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Radomı́r Mĕch2 Andrew Markham1 Niki Trigoni1

1University of Oxford 2Adobe Research

“[  ] photo of an [  ] owl”“[  ] photo of a [  ] lion by the beach”

“A [    ] photo of a wooden chair by a lake”“[   ] photo of a race car on the road”

Wing

Orientation

Illumination

Orientation

Dolly
Zoom

Illumination

(a) (b)

(c) (d)

Figure 1. We introduce Continuous 3D Words – special tokens in text-to-image models that allow users to have fine-grained control over
several attributes like illumination [ ] (a and c), non-rigid shape change [ ] (d), orientation [ ] (c and d), and camera parameters [ ]
(b). Our approach can be trained using a single 3D mesh and a rendering engine while incurring into negligible runtime and memory costs.

Abstract

Current controls over diffusion models (e.g., through
text or ControlNet) for image generation fall short in rec-
ognizing abstract, continuous attributes like illumination
direction or non-rigid shape change. In this paper, we
present an approach for allowing users of text-to-image
models to have fine-grained control of several attributes
in an image. We do this by engineering special sets of in-
put tokens that can be transformed in a continuous manner
– we call them Continuous 3D Words. These attributes
can, for example, be represented as sliders and applied
jointly with text prompts for fine-grained control over image

generation. Given only a single mesh and a rendering en-
gine, we show that our approach can be adopted to provide
continuous user control over several 3D-aware attributes,
including time-of-day illumination, bird wing orientation,
dollyzoom effect, and object poses. Our method is capa-
ble of conditioning image creation with multiple Continu-
ous 3D Words and text descriptions simultaneously while
adding no overhead to the generative process. Project Page:
https://ttchengab.github.io/continuous 3d words

*Work was done during internship at Adobe Research.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

Photography is fascinating because it enables very detailed
control over the composition and aesthetics of the final im-
age. On the one hand, this is simply the result of application
of physical laws to achieve image acquisition. On the other,
the slightest changes in the moment captured, illumination,
object orientation, or camera parameters bring a completely
different feeling to the viewer. While the giant leap of mod-
ern text-to-image diffusion can bring generated 2-D images
to close proximity with real photos, text prompts are inher-
ently limited to high-level descriptions, far removed from the
detailed controls one has over actual photography. This is
mainly due to the scarcity of such descriptions in the training
dataset — very few would describe a photo based on exact
object movements and camera parameters like the wing pose
of a bird or the rotation of a person’s head in degrees. On the
other hand, 3D rendering engines allow us to mimic many
of these 3D controls that photographers enjoy. We can ren-
der images of objects with predefined camera, illumination
and pose changes at a very fine-grained scale. However,
creating detailed 3D worlds is incredibly laborious, which
limits the diversity of the scenes that can be generated by
non-specialized practitioners. In that regard, using text-to-
image diffusion to create images is a much more accessible
technology, whereas precise 3D scene control remains firmly
in the domain of experts.

In this work, we aim to bring together the best of two
worlds by expanding the vocabulary of text-to-image diffu-
sion models with very few samples generated from render-
ing engines. Specifically, we render meshes based on the
attribute we aim to control, creating images with color and
other useful information to generate a small set of data sam-
ples. The goal is to disentangle these abstract attributes from
the original object and encode them into the textual space in
a controllable manner – we term these attributes Continuous
3D Words. They allow users to create custom sliders that
enable fine-grained control during image generation and can
be seamlessly used along text prompts.

