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Abstract

The Segment Anything Model (SAM) has garnered sig-
nificant attention for its versatile segmentation abilities and
intuitive prompt-based interface. However, its application
in medical imaging presents challenges, requiring either
substantial training costs and extensive medical datasets for
full model fine-tuning or high-quality prompts for optimal
performance. This paper introduces H-SAM: a prompt-free
adaptation of SAM tailored for efficient fine-tuning of med-
ical images via a two-stage hierarchical decoding proce-
dure. In the initial stage, H-SAM employs SAM’s original
decoder to generate a prior probabilistic mask, guiding a
more intricate decoding process in the second stage. Specif-
ically, we propose two key designs: 1) A class-balanced,
mask-guided self-attention mechanism addressing the un-
balanced label distribution, enhancing image embedding;
2) A learnable mask cross-attention mechanism spatially
modulating the interplay among different image regions
based on the prior mask. Moreover, the inclusion of a hier-
archical pixel decoder in H-SAM enhances its proficiency in
capturing fine-grained and localized details. This approach
enables SAM to effectively integrate learned medical priors,
facilitating enhanced adaptation for medical image seg-
mentation with limited samples. Our H-SAM demonstrates
a 4.78% improvement in average Dice compared to existing
prompt-free SAM variants for multi-organ segmentation us-
ing only 10% of 2D slices. Notably, without using any unla-
beled data, H-SAM even outperforms state-of-the-art semi-
supervised models relying on extensive unlabeled training
data across various medical datasets. Our code is available
at https://github.com/Cccccczh404/H-SAM .

1. Introduction
Accurate delineation of tissues, organs, and regions of in-
terest through medical image segmentation is pivotal in aid-
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Figure 1. H-SAM is advantageous in few-shot medical image
segmentation. It achieves over 80% in average Dice using only
10% slices for multi-organ segmentation, outperforming exist-
ing prompt-free SAM adaptation methods. Without using any
unlabeled data at all, it even outperforms state-of-the-art semi-
supervised models that use extensive unlabeled training data for
prostate segmentation.

ing medical professionals’ diagnostic precision and treat-
ment planning processes [13, 15]. Furthermore, it plays a
fundamental role in propelling disease research and discov-
ery [53]. Nonetheless, a significant challenge in this field
lies in the demand for deep learning models to undergo ex-
tensive training on large annotated datasets, a resource often
challenging to procure within the medical domain.

Recently, Segment Anything Model (SAM) [37], trained
with over a billion masks from diverse natural images,
demonstrates remarkable zero-shot learning capabilities.
This breakthrough presents an avenue for significant ad-
vancements in medical image segmentation, especially con-
sidering the limited availability of extensive datasets in the
medical realm. However, SAM’s performance on medical
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images diminishes notably in zero-shot settings, exhibit-
ing reduced accuracy and robustness [25, 29, 35, 43, 50].
This decline can be attributed to SAM’s lack of exposure
to medical images during training, as its extensive training
revolves around natural images [32, 71].

While training SAM exclusively on medical datasets is
a potential solution, it incurs substantial training costs and
risks of over-fitting to single datasets [49]. Efforts to bridge
the gap between medical and natural image domains involve
adapting SAM to specific medical datasets [14, 23, 69]. Pre-
vious works primarily focus on inserting adapter layers into
the image encoder with minimal decoder changes [23, 70].
Most of these efforts employ prompted SAM adaptation,
generating prompts using point or bounding boxes from
ground truth during testing [21, 64, 72]. However, creating
accurate prompts demands domain knowledge from med-
ical experts, which is often limited, time-consuming, and
prone to noise, compromising segmentation accuracy. In
response, prompt-free SAM adaptation methods [9, 56, 70]
have emerged, yet they typically yield inferior results com-
pared to prompted methods due to the lack of medical
knowledge that prompts provide.

We present H-SAM, a prompt-free variant of the Seg-
ment Anything Model (SAM), aimed at integrating medical
knowledge via a streamlined two-stage hierarchical mask
decoder while maintaining the image encoder frozen. Ini-
tially, input images are processed by a LoRA-adapted im-
age encoder. H-SAM employs SAM’s original lightweight
mask decoder in the first stage to generate a prior prob-
abilistic mask, guiding a more intricate second decoding
stage. Two key designs underpin this process: 1) A class-
balanced, mask-guided self-attention mechanism recali-
brates the image embedding using self-attention from the
prior mask, ensuring balanced representation across cat-
egories with noise augmentation. 2) A learnable mask
cross-attention mechanism employs the prior mask to
modulate cross-attention spatially within the subsequent
Transformer decoder, attenuating less relevant background
noise. Moreover, a hierarchical pixel decoder comple-
ments the hierarchical Transformer decoder, enhancing the
model’s precision and ability to capture localized details.
Figure 2 illustrates the overall pipeline.

