situation, for fair evalua-
tion, we apply Jaccard similarity to match the ground truth
group with the predicted group. The formula of Jaccard
similarity is shown as follows:

J(P,G) =
|P ∩G|
|P ∪G|

(5)

where P is the predicted group, and G is the ground truth
group. In our task, |P ∩ G| represents the number of parts
which are included by both P and G, while |P ∪ G| repre-
sents the total number of unique parts in both P and G. In
our evaluation program, each ground truth group is matched
with the predicted group which has the highest Jaccard sim-
ilarity.

5.3. Baselines

As 3D part grouping is a newly proposed task, there are
no existing baselines specific to this task. Therefore, we
propose some alternative methods for comparisons:
• GRU-Mask: We propose GRU-Mask which uses a GRU

to generate a binary mask for the given part set. This mask
indicates how to select parts to form groups. GRU-Mask
is inspired by RNN-based methods [39, 43]. More details
about GRU-Mask can be found in the supplementary.

• Comp-Net: Comp-Net is another method proposed by
us, capable of classifying whether two parts can be
grouped to form a shape. Our idea is inspired by RL-
based approaches [23, 35]. We provide more information
about Comp-Net in our supplementary.

• Variants of G-FARS: Inspired by [1, 5, 22, 26, 31],
we propose three variants of G-FARS: G-FARS-CG, G-
FARS-R, and G-FARS-T. We use the same training and
inference algorithms (i.e., Auto-Regressive sampling) as
G-FARS in these variants. G-FARS-CG applies a GNN
for message passing among all the encoded parts. Be-
sides, it also includes a separate MLP to learn the score
function for part selection. G-FARS-R and G-FARS-T
use a ResNet [13] and a transformer [36] to learn the se-
lection score function respectively. For these variants, we
employ a score function modeling way that differs from
the one used in G-FARS, which is introduced in the sup-
plementary materials.

5.4. Experimental Details

Hardware and software details We conduct all the ex-
periments on a personal computer with CPU R9 3900x and
RTX3090. The memory of the PC is 32 GB. The operating
system is Ubuntu Linux.

27657



G-FARS

GT

Comp-Net

GRU-Mask

Input Set

TableChair Lamp

… … … … ……

Figure 4. The qualitative comparisons. To intuitively demonstrate the effect of grouping, we rotate and translate all the parts by using their
ground truth poses after the grouping procedure. The results show that only G-FARS is able to correctly group the 3D parts. Some baselines
even predict an incorrect number of groups (e.g., Comp-Net). Due to the page limit, we here only present the results of G-FARS and the
two most competitive baselines (i.e., GRU-Mask and Comp-Net). We have included the full comparison and an additional qualitative
comparison figure in the supplementary materials.

About hyper-parameters Our framework contains many
hyper-parameters. For the sampler and the sampling steps,
we discuss them in Table 3. For other details about hyper-
parameters, please refer to our supplementary.

5.5. Comparisons and Discussions

We present the quantitative comparisons in Table 1. Over-
all, our framework G-FARS outperforms other baselines by
a large margin on all datasets. This proves the effective-
ness of our proposed G-FARS. We also demonstrate the
qualitative results in Fig. 4 (the full comparison is in the
supplementary). To intuitively show our performance of
the grouping results, we rotate and translate the parts in all
the groups with their ground truth poses after the grouping
procedure. Please Note that the rotation and translation
are only used for demonstration purpose. We DO NOT
use the ground truth poses information in the grouping
procedure or the training procedure. The figure shows
that our G-FARS is able to group most of the mixed part
sets. However, the other baselines hardly manage to predict
the correct groups accurately. Besides these experiments,
we also demonstrate category mixing testing, and general-
ization testing to unseen categories in the supplementary.
These tests further prove the effectiveness of G-FARS.

5.6. Ablation Study

To further prove the effectiveness of our algorithm, we con-
ducted ablation studies. These experiments were carried out
on the Chair dataset. Our ablation experiments comprise
two parts: architecture ablation (see Table 2) and sampling
ablation (see Table 3).

In the architecture ablation, we removed two key com-
ponents from our G-FARS. For G-FARS w/o GF, we use
a deterministic loss (i.e., Binary Cross Entropy) instead of
a score-matching loss (refer to Equation 4) [33] to train a
network with the same architecture, adding a Sigmoid acti-
vation at the output. In the case of G-FARS w/o Graph, we
replace the GNN with an MLP to learn Sc

θ . The results in
Table 2 prove the effectiveness of both modules.

