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Abstract

Backdoor attack poses a significant security threat to
Deep Learning applications. Existing attacks are often not
evasive to established backdoor detection techniques. This
susceptibility primarily stems from the fact that these attacks
typically leverage a universal trigger pattern or transfor-
mation function, such that the trigger can cause misclas-
sification for any input. In response to this, recent papers
have introduced attacks using sample-specific invisible trig-
gers crafted through special transformation functions. While
these approaches manage to evade detection to some extent,
they reveal vulnerability to existing backdoor mitigation
techniques. To address and enhance both evasiveness and
resilience, we introduce a novel backdoor attack LOTUS.
Specifically, it leverages a secret function to separate sam-
ples in the victim class into a set of partitions and applies
unique triggers to different partitions. Furthermore, LOTUS
incorporates an effective trigger focusing mechanism, en-
suring only the trigger corresponding to the partition can
induce the backdoor behavior. Extensive experimental re-
sults show that LOTUS can achieve high attack success rate
across 4 datasets and 7 model structures, and effectively
evading 13 backdoor detection and mitigation techniques.
The code is available at https://github.com/Megum1/LOTUS.

1. Introduction

Backdoor attack is a prominent security threat to Deep Learn-
ing applications, evidenced by the large body of existing
attacks [5, 19, 37, 51, 64] and defense techniques [20, 32,
35, 67, 72]. It injects malicious behaviors to a model such
that the model operates normally on clean samples but mis-
classifies inputs that are stamped with a specific trigger. A
typical way of injecting such malicious behaviors is through
data poisoning [1, 19, 39]. This approach introduces a small
set of trigger-stamped images paired with the target label

into the training data. Attackers may also manipulate the
training procedure [10, 45, 46], and tamper with the model’s
internal mechanisms [37, 41].

The majority of existing attacks rely on a uniform pat-
tern [5, 19, 39, 64] or a transformation function [6, 51] as
the trigger. The uniform trigger tends to be effective on any
input, which can be detected by existing techniques. For
instance, trigger inversion methods [20, 38, 67, 68] aim to
reverse engineer a small trigger that can induce the target pre-
diction on a set of inputs. According to the results reported
in the literature [20, 61, 67], for a number of attacks, it is
feasible to invert a pattern that closely resembles the ground-
truth trigger and has a substantially high attack success rate
(ASR), hence detecting backdoored models.

Recent studies introduce sample-specific invisible at-
tacks [10, 33, 45, 46] that encourage the model to emphasize
the correlation between the trigger and the input sample.
Although these attacks effectively evade certain detection
methods [20, 67], they are not resilient to backdoor mitiga-
tion techniques [32, 35, 72]. For instance, a straightforward
approach such as fine-tuning the backdoored model using
only 5% of the training data can significantly reduce ASR.
This is due to the fact that imperceptible trigger patterns are
not persistent during the retraining process. Moreover, the
sample-specific characteristic of these attacks make them
less robust to backdoor mitigation methods.

In this paper, we introduce an innovative attack that not
only evades backdoor detection approaches but also exhibits
resilience against backdoor mitigation techniques. It is a
label-specific attack, aiming to misclassify the samples of
a victim class to a target class. For the victim-class sam-
ples, we divide them into sub-partitions and use a unique
trigger for each partition. With such an attack design, ex-
isting defense such as trigger inversion is unlikely to find a
uniform trigger. This is because the available set of samples
used by trigger inversion is likely from different partitions,
which makes the detection fail. In addition, we develop a
novel trigger focusing technique to ensure that a partition
can only be attacked by its designated trigger, not by any
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other trigger or trigger combinations. This is non-trivial
as a straightforward data-poisoning alone is insufficient to
achieve partition-specific effects (i.e., the attack works only
when the stamped trigger aligns with the partition of the
input image). More details can be found in Section 4. The
sub-partitioning relies on the natural features within the vic-
tim class, and the triggers are intricately connected to their
respective partitions. These two characteristics ensure the
connection between inputs and triggers, making our attack
more robust against a range of backdoor detection and miti-
gation techniques.