In both fully-supervised and few-shot multi-organ seg-
mentation tasks, our H-SAM surpasses existing prompt-free
SAM variants. Specifically, using 10% and 100% of 2D
slices, H-SAM achieves an average Dice score improve-
ment of 4.78% and 3.48% on the Synapse dataset, respec-
tively. This superior performance is also evident in other
few-shot medical image segmentation tasks including the
left atrial (LA) dataset and PROMISE2012 dataset. No-
tably, as illustrated in Figure 1, H-SAM excels without
the need for any unlabeled data, surpassing state-of-the-
art semi-supervised models that rely on extensive unlabeled

training datasets. The promising performance of 87.27%
and 89.22% achieved on the prostate and left atrial segmen-
tation using only 3 and 4 cases highlights H-SAM’s poten-
tial in medical imaging applications.

2. Related Work

Medical Foundation Models Foundation models are pre-
trained, large-scale models that allow for rapid customiza-
tion through fine-tuning or in-context learning, as exempli-
fied in [18, 55]. Despite these notable signs of progress,
challenges persist in complex tasks like image segmenta-
tion, primarily due to the difficulty of obtaining annotated
masks. Segment Anything Model (SAM) [37], with exten-
sive training on a dataset of over 1 billion natural images,
showcases impressive performance in image segmentation.
Particularly, in diverse real-world scenarios, SAM demon-
strates powerful capabilities for zero-shot generalization,
signifying its potential to address intricate computer vision
challenges.

With the surge of Segment Anything Model [37], previ-
ous work seeks to apply SAM on medical images [5, 16,
73]. However, empirical studies of SAM’s zero-shot ca-
pability on medical images [12, 17, 27, 60] reveal a sig-
nificant decline when dealing with unseen medical fea-
tures [52, 61]. Consequently, recent work explores effec-
tive adaptations of prompted SAM on medical datasets.
Due to the computational intensity associated with training
all parameters of SAM, researchers primarily concentrate
on updating a subset of SAM’s parameters. Many works
require prompts to generalize SAM on medical datasets.
For instance, MedSAM [49] curates a large medical im-
age dataset to adapt bound box prompted SAM. Med-
ical SAM Adapter [64] fine-tunes point-prompted SAM
using Adaption modules. Several studies transfer SAM
from 2D to 3D by adding layers to support volumetric in-
puts [24, 39, 40, 46]. Other prompted SAM adaptations
employ exemplar learning [21] and new prompt mecha-
nisms [72]. Apart from prompted SAM adaptations, which
require prompts sampled from ground truth during test-
ing, prompt-free SAM adaptation methods are proposed for
medical segmentation where prompts are not necessarily
available. AutoSAM [30] fine-tunes SAM without prompts
by freezing the SAM encoder and adding prediction heads
to generate segmentation masks. SAMed [70] achieves
competitive prompt-free results by introducing LoRA [28]
layers into the image encoder while using the original de-
coder.

This study also introduces a prompt-free version of
SAM, designed to enhance efficient finetuning with limited
medical data. It differentiates from existing research by in-
troducing a novel hierarchical decoding process that incor-
porates medical prior knowledge.

3512



Image Encoder with LoRA Hierarchical Mask Decoder

M
ask A

tten.

S
elf A

tten.

S
elf A

tten.

C
ross A

tten.

Skip Connection

Probabilistic
Map

High-Resolution
Prediction

LoRA Layers

E
nhanced Im

age E
m

beddings

Im
age E

m
beddings

Transformer Decoder

Pixel Decoder
Pixel Decoder

Transformer Decoder

D
ow

n S
am

pler

Transformer Block

W
/4

W

HH
/4

CMAttn

Figure 2. The H-SAM framework integrates a LoRA-adapted image encoder and a sophisticated 2-stage hierarchical decoder. We finetune
the prompt encoder with default embeddings under a prompt-free setting. A key innovation lies in our hierarchical mask decoder, which
strategically utilizes predictions from the stage-1 decoder as priors to achieve nuanced segmentation with 2 implementations: Class-
Balanced Mask-Guided Self-Attention (CMAttn), and Learnable Mask Cross-Attention. And a hierarchical pixel decoder is employed to
complement the enriched object queries derived from the transformer decoder.