At the heart of our approach is an algorithm to learn a
continuous vocabulary. The benefits of continuity are two-
fold: i) the association between different values of the same
attribute makes it much easier to learn, rather than having to
learn hundreds of discrete tokens as an approximation and ii)
we learn an MLP that would allow interpolation during infer-
ence to generate an actual continuous control. On top of this,
we also propose two training strategies to prevent degenerate
solutions and enable generalization on new objects beyond
the training category. First, we apply a two-stage training
strategy: we first apply the Dreambooth [25] approach to
learn the object identity of the underlying mesh used for
rendering, then sequentially learn the various attribute val-
ues disentangled from the object identity. This prevents the
model from falling into a degenerate solution of encoding

each value of an attribute as a new object, which would
prevent us from generalizing the attribute to new objects.
Second, we apply ControlNet [30] with various conditioned
images to generate a set of additional images with varying
backgrounds and object textures. This prevents the model
from overfitting to the artificial backgrounds of rendered im-
ages. The entire training was done in a light-weight Lower
Rank Adaptation (LoRA) [14] manner, making it fast and
accessible with single GPUs.

We implement our continuous vocabulary and training
method, across various sets of single (e.g., dollyzoom ex-
tracted from chairs) and multiple (e.g., object pose and illu-
mination extracted from a dog mesh) attributes, and show
through quantitative user studies and qualitative comparisons
that our method can properly reflect various attributes while
maintaining the aesthetics of the image — significantly out-
performing competitive baselines.

In summary, we present 1) Continuous 3D Words, a new
method of gaining 3D-aware, continuous attribute controls
over text-to-image generation that can be easily tailored to a
plethora of new conditions, 2) a series of training strategies
to disentangle the attributes from object identity to enhance
the improvements in image generation and 3) extensive qual-
itative and quantitative studies to showcase our approach in
various interesting applications.

2. Related Work

Conditional Diffusion Models. Ever since diffusion mod-
els [13, 27] pushed the quality and generalizability of image
generation beyond GANs [10], the vision community has
introduced a diverse range of modalities that can be used
as conditions to control the image generation process. The
most common condition is currently text. Works such as
DALLE [2, 22, 23] and Imagen [26] used large scale text-
image datasets and strong language understandings from
pretrained LLMs [4, 8, 21] to guide the generation process.
Stable Diffusion further popularized this class of methods
by employing memory efficient models through latent-space
diffusion [24]. Other works built on top of these models by
adding other forms of conditioning [19, 30]. Highly relevant
to our work is ControlNet [30], which proposes a general
pipeline with zero-convolutions for conditioning on text and
image data (e.g., depth maps, canny maps, sketches). De-
spite their impressive image quality, it is not clear how to
use these models to control other attributes of images like
illumination or object orientation.

Other set of works explored how to perform image edits
using textual instructions. Given a text-generated image, they
demonstrate how the user can edit the image by amending
the prompt, yet still preserve some aspects of the original
image [3, 12, 20]. While convenient, these approaches do
not allow fine-grained control over image elements since
they are ultimately restricted by the user’s ability to describe
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Figure 2. Method Overview. Finetuning: Our finetuning is divided into two stages. In the first stage, we render a series of images using
different attribute values (e.g., illumination and pose). We feed them into the text-to-image diffusion model to learn token embedding [Obj]
representing the single mesh used for training. In the second stage, we add the tokens representing individual attributes into the prompt
embedding. The two stage training allows us to better disentangle the individual attributes against [Obj]. Inference: Attributes can be
applied to different objects for text-to-image generation.
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Figure 3. ControlNet Augmentations. Depth ControlNet is used
for attributes creating direct shape changes. Lineart ControlNet is
applied for more subtle changes that cannot be reflected by depths
(e.g., illumination).

visual content through text – e.g., it would be very difficult
to change the illumination direction by a precise angle such
as 11�.

Recently, as the amount of 3D data available significantly
increased, Liu et al. [16] introduced Zero-1-to-3, a diffu-
sion model trained on various viewpoints of 3D rendering
that enables viewpoint editing given an image of a single
object. Similarly, works like DreamSparse [29] also employ
diffusion models to synthesize novel views on open-set cate-
gories. Differently from our approach, these techniques are

focused only on object orientation and rely on vast 3D shape
datasets. On the other hand, we investigate how to learn
several continuous concepts (e.g. illumination [ ] , wing
pose [ ] , dolly zoom [ ] ) that can be directly used in
text-to-image scenarios; i.e. we don’t generate an image to
then change the orientation or illumination later, but instead
we use Continuous Words directly on text prompts.

