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Abstract

The You Only Look Once (YOLO) series of detectors
have established themselves as efficient and practical tools.
However, their reliance on predefined and trained ob-
ject categories limits their applicability in open scenar-
ios. Addressing this limitation, we introduce YOLO-World,
an innovative approach that enhances YOLO with open-
vocabulary detection capabilities through vision-language
modeling and pre-training on large-scale datasets. Specif-
ically, we propose a new Re-parameterizable Vision-
Language Path Aggregation Network (RepVL-PAN) and
region-text contrastive loss to facilitate the interaction be-
tween visual and linguistic information. Our method ex-
cels in detecting a wide range of objects in a zero-shot
manner with high efficiency. On the challenging LVIS
dataset, YOLO-World achieves 35.4 AP with 52.0 FPS on
V100, which outperforms many state-of-the-art methods in
terms of both accuracy and speed. Furthermore, the fine-
tuned YOLO-World achieves remarkable performance on
several downstream tasks, including object detection and
open-vocabulary instance segmentation. Code and mod-
els are available at: https://github.com/AILab-
CVC/YOLO-World.

1. Introduction
Object detection has been a long-standing and fundamental
challenge in computer vision with numerous applications in
image understanding, robotics, and autonomous vehicles.
Tremendous works [17, 27, 43, 45] have achieved signifi-
cant breakthroughs in object detection as the development
of deep neural networks. Despite the success of these meth-
ods, they remain limited as they only detect objects with
a fixed vocabulary, e.g., 80 categories in the COCO [26]
dataset. Once object categories are defined and labeled,
trained detectors can only detect those specific categories,
thus limiting the ability and applicability of open scenarios.

Recent works [9, 14, 48, 53, 59] have explored the
prevalent vision-language models [19, 39] to address open-
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Figure 1. Speed-and-Accuracy Curve. We compare YOLO-
World with recent open-vocabulary methods pre-trained similar
datasets (i.e., Objects365 [46] and GoldG [21]) in terms of speed
and accuracy. All models are evaluated on the LVIS minival
(using Fixed AP [4]) and inference speeds are measured on one
NVIDIA V100 w/o TensorRT. The size of the circle represents the
model’s size.

vocabulary detection [59] by distilling vocabulary knowl-
edge from language encoders, e.g., BERT [6]. However,
these distillation-based methods are much limited due to the
scarcity of training data with a limited diversity of vocab-
ulary, e.g., OV-COCO [59] containing 48 base categories.
Several methods [24, 30, 56, 57, 60] reformulate object de-
tection training as region-level vision-language pre-training
and train open-vocabulary object detectors at scale. How-
ever, those methods still struggle for detection in real-world
scenarios, which suffer from two aspects: (1) heavy com-
putation burden and (2) complicated deployment for edge
devices. Previous works [24, 30, 56, 57, 60] have demon-
strated the promising performance of pre-training large de-
tectors while pre-training small detectors to endow them
with open recognition capabilities remains unexplored.

In this paper, we present YOLO-World, aiming for
high-efficiency open-vocabulary object detection, and ex-
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Figure 2. Comparison with Detection Paradigms. (a) Traditional Object Detector: These object detectors can only detect objects
within the fixed vocabulary pre-defined by the training datasets, e.g., 80 categories of COCO dataset [26]. The fixed vocabulary limits the
extension for open scenes. (b) Previous Open-Vocabulary Detectors: Previous methods tend to develop large and heavy detectors for
open-vocabulary detection which intuitively have strong capacity. In addition, these detectors simultaneously encode images and texts as
input for prediction, which is time-consuming for practical applications. (c) YOLO-World: We demonstrate the strong open-vocabulary
performance of lightweight detectors, e.g., YOLO detectors [20, 42], which is of great significance for real-world applications. Rather than
using online vocabulary, we present a prompt-then-detect paradigm for efficient inference, in which the user generates a series of prompts
according to the need and the prompts will be encoded into an offline vocabulary. Then it can be re-parameterized as the model weights
for deployment and further acceleration.

plore large-scale pre-training schemes to boost the tradi-
tional YOLO detectors to a new open-vocabulary world.
Compared to previous methods, the proposed YOLO-
World is remarkably efficient with high inference speed
and easy to deploy for downstream applications. Specifi-
cally, YOLO-World follows the standard YOLO architec-
ture [20] and leverages the pre-trained CLIP [39] text en-
coder to encode the input texts. We further propose the Re-
parameterizable Vision-Language Path Aggregation Net-
work (RepVL-PAN) to connect text features and image fea-
tures for better visual-semantic representation. During in-
ference, the text encoder can be removed and the text em-
beddings can be re-parameterized into weights of RepVL-
PAN for efficient deployment. We further investigate the
pre-training scheme for YOLO detectors through region-
text contrastive learning on large-scale datasets, which uni-
fies detection, grounding, and image-text data into region-
text pairs. The pre-trained YOLO-World with abundant
region-text pairs demonstrates a strong capability for open-
vocabulary detection and training more data leads to greater
improvements in open-vocabulary capability.