Our contributions are summarized as follows: (1) We pro-
pose a new backdoor attack prototype LOTUS (“Evasive and
ResiLient BackdOor ATtacks throUgh Sub-partitioning”)
that achieves both evasiveness and resilience. (2) We address
a key challenge of the proposed attack, to precisely limit
the scope of a trigger to its partition. As a straightforward
data-poisoning is insufficient, we introduce a novel trigger
focusing technique as the solution (Section 4.2). (3) We
conduct an extensive evaluation of LOTUS on 4 datasets and
7 model structures. Our results show that LOTUS achieves
a high ASR under a variety of settings. Our trigger fo-
cusing method effectively reduces the ASR on undesired
victim classes and partitions. Furthermore, our experiments
demonstrate that LOTUS is evasive and resilient against 13
state-of-the-art backdoor defense techniques, substantially
outperforming existing backdoor attacks.
Threat Model. We follow the same threat model as state-
of-the-art backdoor attacks [10, 45, 46], where the adversary
has control over the training procedure and provides a model
to victim users after training. The adversary’s goal is to
achieve high attack effectiveness while also ensuring the
attack’s evasiveness and resilience against defense. LOTUS
primarily focuses on label-specific attack. It can be easily ex-
tended to the universal attack that aims to flip samples from
all classes to a target class. The defender possesses white-
box access to the model and a small set of clean samples for
each class. She aims to determine if a model contains back-
door or mitigate the backdoor effects based on the validation
samples. In our attack, the sub-partitioning function and the
corresponding triggers are the secret of the attacker.

2. Related Work
Backdoor Attack. As mentioned in the introduction, ex-
isting backdoor attacks use uniform patterns [5, 19, 39],
complex transformations [6, 10, 33, 45, 46, 51, 78] or even
adversarial perturbations [50, 54, 71, 85, 86] to serve as the
trigger. Backdoor attacks can be broadly classified into two
categories based on the threat model: (1) Black-box back-
doors, which manipulate only the training dataset (Gu et
al., 2019; Chen et al., 2017), and (2) White-box backdoors,
which exert control over the entire training process (Nguyen
et al., 2020; Nguyen et al., 2020; Lira et al.). Our proposed

attack, LOTUS belongs to the white-box backdoor category,
aligning with the existing works. Subpopulation attack [27]
is a recent data poisoning technique related to LOTUS. It
is an availability attack, and its primary objective is to de-
crease the test accuracy of a specific subpopulation within
the dataset. In contrast, LOTUS is a comprehensive backdoor
attack with the intention of injecting a backdoor into the
model. Therefore, these two attacks differ significantly. Sub-
population attack does not involve trigger injection or require
the implementation of trigger focusing, making it distinct
from LOTUS in terms of its objectives and mechanisms.
Backdoor Defense. Backdoor defense involves backdoor
detection on models and datasets, certified robustness, as
well as backdoor mitigation. Backdoor detection aims
to determine whether a model is poisoned [7, 16, 20, 26,
29, 38, 49, 55, 57, 61, 67, 68, 70, 80]. Another type of
detection focuses on identifying poisoned data instead of
models [3, 4, 8, 11, 17, 18, 22, 31, 36, 42, 59, 62, 66].
Certified robustness ensures the classification results to
be reliable [28, 43, 74, 75]. Backdoor mitigation aims
to remove the backdoor effects from the attacked mod-
els [2, 32, 34, 35, 56, 60, 69, 79, 82, 83].

3. Attack Definition

We formally define our attack in this section. For a typi-
cal classification task, given (x, y) ∼ D where the sample
x ∈ Rd and label y ∈ {1, 2, · · ·N}, the goal is to train a
classifier Mθ : Rd → {1, 2, · · · , N}, such that parameters
θ = argmaxθ P(x,y)∼D[Mθ(x) = y]. Typically, the cross-
entropy loss L(yp, y) (yp is the predicted label) is utilized
for achieving the goal. In this case, the optimization problem
can be expressed as θ = argminθ E(x,y)∼D[L(Mθ(x), y)].

Backdoor attack aims to derive a classifier Mθ : Rd →
{1, 2, · · · , N} such that compromised parameters θ =
argmaxθ P(x,y)∼D[Mθ(x) = y & Mθ(T ⊕ xV ) = yT ],
in which T is the trigger and T⊕ xV injects the trigger to a
victim input sample xV whose label is yV . Symbol yT de-
notes the attack target label. Backdoor attacks can be mainly
classified to universal attack that aims to flip a sample x
of any class with T to the target label, and label-specific
attack that aims to flip any sample of a specific victim class
to the target label. Based on trigger patterns, they can be
classified to input-independent backdoor or static backdoor
that has a fixed trigger pattern for all victim samples, and dy-
namic trigger that has changing patterns for different inputs.
Our attack is a label-specific dynamic backdoor attack. Ex-
tending to other scenarios is relatively straightforward, e.g.,
X2X attacks [76, 77], which involve multiple victim classes
targeting multiple target classes using various triggers.