Learning new concepts on diffusion models. With diffu-
sion models being trained on unforeseen quantities in images
and texts, a stream of work focused on adding specific con-
cepts with very few data samples. For example, given a
small set of images representing one particular object in-
stance, textual inversion learns a new word embedding to
describe the object, such that the word can be applied with
new text prompts for image generation [9]. NETI [1] ex-
tended the word embedding to a time-space conditioned
neural mapper for better generation while preserving qual-
ity. Similarly, Dreambooth [25] aims to achieve the same
goal, but by using a repurposed token rarely used in text
and finetuning the entire diffusion model with an additional
constraint to prevent generative loss. There are numerous
subsequent works showing improvements on finetuning dif-
ferent layers/weights and by improving the training strategy
[11, 15, 17].

Despite the advances in adding new personalized entities
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to existing models, few works focus on learning general con-
cepts that can be applied to a variety of scenarios. A concur-
rent work, ViewNETI [5], is the first to learn viewpoints as a
concept, but we hypothesise that the 3D awareness of large
text-to-image diffusion models goes far beyond merely view-
points, allowing us to associate and even create interactions
with multiple 3D-aware concepts like illumination, pose and
camera parameters at the same time. Our method, despite
being trained only using a single mesh, shows superior gener-
alization properties – while trained to learn illumination and
orientation from renderings of a single dog, we are capable
of employing the learned concepts to generate cars, horses
(Figure 4), polar bears (Figure 8), lions (Figure 1) and so on.

3. Method

3.1. Preliminaries

We define an image I that captures object O from category C

as a function of several attributes I = f(a1, a2, a3, ..., an),
where ai belongs to a vast set of image attributes A: shape,
material reflectivity, rotation/translation, camera parameters,
shape deformations, etc. Some of these components can
be translated to other categories while others cannot, so for
simplicity we assume they only work for a single category.
In the experimental section of this study, we will demonstrate
that the definition of category for some attributes is rather
loose and the user is capable of generating images with
continuous words depicting objects very different from the
ones seen during training. Notice that images annotated with
the attributes we are interested are very rare, so the models
do not have a very precise knowledge of them, except for
what is already described in text-image pairs.

Given an image set IO with images capturing an object
O, previous methods like Dreambooth [25], Custom Dif-
fusion [15], or Textual-Inversion [9] aim to minimize the
following objective:

E
Î✏,i,TO,Ii2IO

 ���S✓(Î✏,i, P (TO))� Ii

���
2

2

�
, (1)

where S✓ is a Text-to-Image diffusion model [24], Î✏,i is a
noised image ↵tIi + �t✏ with noise ✏ and noise schedulers
↵t,�t. P (TO) is the prompt condition which contains a
token embedding TO used as an identifier of object O. In
practise P (·) is the text encoder from CLIP. The finetuned
network S✓ can then generate new images containing O

when given a new prompt condition P
0(TO) and some Gaus-

sian noise. Unlike previous methods, our goal is not to add
concepts representing specific objects, but rather have them
describe some attributes ai 2 A, by learning to disentangle
them using as few objects as possible within C – most of the
time just one object suffices. Our model can also be easily
extended to controlling multiple attributes at the same time.

3.2. Continuous Control

A naive way to control an attribute a is to use some realistic
rendering engine to generate images of the available objects
that have the same value a = x, and then apply similar
approaches to previous works by assigning a token Tx to
identify images with this particular value. This is not ideal,
however, since a is often continuous and have infinitely many
values – we would require an unfeasible number of tokens
to gain fine-grained control over these attributes.