In addition, we explore a prompt-then-detect paradigm
to further improve the efficiency of open-vocabulary object
detection in real-world scenarios. As illustrated in Fig. 2,
traditional object detectors [17, 20, 23, 41–43, 52] con-
centrate on the fixed-vocabulary (close-set) detection with
predefined and trained categories. While previous open-
vocabulary detectors [24, 30, 56, 60] encode the prompts of
a user for online vocabulary with text encoders and detect
objects. Notably, those methods tend to employ large de-
tectors with heavy backbones, e.g., Swin-L [32], to increase
the open-vocabulary capacity. In contrast, the prompt-then-
detect paradigm (Fig. 2 (c)) first encodes the prompts of a
user to build an offline vocabulary and the vocabulary varies
with different needs. Then, the efficient detector can infer
the offline vocabulary on the fly without re-encoding the
prompts. For practical applications, once we have trained
the detector, i.e., YOLO-World, we can pre-encode the

prompts or categories to build an offline vocabulary and
then seamlessly integrate it into the detector.

Our main contributions can be summarized into three
folds:
• We introduce the YOLO-World, a cutting-edge open-

vocabulary object detector with high efficiency for real-
world applications.

• We propose a Re-parameterizable Vision-Language PAN
to connect vision and language features and an open-
vocabulary region-text contrastive pre-training scheme
for YOLO-World.

• The proposed YOLO-World pre-trained on large-scale
datasets demonstrates strong zero-shot performance and
achieves 35.4 AP on LVIS with 52.0 FPS. The pre-trained
YOLO-World can be easily adapted to downstream tasks,
e.g., open-vocabulary instance segmentation and referring
object detection. Moreover, the pre-trained weights and
codes of YOLO-World will be open-sourced to facilitate
more practical applications.

2. Related Works
2.1. Traditional Object Detection

Prevalent object detection research concentrates on fixed-
vocabulary (close-set) detection, in which object detectors
are trained on datasets with pre-defined categories, e.g.,
COCO dataset [26] and Objects365 dataset [46], and then
detect objects within the fixed set of categories. During
the past decades, the methods for traditional object de-
tection can be simply categorized into three groups, i.e.,
region-based methods, pixel-based methods, and query-
based methods. The region-based methods [12, 13, 17, 27,
44], such as Faster R-CNN [44], adopt a two-stage frame-
work for proposal generation [44] and RoI-wise (Region-
of-Interest) classification and regression. The pixel-based
methods [28, 31, 42, 49, 62] tend to be one-stage detec-
tors, which perform classification and regression over pre-
defined anchors or pixels. DETR [1] first explores object
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Figure 3. Overall Architecture of YOLO-World. Compared to traditional YOLO detectors, YOLO-World as an open-vocabulary detector
adopts text as input. The Text Encoder first encodes the input text input text embeddings. Then the Image Encoder encodes the input image
into multi-scale image features and the proposed RepVL-PAN exploits the multi-level cross-modality fusion for both image and text features.
Finally, YOLO-World predicts the regressed bounding boxes and the object embeddings for matching the categories or nouns that appeared
in the input text.

detection through transformers [50] and inspires extensive
query-based methods [65]. In terms of inference speed,
Redmon et al. presents YOLOs [40–42] which exploit sim-
ple convolutional architectures for real-time object detec-
tion. Several works [11, 23, 33, 52, 55] propose various
architectures or designs for YOLO, including path aggrega-
tion networks [29], cross-stage partial networks [51], and
re-parameterization [7], which further improve both speed
and accuracy. In comparison to previous YOLOs, YOLO-
World in this paper aims to detect objects beyond the fixed
vocabulary with strong generalization ability.

2.2. Open-Vocabulary Object Detection

Open-vocabulary object detection (OVD) [59] has emerged
as a new trend for modern object detection, which aims
to detect objects beyond the predefined categories. Early
works [9, 14, 48, 53, 58] follow the standard OVD set-
ting [59] by training detectors on the base classes and evalu-
ating the novel (unknown) classes. Nevertheless, this open-
vocabulary setting can evaluate the capability of detectors to
detect and recognize novel objects, it is still limited for open
scenarios and lacks generalization ability to other domains
due to training on the limited dataset and vocabulary. De-
tic [64] incorporates the image classification datasets [5] to
extend the object categories for large vocabulary detection.
Inspired by vision-language pre-training [19, 39], recent
works [35, 36, 56, 57, 60, 63] formulate open-vocabulary
object detection as image-text matching and exploit large-
scale image-text data to increase the training vocabulary at
scale. OWL-ViTs [35, 36] fine-tune the simple vision trans-
formers [8] with detection and large-scale automatic la-
beled datasets and build the simple open-vocabulary detec-