Model Fine-Tuning Efficient fine-tuning of foundation
models is crucial, with adapters becoming key for integrat-
ing new knowledge into pretrained models and providing a
more efficient alternative to complete finetuning [10, 26].
Low Rank Adaptation (LoRA) [28] advocates for a grad-
ual parameter update within transformer blocks, aiming for
a low-rank approximation to refine large-scale models. In
our proposed H-SAM, we incorporate LoRA adapters into
SAM image encoder to avoid over-fitting in medical image
dataset adaptation.

Medical Image Segmentation Medical image segmenta-
tion refers to partitioning or dividing a medical image into
the dense prediction of pixels corresponding to lesions or
organs in imaging modalities such as CT [22, 62, 74, 75]
and MRI [36, 68]. With the rapid progress of deep learning,
U-Net [58] with its elaborate network design ushers a new
era for medical image segmentation. Building on U-Net’s
foundation, a series of works emerge to enhance segmenta-
tion performance with U-shaped models [19, 33, 76]. Re-
cent advancements of vision transformers in natural image
analysis also prompt exploration in medical image segmen-
tation [20]. A prevalent network design strategy involves
integrating transformer blocks into the U-Net framework,
resulting in novel architectures such as TransUnet [7] and
Swin-Unet [4]. MISSFormer [31] is a u-shaped encoder-
decoder network with enhanced transformer blocks. Recent
works also explore medical image segmentation in a few-
shot setting. RP-Net [59] proposed to iteratively capture
context relationships using a U-shaped network. CAT-Net
and 3D TransUNet [8, 44] design a cross masked attention

Transformer to focus only on foreground regions between
the support image and query image.

Unlike existing studies, this study is focused on the fine-
tuning of large foundational models, specifically SAM, to
facilitate more efficient adaptation for medical image seg-
mentation tasks. To achieve this, we introduce a hierarchi-
cal decoding strategy designed to optimize SAM’s capabil-
ities, thereby unlocking its full potential for efficient and
effective fine-tuning on medical tasks.

3. Methodology
3.1. H-SAM Overview

Given an image I of size W ×H , our goal is to predict its
corresponding segmentation map of W × H . Each pixel
in this map is assigned to a category from a predefined
class list, aiming for maximal alignment with the ground
truth gt. Our segmentation framework H-SAM is built up
upon SAM, integrating a LoRA-adapted image encoder and
a simple but effective 2-stage hierarchical decoder.

LoRA-adapted Image Encoder As illustrated in Fig-
ure 2, H-SAM utilizes the original image encoder of
SAM and freezes all layers to preserve pre-learned knowl-
edge. Then, we adopt the same LoRA implementation as
SAMed [70] to add a smaller, trainable bypass composed
of two low-rank matrices. In line with LoRA, these by-
passes first compress the transformer features into a low-
rank space. Subsequently, they reproject these condensed
features to match the output feature channels of the frozen
transformer blocks. Only these bypass matrices are updated
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during training, allowing for minor yet effective model ad-
justments. For the prompt encoder, H-SAM does not need
any prompt and simply updates a default embedding during
training.

Mask Decoder The original SAM mask decoder consists
of a Transformer decoder and a pixel decoder. The Trans-
former decoder processes image embeddings extracted
from the image encoder, employing self-attention mecha-
nisms to evaluate the significance of various image regions
and cross-attention mechanisms to focus on relevant areas
for segmentation. Subsequently, the pixel decoder refines
this output, generating a detailed segmentation map, and as-
signing a class or category to each pixel.