Assume there exists a partitioning algorithm Cn : Rd →
{p1, p2, · · · , pn} that separates input samples to n partitions.
In our attack, victim samples (samples from the victim class)
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are partitioned to n groups using Cn and each partition pi is
assigned a unique trigger Ti, such that only Ti ⊕ xpi

V can
trigger the backdoor, where i ∈ {1, 2, · · ·n} and xpi

V denotes
the victim samples in the i-th partition. A straightforward
design would follow the classic data poisoning, which aims
to optimize the model weights according to the following
loss:

E(x,y)∼D[L(Mθ(x), y)]

Benign Utility Loss

+
n∑

i=1
E
(x

pi
V

,yV )∼D[L(Mθ(Ti ⊕ x
pi
V ), yT )]

Attack Target Loss

(1)

The first loss term Benign Utility Loss aims to ensure the
high benign accuracy of the model. The second term, Attack
Target Loss, means that a trigger Ti can cause the i-th par-
tition samples of the victim class xpi

V to misclassify, which
is our attack goal. However, simple data poisoning cannot
effectively bound the attack scope. As a result, a trigger
for a particular partition can easily induce misclassifications
for other partitions. That is, Tj ⊕ xpi

V , where i ̸= j, is mi-
classified to yT . Besides, a trigger for a correctly-assigned
partition of non-victim samples (samples from class ¬V , de-
noting the classes other than the victim class V ) can induce
misclassification. That is Ti ⊕ xpi

¬V is misclassified to yT .
Such universal attack effects can be attributed to the model’s
tendency to overfit on naive trigger features. For instance,
when it encounters any trigger, it immediately predicts the
target class without verifying if the background image aligns
with the trigger according to the partitioning criteria. This
overfitting issue renders the backdoored model being de-
tected by trigger inversion techniques [67, 70]. Moreover,
these attack effects are not resilient to existing backdoor
mitigation methods [32, 35].

Our objective is to establish a clear one-to-one correspon-
dence between Ti and xpi

V . That is, only Ti ⊕xpi

V can cause
misclassification. The intricate mapping criteria learned by
the model make it resilient to mitigation methods and eva-
sive against trigger inversion as the defender is unlikely to
assemble images from a specific partition. We hence aim to
derive the following loss function.

E(x,y)∼D[L(Mθ(x), y)] +

n∑
i=1

(E
(x

pi
V

,yV )∼D[L(Mθ(Ti ⊕ x
pi
V ), yT )]

+ E
(x

pi
¬V

,y¬V )∼D[L(Mθ(Ti ⊕ x
pi
¬V ), y¬V )] Label-specific Loss

+ E
(x

pi
V

,yV )∼D[
∑

T ∈ P({T1,··· ,Tn})
−{{},{Ti}}

L(Mθ(T ⊕ xpi
), yV ) ]) Dynamic Loss

(2)

Note that compared to Equation 1, we introduce two addi-
tional terms, i.e., Label-specific Loss and Dynamic Loss in
Equation 2. Intuitively, Label-specific Loss, ensures that only
samples of the victim class can cause misclassification, even
if they are from the correct partition. Here ¬V denotes the
classes other than the victim class. The last term Dynamic

Loss controls that for a particular partition, only the corre-
sponding trigger can cause misclassification, and any other
trigger, or combination of/with other triggers shall be cor-
rectly predicted as the victim class. In particular, T is a sub-
set of all possible triggers/combinations P({T1, · · · ,Tn}),
excluding empty {} and {Ti}. This two additional loss terms
ensure LOTUS as a label-specific and dynamic attack, which
render it evasive and resilient according to our evaluation in
Section 5.3 and 5.4.

4. Detailed Attack Design

The overview of LOTUS is shown in Figure 1. Victim class
input samples are first separated to partitions. We then apply
unique triggers to samples from the corresponding partitions,
whose labels are set to the target class. Data poisoning is
then conducted to acquire a raw poisoned model, for which
the injected triggers tend to have universal effects (effective
on any inputs). To address this problem, LOTUS further
introduces a trigger focusing step that strictly limits the
attack scope of each trigger. It finally produces a trojaned
model with triggers that are evasive and resilient.

In the following, we elaborate two major components of
LOTUS, namely, victim-class sample partitioning and trigger
focusing.

4.1. Victim-class Sample Partitioning

LOTUS separates a set of victim-class samples into multiple
partitions, and injects different triggers to different partitions.
We propose two ways to partition input samples. The first
is explicit partitioning that leverages a subset of explicit
attributes of the victim class (e.g., hair color and w./ or w./o.
glasses for face recognition). Assume k attributes are used
and each attribute has t possible values. This allows to
generate tk partitions. The first two columns in Figure 2
show a partitioning based on the taxonomy attribute of the
bird class. Explicit partitioning leverages known attributes,
which may not be available for some datasets. We hence
introduce an advanced partitioning method that is applicable
to arbitrary datasets in the following.