Therefore, we propose to instead learn a continuous func-
tion g�(a) : D ! T that maps a set of attributes from some
continuous domain D to the token embedding domain T .
We use positional encoding to first cast each attribute a 2 a
to a higher frequency space before feeding into the function,
which is represented by a very simple 2-layer MLP. The out-
put of this network is named Continuous 3D Word and will
allow users to easily control continuous attributes from text
prompts augmented by these tokens. Finally, our training
objective can then be formulated as:

argmin
✓,�

E
Î✏,a,a

 ���S✓

�
Î✏,a, P (g�(a))

�
� Ia

���
2

2

�
. (2)

3.3. Disentangling Object Identity and Attributes

In practice, when we only utilize a single object to learn
attributes, a degenerate solution occurs when directly opti-
mizing (2), where S✓ treats the same object with different
values for a as different objects. This hinders the generaliza-
tion capability of changing the attribute when given an image
of a new object. To this end, we propose two strategies, one
during training and one during inference, to disentangle the
object identity and individual attributes.

Training: Learning identity and attributes. We provide a
simple regularization by explicitly forcing the model to use
the same identifier for images representing the same object.
The objective can thus be formulated as:

argmin
✓,�

E
Î✏,a,a

 ���S✓

�
Î✏,a, P (TO, g�(a))

�
� Ia

���
2

2

�
. (3)

Optimizing both TO and g�(a) concurrently proved to be
difficult from our experiments (see Section 5). We propose
a two-stage training strategy as depicted in Figure 2. For
every available image in I

O with varying a, we first use
the same prompt condition P (TO) to associate them to the
same object, then learn the diffusion model parameters ✓

and our Continuous 3D Words MLP g� by using the prompt
condition P (TO, g�(a)).

Inference: Negatively prompting object identifier. To
further the disentanglement of attributes against object iden-
tities. We propose a simple trick during inference by adding
the object identity as a negative prompt. Specifically, for
each sampling step, we swap the null-text embedding used
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Figure 4. Qualitative Comparisons. We compare our Continuous 3D Words trained under three settings against ControlNet of various
strengths. Note that the dollyzoom setup was trained with trained with multiple chair meshes, so we give additional ControlNet by manually
picking the chair rendering that best follows the prompt (i.e., “comfortable” and in “the office”).
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Figure 5. Disentangling Multiple Attributes. We show four
examples of controlling multiple Continuous 3D words in addition
to text descriptions. Left: trained with a single golden retriever
mesh. Right: trained with a single animated dove.
by classifier-free guidance with TO. Intuitively, since our
training happened mostly using O, we want to disincentivize
the model to generate images containing such object.

3.4. ControlNet Augmentation

To prevent the fine-tuning process from overfitting to a sim-
ple white backgrounds and pre-defined object textures, we
augment the backgrounds and textures in the rendering pro-
cess. However, directly doing this in simulation engines is
time consuming specially if one is targetting realistic scenes.
Thus, we propose an automated solution by utilizing pre-
trained ControlNets.

Figure 3 shows two types of ControlNet augmentations
we used in our framework. For attributes that can be directly
reflected on shape changes (e.g., wing pose), we directly
render the ground-truth depth maps to use as the condition
for ControlNet. On the other hand, for attributes that cannot
be reflected directly from depths (e.g., illumination), we
first render the images without textures, then use a lineart
extractor to obtain a “sketch” of the image. This captures
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subtle changes such as shades and shadows in the pixel
space, which can then be used as the condition for Lineart
ControlNet.

We add additional prompts describing the object appear-
ance and background during the ControlNet generation. It is
important to note that prompts deviating away too much from
the original mesh category would lead to degenerate images,
so our prompts are in general very simple and straightfor-
ward (details in supplemental material). We include the
ControlNet generated images as a small set of data augmen-
tation, and we use the same prompt which we use to guide
ControlNet generation to guide our Stage 2 fine-tuning.