Hierarchical Decoding Our H-SAM introduces a more
intricate two-stage hierarchical decoding procedure. In the
first stage, H-SAM employs SAM’s original decoder to
create a prior (probabilistic) mask, which will be used to
guide more intricate decoding in the second stage, as il-
lustrated in Figure 2. This second stage mirrors the orig-
inal one with both a Transformer decoder and a pixel de-
coder. To enhance image embedding input and optimize
cross-attention in the second Transformer decoder, we in-
troduce two novel modules. Firstly, a class-balanced, mask-
guided self-attention mechanism is proposed to rectify the
issue of unbalanced label distribution, thereby enhancing
the image embedding for the second-stage Transformer de-
coder (Sec. 3.2). Secondly, we incorporate a learnable mask
cross-attention mechanism within the second Transformer
decoder. This mechanism adeptly modulates the spatial dy-
namics among various image regions, guided by the infor-
mation from the prior mask, thereby enhancing the segmen-
tation process (Sec. 3.3). Collectively, these decoders con-
stitute a hierarchical Transformer decoder framework. Fur-
ther, we propose a hierarchical pixel decoder, inspired by
U-Net architecture, to supplement the hierarchical Trans-
former decoder and further refine the segmentation out-
come. Concretely, the pixel decoder in the second stage in-
tegrates features from the first-stage pixel decoder through
skip connections, enabling the generation of high-resolution
predictions (Sec. 3.4).

3.2. Enhanced Image Embedding via Class-
Balanced Mask-Guided Self-Attention

As shown in Figure 3, we incorporate a Class-Balanced
Mask-Guided Self-Attention (CMAttn) block to enhance
the image embeddings as input for the second-stage Trans-
former decoder. This is particularly helpful in the case
where we have an imbalance between the abundant in-
stances in the head categories and the scarcity of instances
in the tail categories. We use a mask feature which is ac-
quired by directly multiplying image embedding without
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Figure 3. The illustration of Class-Balanced Mask-Guided Self-
Attention (CMAttn) block.

upsampling from the first decoder as the input mask fea-
ture for CMAttn. Before the self-attention block, we adopt
a class-balanced augmentation to introduce more variations
to tail categories. Inspired by previous approaches utiliz-
ing logit adjustment in long-tail problems [41], we perturb
the mask feature with Gaussian noise whose variance is in-
versely proportional to category sample frequencies:

P (gt== i)+= N (0, var(i)), (1)

where P ∈ RN×C×H×W is the normalized input mask fea-
ture. gt is the ground truth mask resized to the same size. N
is the added Gaussian noise. The variance list is calculated
offline and stored as var.

After self-attention, we adopt a linear layer to compress
the channel dimension, and incorporate the resulting mask
feature to input image embeddings using Hadamard product
⊙. A residual path is designed to retain information from
the initial image embedding.

3.3. Learnable Mask Cross Attention

Mask-attention is a variant of cross-attention first proposed
in Mask2Former [11]. Unlike cross-attention which attends
to the global context, mask-attention operates only on the
area within the predicted mask. Original mask-attention
adds a transformed binary mask to the cross attention op-
eration via

X = softmax(t(M) +KQT )V +X, (2)

where X is the input query feature of the transformer block.
K, Q, and V are the key, query and value in cross atten-
tion. t(M) is a function mapping binarized input {0, 1} to
{−∞, 0}. This mask formulation has two limitations: (1)
the gradient of mask M vanishes through t(M); (2) bina-
rized mask M treats all foreground pixels without differen-
tiation, limiting its ability to interpret further information
from the mask prior.
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To address these limitations, we propose to use learnable
mask cross-attention in the second decoding stage as shown
in Figure 4, which can be formulated as:

X = M ⊙ softmax(KQT )V +X, (3)

which employs an untransformed probabilistic map M re-
sized to the same spatial resolution as the saliency map in
cross attention. With element-wise product between the
mask and the saliency map, masked regions will be ignored
by multiplying a near-zero probability. This new formula-
tion mitigates the aforementioned limitations and facilitates
rapid convergence and better performance. Our learnable
mask cross-attention within the second-stage Transformer
decoder leverages more information from the probabilistic
map and can assign varying degrees of importance to differ-
ent foreground regions.