The second partitioning scheme is implicit, meaning that
human uninterpretable features are used in partitioning. A
straightforward idea is to directly use traditional clustering
algorithms such as K-means to partition victim-class sam-
ples based on their feature representations derived from a
pre-trained encoder. However, according to our experiment
in Appendix L.1, such a naive method does not work well.
The root cause is that K-means is a clustering algorithm on
a set of known data points and does not consider generaliza-
tion to unseen data points. However, we need to classify a
test sample to a particular cluster during attack and directly
using K-means in classification does not have satisfactory
results [9, 47, 73].
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Figure 1. Overview of LOTUS

Bird p1 Bird p2 Cat p1 Cat p2
Figure 2. Explicit (left) and implicit (right) partitioning.
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Figure 3. Implicit partitioning with surrogate model.

We hence introduce a surrogate model to help sample
partitioning. Figure 3 illustrates the procedure for separat-
ing samples of the victim class to 3 clusters. The surrogate
model has the same structure as the victim model to reduce
complexity caused by structural differences. On the bottom
left, the features of samples from victim class n are extracted
using a pre-trained encoder. We then use a traditional clus-
tering method such as K-means to partition these samples
into 3 different sub-classes based on their features. We as-
sign labels n, n + 1, n + 2 to samples from the respective
sub-classes. They are then combined with samples from
the original classes 1 to n − 1 (excluding the victim class
n) to form a new dataset consisting of n + 2 classes. The
surrogate model is trained on this new dataset with n + 2
classes. The idea is to use K-means to provide a meaningful
prior separation and then use classifier training to achieve
generalizability. Furthermore, the decision boundaries by the
surrogate model have the classes other than the victim class

in consideration, whereas those by distances to centroids of
K-means clusters only have samples of the victim class in
consideration. After the training converges, the surrogate
model is utilized to determine the partition of a test sample.
That is, the partition index can be derived from the its clas-
sification outcome (i.e., the class with largest logits from
classes n to n+ 2). The last two columns in Figure 2 show
two implicit partitions of the “cat” class. Observe that the
partitions are largely uninterpretable, which makes the attack
more stealthy compared to using explicit attributes which
are public.
Handle Potential Imbalanced Examples. We control
that for any partitioning, the sizes of each partition are
roughly the same, which mitigates the potential of causing
partitioning bias. This is achieved by removing samples
from exceptionally large clusters. In practice, such a
removal is rarely needed.

4.2. Trigger Focusing

After partitioning, LOTUS aims to limit each trigger to its
own partition, preventing it from attacking other partitions
or classes. To achieve this, we design a trigger focusing
technique during training.

A straightforward idea is to strictly follow the definition
in Equation 2 to bound the trigger scope. However, the last
term, which aims at stamping all combinations of triggers
that are different from {Ti} to a sample of partition pi and
setting the label to yV , is extremely expensive. The number
of combinations is (2n − 2), which grows exponentially
with the increase of the number of partitions n. Moreover,
the inclusion of a substantial number of additional samples
will not only slow down the training but also imbalance the
dataset, ultimately impacting the overall performance.

Adversarial Poisoning Is Insufficient. Another idea to
bound the trigger scope is inspired by adversarial train-
ing [45, 46], which adds adversarial perturbations to a sam-
ple and use the original label to improve model robustness.
To suppress the undesirable attack effect in our context, we
could inject triggers that are not for a partition pi, i.e., Tj

where j ̸= i, to samples of pi and set the injected sam-
ples’ labels to the victim class. This approach is referred
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Figure 4. Decision boundaries for different poisoning strategies.

to as adversarial poisoning. However, it is only effective
in eliminating individual non-matched triggers Tj , but fails
for trigger combinations that contain the matched trigger Ti,
e.g., [Ti,Tj ].

Figure 4 presents a visualization of decision boundaries
for various poisoning strategies, namely: (a) Straightforward
data-poisoning; (b) Adversarial-poisoning; and (c) Trigger-
focusing (which will be discussed in the next paragraph).
Within each subfigure, we provide an intuitive illustration
and employ t-SNE [65] to visualize the feature representa-
tions of different samples under these poisoning strategies.
The experiment is conducted on the CIFAR-10 dataset using
the ResNet18 model, and we utilize implicit partitioning to
create four distinct partitions. In the figure, a hollow closed
lock is used to denote clean images xpi