tors. GLIP [24] presents a pre-training framework for open-
vocabulary detection based on phrase grounding and eval-
uates in a zero-shot setting. Grounding DINO [30] incor-
porates the grounded pre-training [24] into detection trans-
formers [61] with cross-modality fusions. Several meth-
ods [25, 56, 57, 60] unify detection datasets and image-text
datasets through region-text matching and pre-train detec-
tors with large-scale image-text pairs, achieving promising
performance and generalization. However, these methods
often use heavy detectors like ATSS [62] or DINO [61]
with Swin-L [32] as a backbone, leading to high com-
putational demands and deployment challenges. In con-
trast, we present YOLO-World, aiming for efficient open-
vocabulary object detection with real-time inference and
easier downstream application deployment. Differing from
ZSD-YOLO [54], which also explores open-vocabulary de-
tection [59] with YOLO through language model align-
ment, YOLO-World introduces a novel YOLO framework
with an effective pre-training strategy, enhancing open-
vocabulary performance and generalization.

3. Method

3.1. Pre-training Formulation: Region-Text Pairs

The traditional object detection methods, including the
YOLO-series [20], are trained with instance annotations
Ω = {Bi, ci}Ni=1, which consist of bounding boxes {Bi}
and category labels {ci}. In this paper, we reformulate the
instance annotations as region-text pairs Ω = {Bi, ti}Ni=1,
where ti is the corresponding text for the region Bi. Specif-
ically, the text ti can be the category name, noun phrases, or
object descriptions. YOLO-World adopts the image I and
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texts T as input and outputs predicted boxes {B̂k} and the
corresponding object embeddings {ek} (ek ∈ RD).

3.2. Model Architecture

The overall architecture of the proposed YOLO-World is il-
lustrated in Fig. 3, which consists of a YOLO detector, a
Text Encoder, and a Re-parameterizable Vision-Language
Path Aggregation Network (RepVL-PAN). Given the input
text, the text encoder in YOLO-World encodes the text into
text embeddings. The image encoder in the YOLO detector
extracts the multi-scale features from the input image. Then
we leverage the RepVL-PAN to enhance both text and im-
age representation by exploiting the cross-modality fusion
between image features and text embeddings.

YOLO Detector. YOLO-World is mainly developed based
on YOLOv8 [20], which contains a Darknet backbone [20,
43] as the image encoder, a path aggregation network (PAN)
for multi-scale feature pyramids, and a head for bounding
box regression and object embeddings.

Text Encoder. Given the text T , we adopt the text encoder
pre-trained by CLIP [39] to extract the corresponding text
embeddings W =TextEncoder(T )∈RC×D, where C is
the number of nouns and D is the embedding dimension.
The CLIP text encoder offers better visual-semantic capa-
bilities for connecting visual objects with texts compared to
text-only language encoders [6]. When the input text is a
caption, we adopt the simple noun extraction algorithm to
extract the noun phrases and feed them into the text encoder.

Text Contrastive Head. Following previous works [20],
we adopt the decoupled head with two 3×3 convs to regress
bounding boxes {bk}Kk=1 and object embeddings {ek}Kk=1,
where K denotes the number of objects. We present a text
contrastive head to obtain the object-text similarity sk,j by:

sk,j = α · L2-Norm(ek) · L2-Norm(wj)
⊤ + β, (1)

where L2-Norm(·) is the L2 normalization and wj ∈ W
is the j-th text embeddings. In addition, we add the affine
transformation with the learnable scaling factor α and shift-
ing factor β. Both the L2 norms and the affine transforma-
tions are important for stabilizing the region-text training.

Training with Online Vocabulary. During training, we
construct an online vocabulary T for each mosaic sample
containing 4 images. Specifically, we sample all positive
nouns involved in the mosaic images and randomly sam-
ple some negative nouns from the corresponding dataset.
The vocabulary for each mosaic sample contains at most M
nouns, and M is set to 80 as default.

Inference with Offline Vocabulary. At the inference
stage, we present a prompt-then-detect strategy with an of-
fline vocabulary for further efficiency. As shown in Fig. 3,
the user can define a series of custom prompts, which might
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Figure 4. Illustration of the RepVL-PAN. The proposed RepVL-
PAN adopts the Text-guided CSPLayer (T-CSPLayer) for injecting
language information into image features and the Image Pooling
Attention (I-Pooling Attention) for enhancing text embeddings.

include captions or categories. We then utilize the text en-
coder to encode these prompts and obtain offline vocabu-
lary embeddings. The offline vocabulary allows for avoid-
ing computation for each input and provides the flexibility
to adjust the vocabulary as needed.