3.4. Hierarchical pixel decoder

Complementing the Transformer decoder, SAM’s original
pixel decoder directly upsamples the image embedding into
a segmentation map of H/4×W/4. We argue that this res-
olution is not capable of capturing some intricate local de-
tails and small-scale medical objects in medical image seg-
mentation necessitates the use of U-shaped networks with
multiple skip connections. To enhance the details in the
segmentation output, we adopt U-shaped architectures only
in pixel decoders with skip connections for effectively han-
dling multi-scale objects in medical images with acceptable
computation cost. Within our H-SAM hierarchical decod-
ing, the second-stage transformer decoder undergoes metic-
ulously crafted mask-guided designs to propagate the prior
mask from the first stage to the next stage (as shown in
Sec. 3.2 and Sec. 3.3). Here we propose the hierarchical
pixel decoder designed to complement the enriched object

queries derived from the transformer decoder. Similar to the
hierarchical Transformer decoder, the hierarchical pixel de-
coder also consists of two successive pixel decoders, strate-
gically incorporates skip connections to integrate features
from the first pixel decoder to the second, and further up-
sample the resolution from H/4×W/4 to the full resolution
H×W . Benefiting from skip-connected localized features,
the hierarchical pixel decoder will be supplemented with
the Transformer decoder to output an enriched representa-
tion with enhanced resolution.

Training Loss The training loss combines pixel-wise
classification loss and binary mask loss for each segmented
prediction:

L = λceLce + λdiceLdice, (4)

where the pixel-wise classification loss Lce and Ldice

denote binary cross-entropy loss and dice loss, respec-
tively [51]. For our 2-stage hierarchical structure, there is
also a λw for each loss in the 2 stage. The final loss Ltotal

a sum of λwLstage1 and (1 − λw)Lstage2. The parameter
λw is set to gradually decrease from 0.8 in a way of ex-
ponential decay, at a decay coefficient of 0.005. The first
decoder output is supervised by 1/4 resolution ground truth,
and the second output by full resolution. The final output is
ensembled by taking the average of probabilities from the
two outputs.

Deep Supervision The training loss will be applied to ev-
ery stage in our hierarchical decoding procedure. The su-
pervisory signals for the stage-1 mask decoder stem from
ground truth masks of H/4×W/4, while the stage-2 mask
decoder is directly supervised using original high-resolution
ground truth. This ensures thorough supervision and en-
hances the overall effectiveness of the model.

4. Experiments
4.1. Dataset and Evaluation

We conduct experiments of multi-organ semantic seg-
mentation on three medical datasets, including Synapse
multi-organ CT [38], the left atrial (LA) dataset [6], and
PROMISE12 [45]. We utilize Dice coefficient and the aver-
age Hausdorff distance (HD) as evaluation metrics.

Synapse Multi-Organ CT. The Synapse dataset is from
MICCAI 2015 Multi-Atlas Abdomen Labeling Challenge,
which contains 3779 axial contrast enhanced abdominal
CT images in total. The training set contains 2212 axial
slices. We strictly follow TransUnet [7] and SAMed [70]
for dataset split and data preprocessing. The dataset is split
into 18 training cases and 12 test cases. The CT volumes
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Training set Method Spleen
Right

Kidney
Left

Kidney Gallbladder Liver Stomach Aorta Pancreas
Mean Dice↑

(%) HD ↓

10%

AutoSAM [30] 68.80 77.44 76.53 24.87 88.06 52.70 75.19 34.58 55.69 31.67
SAM Adapter [9] 72.42 68.38 66.77 22.38 89.69 53.15 66.74 26.76 58.28 54.22

SAMed [70] 85.82 82.25 82.62 63.15 92.72 67.20 78.72 52.12 75.57 23.02
H-SAM (ours) 90.21 84.16 85.65 70.70 94.29 76.10 85.54 56.17 80.35 15.54

Fully
Supervised

TransUnet [7] 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62 77.48 31.69
SwinUnet [4] 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60 79.13 21.55

TransDeepLab [1] 86.04 69.16 84.08 79.88 93.53 61.19 89.00 78.40 80.16 21.25
DAE-Former [2] 88.96 72.30 86.08 80.88 94.98 65.12 91.94 79.19 82.43 17.46

MERIT [57] 92.01 84.85 87.79 74.40 95.26 85.38 87.71 71.81 84.90 13.22
AutoSAM [30] 80.54 80.02 79.60 41.37 89.24 61.14 82.56 44.22 62.08 27.56

SAM Adapter [9] 83.68 79.00 79.02 57.49 92.67 69.48 77.93 43.07 72.80 33.08
SAMed [70] 87.77 69.11 80.45 79.95 94.80 72.17 88.72 82.06 81.88 20.64

H-SAM (ours) 93.34(8.22) 89.93(9.59) 91.88(8.25) 73.49(23.01) 95.72(1.49) 87.10(7.14) 89.38(2.82) 71.11(10.27) 86.49 8.18

Table 1. Comparison to state-of-the-art models on Synapse multi-organ CT dataset with both few-shot and fully-supervised settings. Our
model shows outstanding results in both of the training settings. The value in (·) is standard deviation.

for Synapse dataset of each volume contain 85 to 198 slices.
The resolution of Synapse dataset is 512×512 during few-
shot training, and 224×224 during fully-supervised train-
ing. We evaluate eight abdominal organs (aorta, gallbladder,
spleen, left kidney, right kidney, liver, pancreas, stomach),
following TransUnet [7].