v in the victim class
of partition pi, while a red opened lock is used to represent
clean images of the target class. Triggers are depicted as
keys with various colors. According to our objective, only
the red keys, signifying the correct trigger for partition Ti,
can unlock the lock, crossing the red decision boundary, and
be classified as the target class. Keys of different colors,
signifying various triggers or combinations, are unable to
unlock the lock and remain within the victim class region.
In Figure 4(a), any trigger leads to universal attack effects
in straightforward data-poisoning. Observe any key, denot-
ing a trigger, can unlock the lock and cross the boundary
without limitations. The t-SNE visualization on real data
on the right aligns with the illustration on the left. In con-
trast, adversarial-poisoning, as depicted in (b), mitigates the
impact of samples with unmatched individual triggers, as
represented by the green key. However, trigger combinations
containing both the matched trigger Ti and unmatched trig-
ger Tj , as shown by the key with half red and half green,
still lead to misclassification. Similarly, in the t-SNE visu-
alization, the yellow triangles, which represent this type of
trigger combination, are substantially close to the red trian-
gles, denoting the strictly matched triggers. This indicates

the insufficiency of adversarial-poisoning.

Efficient and Effective Trigger Focusing. Inspired by the
observation in Figure 4, we propose a novel trigger focusing
method that can effectively bound trigger scopes and is in
the mean time cost-effective. In addition to adversarial poi-
soning that stamps samples in a partition pi with individual
out-of-partition triggers Tj (j ̸= i) and sets their labels to
the victim class yV , it further stamps samples in partition pi
with a pair of triggers [Ti, Tj] (j ̸= i), that is, the partition’s
trigger and another different partition’s trigger, and sets their
labels to yV .

n∑
i=1

E(x
pi
V ,yV )∼D[

n∑
j=1,j ̸=i

(L(Mθ(Tj ⊕ xpi

V ), yV )

+ L(Mθ([Ti,Tj ]⊕ xpi

V ), yV ))]

(3)

Our approach, with the new dynamic loss term expressed
in Equation 3, requires only (2n− 2) trigger combinations,
which increases linearly with the growth of partitions n.
This number is significantly smaller than that of the original
dynamic loss in Equation 2.

Intuitively, the different labels of samples Ti ⊕ xpi

V and
[Ti,Tj ] ⊕ xpi

V enable the model to learn new behaviors.
As such, further stamping any other partition triggers to
[Ti,Tj ]⊕ xpi

V yields the same classification result, which is
the victim class. Please refer to Appendix D for a detailed
reasoning and theoretical analysis.

In Figure 4(c), it is noteworthy that trigger combinations
are effectively excluded from the target class and only the
trigger that matches the victim partition can cause the mis-
classification, well aligning with our attack objective.

5. Evaluation
In this section, we evaluate on 4 benchmark datasets and 7
model structures to demonstrate the attack effectiveness of
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LOTUS (Section 5.2). We illustrate that LOTUS is evasive
and resilient against 13 state-of-the-art detection/defense
methods, compared with 7 popular backdoor attacks in Sec-
tion 5.3 and 5.4. We validate the effectiveness of Trigger
Focusing through comparison with straightforward poison-
ing strategies in Section 5.5. We also extend LOTUS to uni-
versal attacks in Appendix G. Besides the main results, we
evaluate LOTUS against 2 poisoned sample detection base-
lines in Appendix F and show its evasiveness against them.
Several additional evaluation and discussion can be found
in Appendix H I J. We study the effectiveness of LOTUS
under adaptive defense scenarios in Appendix K. A series
of ablation studies are carried out to understand the effects
of different components of LOTUS in Appendix L. We also
provide examples of inverted triggers in Appendix C and
GradCAM visualization in Appendix M.

5.1. Experiment Setup

We evaluate LOTUS on 4 widely-used benchmarks, CIFAR-
10 [30], CIFAR-100 [30], CelebA [40], and restricted Im-
ageNet (RImageNet) [12, 52, 63]. Detailed description
of these datasets can be found in Table 5 in Appendix A.
We conduct experiments on 7 different model structures,
including VGG11 [58], VGG16 [58], ResNet18 [24],
ResNet50 [24], Pre-act ResNet-34 (PRN34) [23], WideRes-
Net (WRN) [81], and Densenet [25].

We leverage several sub-partitioning methods to parti-
tion samples from the victim class. We utilize secondary
labeling, e.g., various cat species, to create clear and ex-
plicit partitions. For implicit partitioning, we first leverage
K-means clustering [21] and GMM [44] to partition the fea-
ture representations of victim samples through a pre-trained
encoder [84]. Then we train a surrogate model to learn
the partitioning principle, which serves as the implicit sub-
partitioner (Section 4.1). Details of the sub-partitioning and
encoder can be found in Appendix B.