3.3. Re-parameterizable Vision-Language PAN

Fig. 4 shows the structure of the proposed RepVL-PAN
which follows the top-down and bottom-up paths in [20, 29]
to establish the feature pyramids {P3, P4, P5} with the
multi-scale image features {C3, C4, C5}. Furthermore,
we propose the Text-guided CSPLayer (T-CSPLayer) and
Image-Pooling Attention (I-Pooling Attention) to further
enhance the interaction between image features and text
features, which can improve the visual-semantic represen-
tation for open-vocabulary capability. During inference, the
offline vocabulary embeddings can be re-parameterized into
weights of convolutional or linear layers for deployment.

Text-guided CSPLayer. As Fig. 4 illustrates, the cross-
stage partial layers (CSPLayer) are utilized after the top-
down or bottom-up fusion. We extend the CSPLayer
(also called C2f) of [20] by incorporating text guidance
into multi-scale image features to form the Text-guided
CSPLayer. Specifically, given the text embeddings W and
image features Xl ∈ RH×W×D (l ∈ {3, 4, 5}), we adopt
the max-sigmoid attention after the last dark bottleneck
block to aggregate text features into image features by:

X ′
l = Xl · δ( max

j∈{1..C}
(XlW

⊤
j ))⊤, (2)

where the updated X ′
l is concatenated with the cross-stage

features as output. The δ indicates the sigmoid function.
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Image-Pooling Attention. To enhance the text embed-
dings with image-aware information, we aggregate image
features to update the text embeddings by proposing the
Image-Pooling Attention. Rather than directly using cross-
attention on image features, we leverage max pooling on
multi-scale features to obtain 3×3 regions, resulting in a
total of 27 patch tokens X̃ ∈ R27×D. The text embeddings
are then updated by:

W ′ = W + MultiHead-Attention(W, X̃, X̃) (3)

3.4. Pre-training Schemes

In this section, we present the training schemes for pre-
training YOLO-World on large-scale detection, grounding,
and image-text datasets.

Learning from Region-Text Contrastive Loss. Given the
mosaic sample I and texts T , YOLO-World outputs K ob-
ject predictions {Bk, sk}Kk=1 along with annotations Ω =
{Bi, ti}Ni=1. We follow [20] and leverage task-aligned la-
bel assignment [10] to match the predictions with ground-
truth annotations and assign each positive prediction with a
text index as the classification label. Based on this vocabu-
lary, we construct the region-text contrastive loss Lcon with
region-text pairs through cross entropy between object-text
(region-text) similarity and object-text assignments. In ad-
dition, we adopt IoU loss and distributed focal loss for
bounding box regression and the total training loss is de-
fined as: L(I) = Lcon + λI · (Liou + Ldfl), where λI is
an indicator factor and set to 1 when input image I is from
detection or grounding data and set to 0 when it is from
the image-text data. Considering image-text datasets have
noisy boxes, we only calculate the regression loss for sam-
ples with accurate bounding boxes.

Pseudo Labeling with Image-Text Data. Rather than di-
rectly using image-text pairs for pre-training, we propose an
automatic labeling approach to generate region-text pairs.
Specifically, the labeling approach contains three steps: (1)
extract noun phrases: we first utilize the noun extraction al-
gorithm to extract noun phrases from the text; (2) pseudo
labeling: we adopt a pre-trained open-vocabulary detector,
e.g., GLIP [24], to generate pseudo boxes for the given
noun phrases for each image, thus providing the coarse
region-text pairs. (3) filtering: We employ the pre-trained
CLIP [39] to evaluate the relevance of image-text pairs and
region-text pairs, and filter the low-relevance pseudo an-
notations and images. We further filter redundant bound-
ing boxes by incorporating methods such as Non-Maximum
Suppression (NMS). We suggest the readers refer to the
appendix for the detailed approach. With the above ap-
proach, we sample and label 246k images from CC3M [47]
with 821k pseudo annotations to construct the CC3M-Lite
dataset.

Dataset Type Vocab. Images Anno.
Objects365V1 [46] Detection 365 609k 9,621k
GQA [18] Grounding - 621k 3,681k
Flickr [38] Grounding - 149k 641k
CC3M† [47] Image-Text - 246k 821k

Table 1. Pre-training Data. The specifications of the datasets
used for pre-training YOLO-World.