4. Experiments

We use off-the-shelf Stable Diffusion v2.1 [24] as the back-
bone of our method. We resort to the recent Low-Rank
Adaptation (LoRA) [14] for the fine-tuning of the denoising
U-Net and text encoder, allowing us to train on a single A10
GPU occupying roughly 16GB of memory. Thanks to the
low-rank optimization, our models have a very small size
(approximately 6MB). Training time varies by the complex-
ity of the single/multiple attributes to learn, but falls within
15k to 20k steps, which generally takes around 3-4 hours
in a single GPU. For ControlNet augmentation, we use the
official implementation of ControlNet v1.1 [30].

We implement our Continuous 3D words under five dif-
ferent attribute settings. For single attributes we implement
1) illumination [ ] using a single dog mesh, 2) wing
pose [ ] using a single animated dove mesh, and 3) Dolly
zoom [ ] with five Pix3D chairs [28]. For multi-concepts,
we train 4) illumination and object orientation [ ] + [ ]
using a single dog mesh and 5) wing pose and orientation
[ ] + [ ] using a single animated dove mesh. Settings 1)
and 4) use lineart images [6] while the others use depth map
to compute the ControlNet background augmentation (see
Section 3.4).

4.1. Comparison with Baselines

Baseline Design. We design a very competive baseline that
enables fine-grained attribute control in image generation
by combining the mesh training data we used in our experi-
ments, a rendering engine and ControlNet [30]. Specifically,
we take a novel text prompt for a training object, and grab
a corresponding condition map in the training set rendered
with the intended attributes. For example, if the prompt
is a [ ] eagle flying in a forest, we select
the frame of the dove mesh that corresponds to the user-
prescribed wing pose [ ] , render its depth map using a
rendering engine and pass it through ControlNet with the
same prompt but removing the continuous 3D word. The
strength of the ControlNet guidance is a critical hyperparam-
eter — increase in strength could increase the accuracy of
reflecting the attribute but decrease the robustness to general-

User Preference (%) "

Method [ ] [ ] [ ] / [ ] [ ] / [ ] Avg.

ControlNet (1.0) 28.3% 16.2% 35.0% 15.0% 23.6%
ControlNet (0.5) 10.0% 28.8% 12.5% 32.5% 21.0%
Ours 61.7% 55.0% 52.5% 52.5% 55.4%

Average User Ranking "

Method [ ] [ ] [ ] / [ ] [ ] / [ ] Avg.

ControlNet (1.0) 2.07± 0.70 1.49± 0.76 2.20± 0.68 1.60± 0.74 1.84± 0.72

ControlNet (0.5) 1.38± 0.66 2.11± 0.67 1.38± 0.70 2.06± 0.76 1.73± 0.70

Ours 2.55± 0.62 2.40± 0.73 2.43± 0.67 2.33± 0.77 2.43± 0.70

Table 1. User study results. We asked users to rank three images
according to their preference and how well they followed the given
conditions – text prompt and one or two continuous controls. The
controls were described by representative images (i.e. arrows for
orientation, shaded sphere for illumination, etc.). See supplemen-
tal material for more details. We evaluate four different control
types: wing pose [ ] , illumination [ ] , wing pose [ ] +
orientation [ ] , and illumination [ ] + orientation [ ] .
Cells colored as red and yellow represent the best and second best
method, respectively. Our method was selected as the favorite for
the majority of users in all evaluated setups.

ize to the text-prompt intended object. Therefore, we present
the ControlNet baseline with both full and half strength in
terms of guidance. We also explored an interpolation of
null-text embedding [18] baseline, but the results failed to
capture even the simplest attributes, so they were omitted
from our analysis.

Quantitative Results. Due to the complexity and abstract
nature of the attributes we are analyzing, automatically mea-
suring whether a generated image reflects a set of values
is a considerable challenge. Thus, following previous pa-
pers [12, 25, 30], we create a user study to evaluate the
quality of the generated images while controlling several at-
tributes. For each setting 1, 2, 4, and 5, we randomly sample
a set of 3D conditions and prompts, generating over 60 ques-
tions per setting. Similarly to the user studies above, we then
invite 20 participants, showing them all the given constraints
we want the image to pertain (prompts and attributes), and
ask them to rank each image from best to worst.