LA. The left atrial (LA) dataset is from 2018 Atrial Seg-
mentation Challenge [6]. We strictly follow UA-MT [67]
and BCP [3] for data split and data preprocess. Specifically,
LA dataset is split into 80 scans for training and 20 scans for
evaluation. And we keep 4(5%) scans as labeled data while
the rest scans in the training set are treated as unlabeled data
for these two settings respectively. And we resize each 2D
slice into 512×512 during training. Note that we do not use
the unlabeled data for training H-SAM. Instead, we only
use these selected 4 labeled scans to train our model.

PROMISE12. PROMISE2012 dataset is from the
Prostate MR Image Segmentation 2012 [45]. It contains 50
3D transversal T2-weighted MR images of the prostate with
manual binary prostate gland segmentation and is obtained
from multiple centers with different acquisition protocols.
During the experiments, we strictly follow MLB-Seg [63]
for data split and data preprocessing. Specifically, we split
it into 40 / 10 cases for training / evaluation. 3 out of 40 are
selected as data with labels while the rest 37 scans are used
as unlabeled data. The resolution of PROMISE12 dataset
is 512×512. Again, note that only the 3 labeled cases are
used for training H-SAM.

4.2. Implementation details

All our implementation is in PyTorch and we train all our
models on 4 NVIDIA RTX A5000 GPUs. During training,
we adopt a data augmentation combination of elastic defor-
mation, rotation, and scaling. The training loss is a combi-
nation of Cross-Entropy loss and Dice loss. We adopt the
same LoRA settings as SAMed, in which the rank of LoRA

is set to 4. A ViT-B and a ViT-L backbone are adopted sep-
arately for few-shot and fully-supervised training. For a fair
comparison, we utilize the same resolution of 224×224 for
fully supervised training on Synapse as other SAM variants
and SOTA methods. The maximal training epoch is set to
300. The optimizer algorithm used for updating is based on
the AdamW, and β1, β2, and weight decay are set to 0.9,
0.999, and 0.1.

4.3. Results

Synapse Multi-Organ CT In Table 1, H-SAM shows
outstanding few-shot transferability with limited seen med-
ical images (10%). Compared to other SAM prompt-
free variants: Auto SAM [30], SAM Adapter [9] and
SAMed [70], our H-SAM reports results of 80.35% with
limited training scans equal to only 1 volume, which out-
performs other SAM adaptation variants by a large mar-
gin (≈5%). We also evaluate our H-SAM under a fully-
supervised setting on Synapse multi-organ CT dataset. We
evaluate our model in a fair comparison with the prompt-
free setting with several state-of-the-art methods, includ-
ing TransUnet [7], SwinUnet [4], TransDeepLab [1], DAE-
Former [2] and MERIT[57], along with other SAM prompt-
free variants: Auto SAM [30], SAM Adapter [9] and
SAMed [70]. Our method achieves promising results in
multi-organ segmentation with an 86.49% Mean Dice Co-
efficient, which is higher than newly released medical seg-
mentation networks DAE-Former (82.43%) and MERIT
(84.90%). H-SAM also easily outperforms other prompt-
free SAM variants (86.24% vs. 81.88%).