5.2. Attack Effectiveness

We evaluate the performance of LOTUS on various datasets,
model structures and partitioning methods. Table 1 presents
the results. For all the experiments, we use the first class
of each dataset as the victim and the last class as the tar-
get. We generate 4 partitions for the victim class throughout
all datasets and model structures. Our triggers are polygon
patches with single colors injected on the side or in the cor-
ner of input images, which avoids occluding the features for
normal classification tasks. Example images with triggers
can be found in Figure 10 in Appendix. The top two blocks
in Table 1 (separated by the double lines) show the results for
implicit partitioning, and the bottom for explicit partitioning.
For K-means clustering, ASRs are at least 89.00%, with the
highest ASR of 94.30% for ResNet18 on CIFAR-10, while
the degradation of benign accuracy is within 1.07%. This

Table 1. Evaluation of attack effectiveness. The first three columns
denote different partitioning algorithms (PA), datasets, and model
structures. The following columns present the original accuracy of
clean models (Acc.), benign accuracy of the backdoored models
(BA), the attack success rate when stamping a trigger on the proper
partition (ASR), and the average ASR when stamping other triggers
and trigger combinations, with the standard deviation) (ASR-other).

PA Dataset Model Acc. BA ASR ASR-other

K
-m

ea
ns

CIFAR-10
VGG11 92.16% 92.04% 93.80% 4.77% ± 19.27%

ResNet18 95.22% 94.71% 94.30% 4.39% ± 17.08%

CIFAR-100
Densenet 75.14% 75.15% 92.00% 4.36% ± 14.24%
PRN34 74.70% 74.52% 89.00% 5.43% ± 13.50%

CelebA WRN 80.47% 79.40% 92.33% 6.87% ± 17.49%
RImageNet ResNet50 97.77% 97.19% 93.87% 2.16% ± 19.34%

G
M

M

CIFAR-10 ResNet18 95.22% 94.59% 90.70% 4.80% ± 21.38%
CIFAR-100 PRN34 74.70% 74.02% 91.00% 2.21% ± 12.57%

CelebA WRN 80.47% 79.66% 92.53% 5.39% ± 16.77%
RImageNet VGG16 96.51% 95.93% 93.52% 3.11% ± 14.39%

Se
c. RImageNet

VGG16 96.51% 96.36% 96.50% 1.79% ± 13.24%
ResNet50 97.77% 97.08% 92.50% 2.14% ± 16.53%

Table 2. Evaluation of label specificity. ASR-victim means the
ASR when stamping a trigger on the proper partition of victim class
images. ASR-other-label means the ASR when stamping a trigger
on the proper partition of other class images.

Dataset Network ASR-victim ASR-other-label

CIFAR10 ResNet18 93.80% 14.37%
CIFAR100 Densenet 92.00% 11.23%

CelebA WRN 92.33% 19.67%
RImageNet VGG16 93.52% 12.22%

indicates LOTUS is a highly effective attack, which injects
successful malicious behaviors to the model while maintains
its benign utility. The last column shows the ASR when
trigger/trigger-combinations other than a partition’s trigger
are stamped on the partition (ASR-other). Observe that the
average ASR-other is less than 6.87%, delineating the effec-
tiveness of trigger focusing (a trigger is only effective for the
corresponding partition). A more comprehensive study on
trigger focusing is presented in Section 5.5. We have similar
observations for using GMM in implicit partitioning. For
the explicit secondary labeling, LOTUS can achieve an ASR
over 92.50% and a small ASR-other. The better performance
of LOTUS using secondary labeling can be attributed to the
fact that the victim class in RImageNet is merged from a set
of similar classes in ImageNet. Those classes are naturally
separable, which can be easily differentiated by the model
when triggers are injected on different partitions.

Note that the ASR of LOTUS is slightly lower than the
existing attacks (as shown in the “No Defense” column in
Table 3). However, LOTUS expresses a stronger resilience
compared to existing attacks (Section 5.4). This is a trade-off
between attack effectiveness and resilience. More discussion
can be found in Appendix J.

Besides, we also evaluate the label specificity of LOTUS
on several models. Results are presented in Table 2. Observe
that even if the trigger is stamped on the proper partition
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of the input image, the ASR-other-label is low (< 20%)
because the input image is not of the victim class. The
result shows that LOTUS exhibits a high level of label speci-
ficity. Furthermore, LOTUS offers an easy extension into
universal attack scenarios through the integration of explicit
partitioning techniques. Detailed examples can be found in
Section G.