For the sampling ablation, we propose a variant of our
G-FARS framework, where the sampler in our framework
is replaced by Euler-Maruyama (EM) sampler [33]. The
table shows that the performance of PC sampler is better
than the performance of the EM sampler. The main rea-
son why PC sampler outperforms the EM sampler is that
the PC sampler uses both the numerical SDE solver and the
Langevin MCMC as the corrector, while the EM sampler
only contains numerical SDE solver. The Langevin MCMC
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Metrics Category GRU-Mask Comp-Net G-FARS-CG G-FARS-R G-FARS-T G-FARS

Precision ↑
Chair 0.641 / 0.608 0.696 / 0.629 0.592 / 0.532 0.586 / 0.522 0.6 / 0.539 0.828 / 0.793
Table 0.647 / 0.601 0.758 / 0.694 0.62 / 0.555 0.608 / 0.545 0.596 / 0.528 0.848 / 0.811
Lamp 0.613 / 0.576 0.732 / 0.661 0.691 / 0.616 0.684 / 0.619 0.718 / 0.637 0.751 / 0.711

Recall ↑
Chair 0.67 / 0.652 0.687 / 0.674 0.449 / 0.441 0.476 / 0.473 0.452 / 0.446 0.753 / 0.744
Table 0.689 / 0.667 0.694 / 0.677 0.448 / 0.439 0.463 / 0.453 0.492 / 0.484 0.798 / 0.784
Lamp 0.657 / 0.633 0.641 / 0.634 0.547 / 0.531 0.568 / 0.543 0.509 / 0.491 0.728 / 0.71

F1 Score ↑
Chair 0.651 / 0.629 0.678 / 0.651 0.499 / 0.483 0.512 / 0.496 0.503 / 0.488 0.781 / 0.768
Table 0.662 / 0.632 0.712 / 0.685 0.507 / 0.49 0.514 / 0.495 0.525 / 0.505 0.814 / 0.797
Lamp 0.626 / 0.603 0.666 / 0.647 0.592 / 0.571 0.603 / 0.578 0.574 / 0.555 0.73 / 0.711

Table 1. The quantitative comparisons among all the algorithms. We show both the single set average (before the slash) and overall average
(after the slash) results in the table.

approach can help the algorithm to reduce the error pro-
duced by the numerical SDE solver [33]. We also test the
best sampling steps for both samplers, and we find that the
best sampling steps for PC sampler is 500.

Precision Recall F1 Score

w/o GF 0.706 / 0.568 0.317 / 0.316 0.386 / 0.406
w/o Graph 0.578 / 0.52 0.479 / 0.472 0.512 / 0.495
G-FARS 0.828 / 0.793 0.753 / 0.744 0.781 / 0.768

Table 2. The results of architecture ablation. We show both the
single set average (before the slash) and overall average (after the
slash) results in the table.

Sampler Step Precision Recall F1 Score

EM

100 0.659 / 0.607 0.566 / 0.552 0.599 / 0.578
200 0.825 / 0.791 0.719 / 0.711 0.76 / 0.749
300 0.814 / 0.779 0.724 / 0.716 0.758 / 0.746
400 0.822 / 0.789 0.719 / 0.71 0.758 / 0.747
500 0.825 / 0.795 0.716 / 0.708 0.76 / 0.749
600 0.824 / 0.785 0.719 / 0.711 0.76 / 0.746

PC

100 0.658 / 0.608 0.568 / 0.559 0.6 / 0.582
200 0.827 / 0.792 0.736 / 0.729 0.77 / 0.759
300 0.816 / 0.782 0.734 / 0.724 0.764 / 0.752
400 0.826 / 0.791 0.74 / 0.733 0.771 / 0.761
500 0.828 / 0.793 0.753 / 0.744 0.781 / 0.768
600 0.833 / 0.797 0.747 / 0.74 0.779 / 0.767

Table 3. The ablation study for samplers and sampling steps. The
ablation is conducted on the Chair dataset. We show both the sin-
gle set average (before the slash) and overall average (after the
slash) results in the table.

5.7. Noisy Part Removal

We surprisingly find that our algorithm is able to achieve
the application of noisy part removal in a zero-shot man-

ner. We demonstrate this application in Fig. 5. Assume you
have a set of parts which belongs to a chair. However, you
carelessly mix some noisy parts into this set, and you want
to remove these parts. Our framework G-FARS can achieve
your goal. The framework can directly output the correct
selection for the parts of your chair.

Include

noisy parts

After removal

Figure 5. Three examples of noisy part removal.

6. Conclusion and Future Work
In conclusion, we have introduced a novel task termed ”3D
part grouping”, which entails identifying all possible com-
binations from a mixed set. To address this, we began by
randomly mixing shapes from PartNet [25] to construct our
training and testing datasets. Subsequently, we unveiled a
unique framework named G-FARS to fulfill our grouping
objective. We validated our method using a series of bench-
marks, illustrating that our algorithm displays commend-
able performance on the introduced task.

Future Work One constraint of our study is its confine-
ment to virtual environments. Moving forward, we aim to
investigate the viability of our proposed technique in real-
world settings. As an example, our algorithm could be inte-
grated into a robotic system, allowing robots to discern all
feasible combinations from a real mixed part set.
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