Table 1 shows the results in both the percentage of user
preference (image chose as the best one) and the overall rank-
ing. Best results are highlighted as red. Our Continuous 3D
Words won the majority of votes (over 50%) in all analyzed
scenarios. Interestingly, the second best (as highlighted in
yellow) alternates between the two guidance strengths of
ControlNet. For wing-pose based controls, having a weaker
control diminishes the strong prior offered by the depth map,
resulting in inaccurate poses. Conversely, strong guidance
for illumination forces ControlNet to generate objects around
the shadow outline (further shown in Figure 4). Differently
from the baselines, our training strategy is one-size-fits-all
without any hyperparameter required.
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Qualitative Analyses We present a detailed comparison of
Continuous 3D Words against ControlNet of different guid-
ance strengths in Figure 4. We show results under three
training settings : a) wing pose and orientation, b) illumi-
nation and orientation, and c) dollyzoom. We observe that
the dollyzoom setup was a harder concept to train and had
to be done using five chairs. We also manually “helped” the
ControlNet baseline by manually picking the chair that best
followed our text prompt as the condition image. More im-
portantly, the ControlNet baselines significantly deteriorate
when the prompt contains elements that were not present in
the training data. For example, even when trained on a single
dog mesh, our method can learn illumination and orientation
attributes that can be used to generate horses and taxis (row
b), Figure 4).

4.2. Multi-Concept Control

Just like sentences where we can encompass multiple words,
but each disentangled from one another when controlling
the image generation, our Continuous 3D Words can do the
same. We show four examples in Figure 5, two from [ ]
and [ ] , and two [ ] and [ ] , where we can keep
one attribute fixed but change the other without sabotaging
the quality of image generations. They can be jointly used
with complex prompts describing the background and object
texture. Moreover, while all these words are learned from a
single mesh, we can easily transfer the attribute to objects
with fairly close semantics (e.g., a labrador mesh to a polar
bear, or a dove mesh to a parrot).

4.3. Real World Image Editing

Our Continuous 3D Words can be directly applied to real
world images to perform editing. To do so, we simply have
to encode a real world image to a rare token via Dreambooth
[25]. Then, we only have to use that token in conjunction
with our Continuous 3D Words to generate the edited image.
We show 4 examples in Figure 6, changing [ ] , [ ]
, [ ] . As we can see, the Dreambooth token preserves
most of the image appearance, while our Continuous Words
understands and brings edits to the main subject.

Comparing with Zero-1-to-3 While our approach is fo-
cused on enhancing text-to-image, given the capabilities
of real-world image editing, we can use the same setup
to provide a comparison with only with object orientation
changes (Figure 6). Notice that Zero1-to-3 [16] operates in
foreground-only images so we also had to segment the object
[7], inpaint the background [24], and place the novel orien-
tation back to to the image. Each step contain errors that,
when compounded, hurt the quality of the final result. More
importantly, our method allows controls beyond orientation
changes without relying on massive 3D datasets.
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Figure 6. Real World results & Comparison w/ Zero1-to-3.

We learn tokens representing single images and use along with
Continuous 3D Words for image editing. The learned image token
encodes most of the image appearance, while the Continuous 3D
Word modifies its relevant aspects. Zero123, on the other hand,
tends to yield images where the modified object is deformed or not
properly harmonized.
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Figure 7. Interpolating continuous 3D words. We present two
results of interpolation, one with discrete tokens and one with our
Continuous 3D Words. Our method preserves the attributes better
and enables interpolation between two values.