4. Experiments
In this section, we demonstrate the effectiveness of the
proposed YOLO-World by pre-training it on large-scale
datasets and evaluating YOLO-World in a zero-shot manner
on both LVIS benchmark and COCO benchmark (Sec. 4.2).
We also evaluate the fine-tuning performance of YOLO-
World on COCO, LVIS for object detection.

4.1. Implementation Details

The YOLO-World is developed based on the MMYOLO
toolbox [3] and the MMDetection toolbox [2]. Following
[20], we provide three variants of YOLO-World for differ-
ent latency requirements, e.g., small (S), medium (M), and
large (L). We adopt the open-source CLIP [39] text encoder
with pre-trained weights to encode the input text. Unless
specified, we measure the inference speeds of all models on
one NVIDIA V100 GPU without extra acceleration mecha-
nisms, e.g., FP16 or TensorRT.

4.2. Pre-training

Experimental Setup. At the pre-training stage, we adopt
the AdamW optimizer [34] with an initial learning rate
of 0.002 and weight decay of 0.05. YOLO-World is pre-
trained for 100 epochs on on 32 NVIDIA V100 GPUs with
a total batch size of 512. During pre-training, we follow
previous works [20] and adopt color augmentation, random
affine, random flip, and mosaic with 4 images for data aug-
mentation. The text encoder is frozen during pre-training.

Pre-training Data. For pre-training YOLO-World, we
mainly adopt detection or grounding datasets including Ob-
jects365 (V1) [46], GQA [18], Flickr30k [38], as specified
in Tab. 1. Following [24], we exclude the images from
the COCO dataset in GoldG [21] (GQA and Flickr30k).
The annotations of the detection datasets used for pre-
training contain both bounding boxes and categories or
noun phrases. In addition, we also extend the pre-training
data with image-text pairs, i.e., CC3M-Lite, which we have
sampled and labeled 246k images from CC3M [47].

Zero-shot Evaluation. After pre-training, we evaluate the
proposed YOLO-World on the LVIS dataset [15] in a zero-
shot manner. The LVIS dataset contains 1203 object cat-
egories, which is much more than the categories of the
pre-training detection datasets and can measure the per-
formance on large vocabulary detection. Following previ-
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ous works [21, 24, 56, 57], we mainly evaluate on LVIS
minival [21] and report the Fixed AP [4] for comparison.
The maximum number of predictions is set to 1000.

Main Results on LVIS Object Detection. In Tab. 2, we
compare the proposed YOLO-World with recent state-of-
the-art methods [21, 30, 56, 57, 60] (pre-trained on sim-
ilar datasets) on LVIS benchmark in a zero-shot manner.
Considering the computation burden and model parameters,
we mainly compare with those methods based on lighter
backbones, e.g., Swin-T [32]. Remarkably, YOLO-World
outperforms previous state-of-the-art methods in terms of
zero-shot performance and inference speed. Compared to
GLIP, GLIPv2, and Grounding DINO, which incorporate
more data, e.g., Cap4M (CC3M+SBU [37]), YOLO-World
pre-trained on O365 & GolG obtains better performance
even with fewer model parameters. Compared to DetCLIP,
YOLO-World achieves comparable performance (35.4 v.s.
34.4) while obtaining 20× increase in inference speed. The
experimental results also demonstrate that small models,
e.g., YOLO-World-S with 13M parameters, can be used
for vision-language pre-training and obtain strong open-
vocabulary capabilities.

4.3. Ablation Experiments

We provide extensive ablation studies to analyze YOLO-
World from two primary aspects, i.e., pre-training and ar-
chitecture. Unless specified, we mainly conduct ablation
experiments based on YOLO-World-L and pre-train Ob-
jects365 with zero-shot evaluation on LVIS minival.

Pre-training Data. In Tab. 3, we evaluate the performance
of pre-training YOLO-World using different data. Com-
pared to the baseline trained on Objects365, adding GQA
can significantly improve performance with an 8.4 AP gain
on LVIS. This improvement can be attributed to the richer
textual information provided by the GQA dataset, which
can enhance the model’s ability to recognize large vocab-
ulary objects. Adding part of CC3M samples (8% of the
full datasets) can further bring 0.5 AP gain with 1.3 AP
on rare objects. Tab. 3 demonstrates that adding more
data can effectively improve the detection capabilities on
large-vocabulary scenarios. Furthermore, as the amount of
data increases, the performance continues to improve, high-
lighting the benefits of leveraging larger and more diverse
datasets for training.