5.3. Evasiveness against Backdoor Detection

In this section, we study the evasiveness of LOTUS against
4 well-known trigger-inversion based backdoor detection
methods, including Neural Cleanse (NC) [67], Pixel [61],
ABS [38], and FeatRE [70]. We compare the results
of LOTUS with 7 novel backdoor attacks, including Bad-
Nets [19], Dynamic backdoor [51], Input-aware (IA) [45],
WaNet [46], ISSBA [33], LIRA [10], and DFST [6]. For fair
comparison, we launch all backdoor attacks on ResNet18
models trained on CIFAR-10. As LOTUS is a label-specific
attack, we implement all other attacks in label-specific set-
ting, where the poisoned samples are composed of images
from victim class 0 stamped with the trigger and labeled as
the target class 9. Besides, all detection methods are required
to invert triggers based on 100 clean validation images from
the victim class, targeting to labels other than it. We follow
all the other settings and techniques of the original papers to
implement the attack and detection methods.

Figure 5 illustrates the detection results, where the x-axis
denotes different attacks and the y-axis denotes the decision
scores of each baseline. The thresholds are highlighted in red
dashed lines. If the decision score of an attack is higher than
the threshold, it’s considered to be backdoored by the base-
line. Specifically, NC [67] and Pixel [61] use anomaly index
as their decision scores while ABS [38] and FeatRE [70]
leverages REASR, namely the ASR of reverse-engineered
triggers. Observe that NC, Pixel, ABS are effective against
several attacks, including BadNets, Dynamic, ISSBA, LIRA
and DFST, while leaving other advanced attacks, i.e., WaNet,
IA and LOTUS. FeatRE, on the other hand, observes internal
linear separability properties of existing backdoors and im-
proves the trigger inversion process, which is able to detect
the advanced backdoors operating in the feature space. Fig-
ure 5(d) shows that it can detect both IA and WaNet, but still
fails to detect LOTUS. This illustrates that LOTUS is more
evasive than all these baseline attacks. The underlying rea-
son is that LOTUS leverages partitioning secrets and trigger
focusing, which breaks the linear separability assumption.
Without knowledge of partitioning, it’s unlikely to invert
a trigger with high ASR, and hence unlikely to detect the
backdoor. Examples of inverted triggers can be found in
Appendix C.

We also test LOTUS in the adaptive defense scenario,
where the defender can create partitions before detection.
The results in Appendix K demonstrate that LOTUS is re-

silient against adaptive defense strategies, as guessing the
correct partitioning is challenging.

Besides trigger inversion methods, we also evalu-
ate LOTUS using meta-classifiers, e.g., MNTD [80] and
ULP [29], which train model-level classifiers for detection.
Results in Appendix E show that LOTUS is evasive against
them.

5.4. Resilience against Backdoor Mitigation

In this section, we study the resilience of LOTUS against
4 state-of-the-art backdoor mitigation methods, including
standard Fine-tuning, Fine-pruning [35], NAD [32], and
ANP [72]. We compare the results of LOTUS with 7 novel
backdoor attacks. For fair comparison, all the models are
trained using VGG11 on CIFAR-10 dataset. For each miti-
gation method, we assume the access to 5% of the training
data. Besides, some standard input argumentation techniques
are used, e.g., random cropping and horizontal flipping. We
follow the original setting to conduct these baseline methods.

Table 3 provides the result. Observe that for all the base-
lines, benign accuracy change is slight, meaning that the
mitigation preserves the model utility on benign tasks. How-
ever, ASR degradation is considerable for all backdoored
models. Note that LOTUS can still remain part of the attack
effectiveness with 34.90%-46.90%, outperforming all other
attacks. The result indicates that LOTUS is more resilient
against baseline mitigation methods compared to the exist-
ing attacks. This can be attributed to the design that LOTUS
learns the correlation between the partitions and triggers
which is hard to unlearn. Other attacks only learn partial
trigger patterns that tend to be mitigate.

5.5. Evaluation on Different Poisoning Strategies

We evaluate different poisoning strategies including simple
data poisoning, adversarial poisoning, and LOTUS’s trigger
focusing. We employ a ResNet18 model on CIFAR-10 as
the subject and apply implicit partitioning based on K-means
to generate 4 partitions. The number of possible non-empty
trigger combinations is 24−1 = 15. In the following, we use
a four-bit binary to represent each combination. For exam-
ple, 0110 denotes T2 and T3 are stamped on inputs but not
T1 and T4. Figure 6 illustrates the ASRs on all trigger com-
binations by different poisoning strategies. Sub-figures from
left to right present the results for simple poisoning, adver-
sarial poisoning, and trigger focusing, respectively. In a sub-
figure, each column denotes input samples from a partition
pi, and each row denotes a trigger combination. The value in
each cell shows the ASR when a trigger combination (row)
stamped on the samples from a partition (column). Brighter
the color, higher the ASR. The left sub-figure shows the ASR
for simple data poisoning. Observe that all the ASRs are
greater than 92.0% (with an average of 97.94%), showing
the sub-partitioning is not learned by the model. The middle
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Figure 5. Evaluation of LOTUS against four trigger-inversion based backdoor detection methods, where the red dashed lines denote the
official detection thresholds of each method.