5. Discussion and Limitations

Why Not Discrete Tokens? The benefits of fitting a single
MLP instead of multiple tokens on an attribute with differ-
ent values are twofold. First, the MLP learns a continuous
function, allowing us to interpolate between two training
data samples whereas fitting multiple tokens leads to two
datapoints as two discrete mappings. Second, finetuning a
model to learn multiple custom tokens simultaneously is very
hard. These benefits are illustrated in Figure 7. We show a
comparison of learning a single Continuous 3D Word [ ]
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Figure 8. Ablation Study. We present our ablations for: w/o two-
stage training, w/o ControlNet augmentation, w/o [obj] as negative
prompt, and our full pipeline. Notice that, when the prompt deviates
a lot from the training data (truck in prompt, mesh of a dog for
training), the ablated version fails to follow the prompt. Without
two-stage training, it ignores the prompt and creates a dog; without
the other parts it yields deformed shadows and dog-shaped trucks.

and 18 discrete tokens for different values of a wing pose.
Both were learned with the same training method (2-stage
with ControlNet augmentation). We present the generated
results of three attribute values that are present in the training
set, as well as the results when you interpolate the value in
between. Interpolation is straightforward for our case where
we just input the intermediate value into our Continuous 3D
Words MLP. For discrete tokens, we interpolate between
two nearest discrete bins. Notice that the discrete tokens
have difficulty not only in interpolating results but also in
learning the concept simultaneously. The eagle wings in
the second row of Figure 7 do not follow the training data
and sometimes generate a completely different pose (third
column, second row). On the other hand, our images closely
follow the pose prescribed by the user (top row) while yield-
ing appealing images even when the values were not seen
during training (columns 2, 4 and 6; second row).
Ablation study. Figure 8 shows an ablation of our train-
ing strategy. We remove each component of our training
strategy (w/o two-stage training, w/o ControlNet augmenta-
tion, w/o [obj] as negative prompt) and compare it with our
full pipeline. Two examples are presented: one where the
prompt is similar to the training and another one where it is
significantly different. Without the two-stage training, the
model fails to disentangle object identity with our attributes,
hindering the generalization capability to new objects. This
is particularly noticeable for the bottom row when the text
prompt is a truck but a dog similar to the training mesh
is generated when the two-stage training is removed. With-
out ControlNet, the finetuning process often overfits to the
background training renderings, resulting in an inability to
generate realistic backgrounds. Finally, adding [obj] as the
negative prompt serves as a minor improvement in further
disentangling both the backgrounds and object shape seen
during training, resulting in a more aesthetic image.
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Figure 9. Condition v.s. Accuracy in User Study. a) shows two
images generated by the prompt “a [ ] photo of a white bird
on sand”. b) shows two images generated by the prompt “a [ ]
photo of a colorful bird”. Left is ours, right is ControlNet (1.0).
Users preferred right over left for both.
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Figure 10. Failure cases. a) shows images generated with prompt
“a [ ] [ ] Monet Painting of .....”. b) shows images generated
with “a [ ] [ ] photo of a T-Rex”.

Condition v.s. Generated Accuracy in User Study. During
our user study, we realize that occasionally users select the
image which more strictly follows the exact conditions over
the more physically probable image. For example, in Figure
9 a) and b), the head of the bird is generated poorly, but users
preferred them as they are “whiter” and “more colorful”.
Failure Cases. We present in Figure 10 two examples of
typical failure cases in our results. First, our model currently
fails on more difficult scenarios where the style is given by
the text prompt. In a), the image cannot fully reflect the
“Monet painting” style imposed by our prompt. Second, the
generated object may sometimes still overfit to the training
set. In b), the T-Rex had four feet on the ground instead of
standing with two claws in air – an attribute that is similar to
the training dog mesh used to learn illumination.

6. Conclusion

We presented Continuous 3D Words, a framework that al-
lows us to learn 3D-aware attributes reflected in renderings
of meshes as special words, which can then be injected into
the text prompts for fine-grained text-to-image generation.
Extensive study on learning both single and multiple contin-
uous words shows that we can control challenging attributes.
With the lightweight design and promising results, we hope
that this work opens up interesting applications in the vision
community to create their own 3D words with a single mesh
and an accessible rendering engine.
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