LA As shown in Table 2, we conduct the few-shot se-
mantic segmentation experiment on LA dataset. Here, we
present results using 4 labeled scans (5% of the dataset)
for training. We compare our method with two categories
of approaches: 1) SAM efficient adaptation methods in-
cluding AutoSAM [30], SAM Adapter, and SAMed [70]
and 2) semi-supervised methods such as UA-MT [67], MC-
Net [65], SS-Net [66], and BCP [3]. We also compare
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Methods Scans used Mean Dice (%)↑Labeled Unlabeled
UA-MT [67]

4(5%) 76(95%)

82.26
SASSNet [42] 81.60

DTC [47] 81.25
URPC [48] 82.48

MC-Net [65] 83.59
SS-Net [66] 86.33

BCP [3] 88.02
nnUnet [34]

4(5%) 0(0%)

64.02
AutoSAM [30] 74.73

SAM Adapter [70] 82.79
SAMed [70] 87.72

Ours 89.22

Table 2. Results of LA dataset under semi-supervision using 4
labeled scans.

our results with nnUnet [34], a well-known baseline for
medical image segmentation. To ensure a fair compari-
son, we adhered to the data split protocols established in
UA-MT [67] and BCP [3], employing identical sets of 4
labeled scans for our few-shot experiments. The semi-
supervised methods also utilized the remaining 76 unla-
beled scans during their training. And all the methods were
evaluated on the same test dataset. Our proposed H-SAM
method outperforms both the SAM efficient adaptation and
semi-supervised methods under both split settings. This
underscores the ability of H-SAM to achieve superior or
comparable results with significantly less data compared to
semi-supervised methods. Under the few-shot setting, H-
SAM also demonstrates superior improvements in dice co-
efficients compared to SAMed [70] (89.22% vs. 87.72%),
indicating the effectiveness of H-SAM in few-shot learning.

PROMISE12 We also conducted the few-shot semantic
segmentation experiment on PROMISE12 dataset. Sim-
ilar to the LA dataset, we compared H-SAM against
SAM efficient adaptation methods (AutoSAM [30], SAM
Adapter [9], and SAMed [70]), nnUnet [34], and semi-
supervised methods (UA-MT [67], MC-Net [65], SS-
Net [66], and MLB-Seg [63]). For a fair comparison
with the semi-supervised methods, we strictly follow MLB-
Seg [63] and use the same 3 labeled cases as our training set
under the few-shot setting, while the semi-supervised meth-
ods incorporated an additional 37 unlabeled cases. And all
the methods are tested on the same test dataset. As shown
in Table 3, H-SAM achieved a significant improvement in
Dice coefficients (approximately 10.94%) over the semi-
supervised method MLB-Seg, despite being trained on only
three labeled cases. This result highlights the efficiency
of H-SAM in leveraging limited labeled data. Compared
to the SAM efficient adaptation method SAMed [70], our
method also demonstrated superior performance (87.27%
vs. 86.00%), further establishing its effectiveness in few-

Methods Scans used Mean Dice (%)↑Labeled Unlabeled
UA-MT [67]

3(7.5%) 37(92.5%)

65.05
DTC [47] 63.44

SASSNet [42] 73.43
MC-Net [65] 72.66
SS-Net [66] 73.19

Self-Paced [54] 74.02
MLB-Seg [63] 78.27

nnUnet [34]

3(7.5%) 0(0%)

84.22
AutoSAM [30] 68.40

SAM Adapter [9] 75.45
SAMed [70] 86.00

Ours 87.27

Table 3. Results of PROMISE12 dataset under semi-supervision.

Learnable
Mask-Attention

Hierarchical
Pixel Decoder

CM
Self-Attention Mean Dice (%)

% % % 75.57
! % % 77.68
! ! % 78.58
% ! % 77.05
% ! ! 79.03
% % ! 77.71
! % ! 78.76
! ! ! 80.35

Table 4. Effectiveness of the key contributions in H-SAM: Learn-
able Mask-Attention, CMAttn and Hierarchical Pixel Decoder.

Methods Mean Dice (%)
w/o. mask-attention 75.57

original mask-attention 75.61
learnable mask-attention (ours) 77.68

Table 5. Effectiveness of our learnable mask-attention against
original mask-attention and baseline.

shot semantic segmentation tasks.

4.4. Ablation study

Effectiveness of Learnable Mask Cross Attention As
shown in Table 4, our learnable mask attention improves the
baseline by 2.1%. Within the hierarchical decoding struc-
ture of H-SAM, our learnable mask cross attention shows
no signal of performance saturation with other two key con-
tributions: CMAttn and Hierarchical Pixel Decoder. We
also compare learnable mask cross attention against normal
cross attention and unlearnable mask attention in Table 5.
Note that, unlearnable mask attention operation brings lit-
tle improvement due to the lack of gradient backpropaga-
tion. Inversely, our proposed learnable mask cross attention
brings an immediate performance increase of 2.1% with
jointing training and inheritance of mask-guided prior.
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Effectiveness of CMAttn In Table 4, we present the
ablation of Class-Balanced Mask-Guided Self-Attention
(CMAttn). The CMAttn alone brings a 1.2% improve-
ment to the baseline, showing that SAM benefits from a
more informed image embedding as input for the mask de-
coder. Combined with Learnable Mask-Attention, the two
mask-guided implementations improve the baseline model
by 3.2% in terms of Mean Dice.