Table 3. Evaluation of resilience against backdoor mitigation methods. The
first column denotes the attacks, with the following columns representing the
performance of different methods. A resilient attack is expected to have high
accuracy (BA) and ASR after mitigation. The best results are in bold.

Attacks No Defense Fine-tuning Fine-pruning NAD ANP

BA ASR BA ASR BA ASR BA ASR BA ASR

BadNets 92.02% 100.00% 89.31% 1.74% 91.70% 0.53% 87.81% 0.80% 89.15% 0.32%
Dynamic 91.81% 100.00% 88.87% 2.91% 91.39% 22.03% 89.11% 2.90% 88.25% 12.81%
IA 91.70% 99.65% 87.74% 2.78% 91.07% 0.17% 87.14% 2.29% 88.73% 1.98%
WaNet 91.22% 98.57% 89.56% 1.37% 90.22% 1.07% 89.74% 1.40% 89.07% 0.54%
ISSBA 91.67% 99.96% 87.73% 2.72% 91.12% 14.27% 87.97% 2.83% 85.64% 10.01%
LIRA 91.70% 100.00% 89.96% 2.19% 91.29% 12.14% 90.23% 2.32% 89.70% 37.91%
DFST 91.81% 99.97% 88.49% 22.86% 91.47% 21.61% 88.52% 24.66% 87.13% 36.17%

LOTUS 91.54% 93.80% 88.10% 46.90% 91.14% 44.90% 87.61% 42.30% 88.14% 34.90%

p1 p2 p3 p4

0001
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0100
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1100

0111
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1101
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1111

99.1 99.6 97.4 97.6

98.7 100.0 98.3 94.8

99.1 100.0 97.8 94.1

99.6 100.0 97.8 95.8

99.6 100.0 99.6 97.2

97.8 100.0 97.8 96.9

98.2 100.0 97.4 94.5

99.6 99.6 97.8 97.9

100.0 99.6 99.1 95.5

99.6 100.0 98.7 97.6

95.5 98.8 97.4 95.2

99.1 99.6 99.1 96.5

98.2 99.2 97.8 95.8

98.7 98.8 97.8 93.8

96.0 96.9 96.5 92.0
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Figure 6. ASR on all trigger combinations by different
poisoning strategies

sub-figure is the results for adversarial poisoning. We can
see around half of cells have small values, especially for
single trigger combinations (the top four rows). For more
complex trigger combinations, the ASRs are still high with
the highest of 100.0% (trigger combination 0111 on parti-
tion p2), indicating the insufficiency of adversarial poisoning.
The right sub-figure is for our trigger focusing. Observe that
except for stamping a trigger on the proper partition, the
other cases all have a low ASR with an average of 3.04%.
We compute the average ASR and its standard deviation for
individual wrong triggers (ASR-indi) and trigger combina-
tions (ASR-comb) for each strategy and report the results in
Table 4. Observe that all the ASRs are almost 100% for sim-
ple poisoning. Adversarial poisoning reduces the ASR-indi
to a low level while leaving ASR-comb high (73.88% on
average). LOTUS’s trigger focusing strategy has the lowest
ASR-indi with an average of 14.15% and ASR-comb 0.02%.
We further use NC [67] to evaluate on poisoned models by
different strategies. The last column shows the anomaly
index for different poisoned models. Observe that models
poisoned by simple data poisoning and adversarial poison-
ing can be easily detected by NC (with anomaly index > 2).
Poisoned models by trigger focusing, on the other hand, are
able to evade NC’s detection, delineating the effectiveness

Table 4. Evaluation on different poisoning strategies
Strategy BA ASR ASR-indi ASR-comb NC index

Simple 94.79% 98.80% 97.86% ± 1.84% 97.88% ± 1.81% 5.338
Adv. 94.47% 94.20% 18.95% ± 10.22% 73.88% ± 31.87% 2.161
Focus 94.71% 91.40% 14.15% ± 7.46% 0.02% ± 0.09% 1.156

of trigger focusing strategy to achieve evasiveness.

6. Conclusion
We propose a novel backdoor attack that leverages sub-
partitioning to restrict the attack scope. A special training
method is designed to limit triggers to only their correspond-
ing partitions. Our evaluation shows that the attack is highly
effective, achieving high attack success rates. Besides, it is
evasive and resilient against state-of-the-art defenses.
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