Ablations on RepVL-PAN. Tab. 4 demonstrates the ef-
fectiveness of the proposed RepVL-PAN of YOLO-World,
including Text-guided CSPLayers and Image Pooling At-
tention, for the zero-shot LVIS detection. Specifically, we
adopt two settings, i.e., (1) pre-training on O365 and (2)
pre-training on O365 & GQA. Compared to O365 which
only contains category annotations, GQA includes rich
texts, particularly in the form of noun phrases. As shown

in Tab. 4, the proposed RepVL-PAN improves the base-
line (YOLOv8-PAN [20]) by 1.1 AP on LVIS, and the im-
provements are remarkable in terms of the rare categories
(APr) of LVIS, which are hard to detect and recognize. In
addition, the improvements become more significant when
YOLO-World is pre-trained with the GQA dataset and ex-
periments indicate that the proposed RepVL-PAN works
better with rich textual information.

Text Encoders. In Tab. 5, we compare the performance
of using different text encoders, i.e., BERT-base [6] and
CLIP-base (ViT-base) [39]. We exploit two settings dur-
ing pre-training, i.e., frozen and fine-tuned, and the learn-
ing rate for fine-tuning text encoders is a 0.01× factor of
the basic learning rate. As Tab. 5 shows, the CLIP text
encoder obtains superior results than BERT (+10.1 AP for
rare categories in LVIS), which is pre-trained with image-
text pairs and has better capability for vision-centric embed-
dings. Fine-tuning BERT during pre-training brings signifi-
cant improvements (+3.7 AP) while fine-tuning CLIP leads
to a severe performance drop. We attribute the drop to that
fine-tuning on O365 may degrade the generalization ability
of the pre-trained CLIP, which contains only 365 categories
and lacks abundant textual information.

4.4. Fine-tuning YOLO-World

In this section, we further fine-tune YOLO-World for close-
set object detection on the COCO dataset and LVIS dataset
to demonstrate the effectiveness of the pre-training.

Experimental Setup. We use the pre-trained weights to
initialize YOLO-World for fine-tuning. All models are fine-
tuned for 80 epochs with the AdamW optimizer and the ini-
tial learning rate is set to 0.0002. For the LVIS dataset,
we follow previous works [9, 14, 64] and fine-tune YOLO-
World on the LVIS-base (common & frequent) and evaluate
it on the LVIS-novel (rare). In addition, we fine-tune the
text encoder on LVIS with a learning factor of 0.01.

COCO Object Detection. We compare the pre-trained
YOLO-World with previous YOLO detectors [20, 23, 52] in
Tab. 6. For fine-tuning YOLO-World on the COCO dataset,
we remove the proposed RepVL-PAN for further acceler-
ation considering that the vocabulary size of the COCO
dataset is small. In Tab. 6, it’s evident that our approach
can achieve decent zero-shot performance on the COCO
dataset, which indicates that YOLO-World has strong gen-
eralization ability. Moreover, YOLO-World after fine-
tuning 80 epochs on the COCO train2017 demonstrates
higher performance compared to previous methods trained
from scratch with amounts of epochs (≥ 300 epochs).

LVIS Object Detection. In Tab. 7, we evaluate the fine-
tuning performance of YOLO-World on the standard LVIS
dataset. Firstly, compared to the oracle YOLOv8 [20]
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Method Backbone Params Pre-trained Data FPS AP APr APc APf

MDETR [21] R-101 [16] 169M GoldG - 24.2 20.9 24.3 24.2
GLIP-T [24] Swin-T [32] 232M O365,GoldG 0.12 24.9 17.7 19.5 31.0
GLIP-T [24] Swin-T [32] 232M O365,GoldG,Cap4M 0.12 26.0 20.8 21.4 31.0
GLIPv2-T [60] Swin-T [32] 232M O365,GoldG 0.12 26.9 - - -
GLIPv2-T [60] Swin-T [32] 232M O365,GoldG,Cap4M 0.12 29.0 - - -
Grounding DINO-T [30] Swin-T [32] 172M O365,GoldG 1.5 25.6 14.4 19.6 32.2
Grounding DINO-T [30] Swin-T [32] 172M O365,GoldG,Cap4M 1.5 27.4 18.1 23.3 32.7
DetCLIP-T [56] Swin-T [32] 155M O365,GoldG 2.3 34.4 26.9 33.9 36.3
YOLO-World-S YOLOv8-S 13M (77M) O365,GoldG 74.1 (19.9) 26.2 19.1 23.6 29.8
YOLO-World-M YOLOv8-M 29M (92M) O365,GoldG 58.1 (18.5) 31.0 23.8 29.2 33.9
YOLO-World-L YOLOv8-L 48M (110M) O365,GoldG 52.0 (17.6) 35.0 27.1 32.8 38.3
YOLO-World-L YOLOv8-L 48M (110M) O365,GoldG,CC3M-Lite 52.0 (17.6) 35.4 27.6 34.1 38.0

Table 2. Zero-shot Evaluation on LVIS. We evaluate YOLO-World on LVIS minival [21] in a zero-shot manner. We report the Fixed
AP [4] for a fair comparison with recent methods. The FPS is evaluated on one NVIDIA V100 GPU w/o TensorRT. The parameters and
FPS of YOLO-World are evaluated for both the re-parameterized version (w/o bracket) and the original version (w/ bracket).