Effectiveness of Hierarchical Pixel Decoder In Table 4,
the hierarchical pixel decoder promotes the dice coefficient
by 2.2%. Then we evaluate the effectiveness of a combi-
nation of mask-guided implementations with the hierarchi-
cal pixel decoder by adding or disabling one of them each
time. Table 4 shows an improvement of 3.0% and 3.5%,
respectively combined with Learnable Mask-Attention and
CMAttn.

4.5. Efficiency Analysis

To show that the advantages of our hierarchical decoding
are not achieved by additional training cost in the decod-
ing section, here we conduct ablation experiments between
our model and other prompt-free SAM variants in terms
of total parameters and performance. AutoSAM [30] is
not listed in the table because it freezes the image encoder
with no adapters. The original lightweight SAM mask de-
coder consists of only 2 transformer layers. SAMed [70]
adds LoRA adapter in the image encoder, while remain-
ing a default SAM mask decoder with 2 transformer lay-
ers. SAM Adapter [9] injects adapter layers in both the
image encoder and mask decoder. In general, the training
cost of our H-SAM is equal to SAMed with 1 additional
lightweight mask decoder. For a fair comparison, we double
and dribble the number of SAMed transformer layers into 4
and 6, to achieve a comparable and even larger parameter
scale than the training cost in our H-SAM. As shown in
Table 6, SAMed [70] benefits from increased transformer
layers. However, the performance promotion comes with
huge computation costs. H-SAM consistently outperforms
SAMed. Compared with SAM Adapter, H-SAM shows a
7.5% performance improvement with a 20M lesser param-
eter scale. The results prove the superiority of our H-SAM
in wisely generating finer medical segmentation with little
extra computation cost.

4.6. Qualitative Results

As shown in Figure 5, we compare our H-SAM to
other prompt-free medical SAM variants, including Au-
toSAM [9], SAM Adapter [30] and SAMed [70]. As
pointed out in the first row and the last row, compared to
other SAM variants, H-SAM provides a precise mask pre-
diction with lesser noise. In the second row, where other
methods misrecognize Aorta and Pancreas to Stomach and

Methods
Transformer

Layers
Total

Parameter Mean Dice (%)

SAMed [70]
2 108.8M 75.57
4 112.5M 76.80
6 116.2M 78.05

SAM Adapter [9] 2 131.5M 72.80
H-SAM(ours) 4 112.3M 80.35

Table 6. Efficiency analysis of our H-SAM against deeper default
SAM mask decoder. H-SAM shows better performance with fewer
parameters.

GT H-SAM SAMed SAM Adapter AuH-SAM SAMed SAM Adapter Aut

Spleen Kidney(R) Kidney(L) Gallbladder
Liver Stomach Aorta Pancreas

GT H-SAM SAMed SAM Adapter AutoSAM

Figure 5. The qualitative results of H-SAM and other SAM vari-
ants, including SAMed, SAM Adapter, and AutoSAM.

Aorta, H-SAM provides correctly attributes each organ to
their categories. H-SAM also performs superiorly with
small-scale organs. In the third row, while all other vari-
ants miss Spleen, only H-SAM provides correct prediction
for all of the organs.

5. Conclusion

We present H-SAM, which is a simple and efficient hierar-
chical mask decoder for adaptation of Segment Anything
Model on medical image segmentation. Using a proba-
bilistic map from a default decoder as prior to guide finer
medical segmentation in the sequential decoding unit, our
H-SAM puts forward a new direction of SAM adaptation.
Notably, H-SAM achieves this superior performance with-
out relying on any unlabeled data, surpassing even state-of-
the-art semi-supervised models that use extensive unlabeled
datasets in various medical imaging contexts. This under-
scores H-SAM’s significant potential in advancing the field
of medical image segmentation, offering a robust, efficient,
and data-economic solution.
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