Pre-trained Data AP APr APc APf

O365 23.5 16.2 21.1 27.0
O365,GQA 31.9 22.5 29.9 35.4
O365,GoldG 32.5 22.3 30.6 36.0
O365,GoldG,CC3M-Lite 33.0 23.6 32.0 35.5

Table 3. Ablations on Pre-training Data. We evaluate the zero-
shot performance on LVIS of pre-training YOLO-World with dif-
ferent amounts of data.

GQA T→I I→T AP APr APc APf ∆t(ms)
✗ ✗ ✗ 22.4 14.5 20.1 26.0 +0.0
✗ ✓ ✗ 23.2 15.2 20.6 27.0 +1.5
✗ ✓ ✓ 23.5 16.2 21.1 27.0 +1.9
✓ ✗ ✗ 29.7 21.0 27.1 33.6 +0.0
✓ ✓ ✓ 31.9 22.5 29.9 35.4 +1.9

Table 4. Ablations on Re-parameterizable Vision-Language
Path Aggregation Network. We evaluate the zero-shot perfor-
mance on LVIS of the proposed Vision-Language Path Aggrega-
tion Network. T→I and I→T denote the Text-guided CSPLayers
and Image-Pooling Attention, respectively.

Text Encoder Frozen? AP APr APc APf

BERT-base Frozen 14.6 3.4 10.7 20.0
BERT-base Fine-tune 18.3 6.6 14.6 23.6
CLIP-base Frozen 22.4 14.5 20.1 26.0
CLIP-base Fine-tune 19.3 8.6 15.7 24.8

Table 5. Text Encoder in YOLO-World. We ablate different text
encoders in YOLO-World through the zero-shot LVIS evaluation.

trained on the full LVIS datasets, YOLO-World achieves
significant improvements, especially for larger models, e.g.,
YOLO-World-L outperforms YOLOv8-L by 7.2 AP and
10.2 APr. The improvements can demonstrate the effec-
tiveness of the proposed pre-training strategy for large-
vocabulary detection. Moreover, YOLO-World, as an effi-
cient one-stage detector, outperforms previous state-of-the-
art two-stage methods [9, 14, 22, 53, 64] on the overall per-

Method Pre-train Epochs AP AP50 AP75 FPS
Training from scratch.
YOLOv6-S [23] ✗ 300 43.7 60.8 47.0 442
YOLOv6-M [23] ✗ 300 48.4 65.7 52.7 277
YOLOv6-L [23] ✗ 300 50.7 68.1 54.8 166
YOLOv7-T [52] ✗ 300 37.5 55.8 40.2 404
YOLOv7-L [52] ✗ 300 50.9 69.3 55.3 182
YOLOv7-X [52] ✗ 300 52.6 70.6 57.3 131
YOLOv8-S [20] ✗ 500 44.4 61.2 48.1 386
YOLOv8-M [20] ✗ 500 50.5 67.3 55.0 238
YOLOv8-L [20] ✗ 500 52.9 69.9 57.7 159
Zero-shot transfer.
YOLO-World-S O+G 0 37.6 52.3 40.7 -
YOLO-World-M O+G 0 42.8 58.3 46.4 -
YOLO-World-L O+G 0 44.4 59.8 48.3 -
YOLO-World-L O+G+C 0 45.1 60.7 48.9 -
Fine-tuned w/ RepVL-PAN.
YOLO-World-S O+G 80 45.9 62.3 50.1 -
YOLO-World-M O+G 80 51.2 68.1 55.9 -
YOLO-World-L O+G+C 80 53.3 70.1 58.2 -
Fine-tuned w/o RepVL-PAN.
YOLO-World-S O+G 80 45.7 62.3 49.9 373
YOLO-World-M O+G 80 50.7 67.2 55.1 231
YOLO-World-L O+G+C 80 53.3 70.3 58.1 156

Table 6. Comparison with YOLOs on COCO Object Detec-
tion. We fine-tune the YOLO-World on COCO train2017 and
evaluate on COCO val2017. The results of YOLOv7 [52] and
YOLOv8 [20] are obtained from MMYOLO [3]. ‘O’, ‘G’, and ‘C’
denote pertaining using Objects365, GoldG, and CC3M†, respec-
tively. The FPS is measured on one NVIDIA V100 w/ TensorRT.

formance without extra designs, e.g., learnable prompts [9]
or region-based alginments [14].

Open-Vocabulary Instance Segmentation In this section,
we further fine-tune YOLO-World for segmenting objects
under the open-vocabulary setting Considering that YOLO-
World has strong transfer and generalization capabilities,
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(a) LVIS Vocabulary (b) User’s Vocabulary (c) Referring Detection

{elephant, ear, leg, trunk, ivory}

Figure 5. Visualization Results of YOLO-World. We visualize the outputs of YOLO-World under three settings: (a) zero-shot inference
on LVIS, (b) detection with user prompts (categories), e.g., the parts of humans, and (c) referring detection, e.g., men with a tie. Please
zoom in to see detailed labels.

Method AP APr APc APf

ViLD [14] 27.8 16.7 26.5 34.2
RegionCLIP [63] 28.2 17.1 - -
Detic [64] 26.8 17.8 - -
FVLM [22] 24.2 18.6 - -
DetPro [9] 28.4 20.8 27.8 32.4
BARON [53] 29.5 23.2 29.3 32.5
YOLOv8-M 23.1 8.4 21.3 31.5
YOLOv8-L 26.9 10.2 25.4 35.8
YOLO-World-M 28.8 15.9 24.6 39.0
YOLO-World-L 34.1 20.4 31.1 43.5

Table 7. Comparison with Open-Vocabulary Detectors on
LVIS. We train YOLO-World on the LVIS-base (including com-
mon and frequent) report the bbox AP. The YOLOv8 are trained
on the full LVIS datasets (including base and novel) along with the
class balanced sampling.

we directly fine-tune YOLO-World on a subset of data
with mask annotations and evaluate the segmentation per-
formance under large-vocabulary settings. Specifically,
we benchmark open-vocabulary instance segmentation of
YOLO-World on the standard LVIS dataset and fine-tune on
LVIS-base (comprising 866 categories) and COCO dataset
(comprising 80 categories). Tab. 8 shows the experimen-
tal results of extending YOLO-World for open-vocabulary
instance segmentation. Specifically, we adopt two fine-
tuning strategies: (1) fine-tuning the segmentation head and
(2) fine-tuning all modules. Under strategy (1), YOLO-
World still retains the zero-shot capabilities acquired from
pre-training, allowing it to generalize to unseen categories.
Strategy (2) enables YOLO-World to fit the LVIS dataset
better while it may result in the degradation of the zero-shot
capabilities. In addition, Tab. 8 shows fine-tuning on LVIS-
base obtains better performance compared to that based on
COCO. However, the ratios between AP and APr (APr/AP)
are nearly unchanged, e.g., the ratios on COCO and LVIS-
base are 76.5% and 74.3%. Considering that the detector
is frozen, we attribute the performance gap to the fact that
the LVIS dataset provides dense segmentation annotations,
which are beneficial for learning the segmentation head.

4.5. Visualizations

Fig. 5 shows the visualization results of pre-trained YOLO-
World-L under three settings: (a) we perform zero-shot

Model Module Data AP APr APc APf

YOLO-World-M Seg Head COCO 12.3 9.1 10.9 14.6
YOLO-World-L Seg Head COCO 16.2 12.4 15.0 19.2
YOLO-World-M Seg Head LVIS 16.7 12.6 14.6 20.8
YOLO-World-L Seg Head LVIS 19.1 14.2 17.2 23.5
YOLO-World-M All LVIS 25.9 13.4 24.9 32.6
YOLO-World-L All LVIS 28.7 15.0 28.3 35.2

Table 8. Open-Vocabulary Instance Segmentation. We evalu-
ate YOLO-World for open-vocabulary instance segmentation un-
der the two settings. We fine-tune the segmentation head or all
modules of YOLO-World and report Mask AP for comparison.

inference with LVIS categories; (b) we input the custom
prompts with fine-grained categories, e.g., head, leg, and
arm; (c) referring detection. The visualizations also demon-
strate that YOLO-World has a strong generalization ability
for open-vocabulary scenarios along with referring ability.

5. Conclusion

We present YOLO-World, a cutting-edge real-time open-
vocabulary detector aiming to improve efficiency and open-
vocabulary capability in real-world applications. In this pa-
per, we have reshaped the prevalent YOLOs as a vision-
language YOLO architecture for open-vocabulary pre-
training and detection and proposed RepVL-PAN, which
connects vision and language information with the network
and can be re-parameterized for efficient deployment. We
further present the effective pre-training schemes with de-
tection, grounding and image-text data to endow YOLO-
World with a strong capability for open-vocabulary de-
tection. Experiments can demonstrate the superiority of
YOLO-World in terms of speed and open-vocabulary per-
formance and indicate the effectiveness of vision-language
pre-training on small models, which is insightful for future
research. We hope YOLO-World can serve as a new bench-
mark for addressing real-world open-vocabulary detection.
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