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Kiran Chhatre1 Radek Daněček2 Nikos Athanasiou2

Giorgio Becherini2 Christopher Peters1 Michael J. Black2 Timo Bolkart2*

1KTH Royal Institute of Technology, Sweden 2Max Planck Institute for Intelligent Systems, Germany

Abstract

Existing methods for synthesizing 3D human gestures

from speech have shown promising results, but they do not

explicitly model the impact of emotions on the generated

gestures. Instead, these methods directly output animations

from speech without control over the expressed emotion. To

address this limitation, we present AMUSE, an emotional

speech-driven body animation model based on latent dif-

fusion. Our observation is that content (i.e., gestures re-

lated to speech rhythm and word utterances), emotion, and

personal style are separable. To account for this, AMUSE

maps the driving audio to three disentangled latent vec-

tors: one for content, one for emotion, and one for personal

style. A latent diffusion model, trained to generate gesture

motion sequences, is then conditioned on these latent vec-

tors. Once trained, AMUSE synthesizes 3D human gestures

directly from speech with control over the expressed emo-

tions and style by combining the content from the driving

speech with the emotion and style of another speech se-

quence. Randomly sampling the noise of the diffusion model

further generates variations of the gesture with the same

emotional expressivity. Qualitative, quantitative, and per-

ceptual evaluations demonstrate that AMUSE outputs real-

istic gesture sequences. Compared to the state of the art, the

generated gestures are better synchronized with the speech

content, and better represent the emotion expressed by the

input speech. Our code is available at amuse.is.tue.mpg.de.

1. Introduction

Animating 3D bodies from speech has a wide range of ap-
plications, such as telepresence in AR/VR, avatar animation
in games and movies, and to embody interactive digital as-
sistants. While methods for speech-driven 3D body anima-
tion have recently shown great progress [5, 7, 31, 56, 101],
existing methods do not adequately address one crucial fac-
tor: the impact of emotion from the driving speech signal on
the generated gestures. Emotions and their expressions play
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Gestures from neutral speech input.
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Figure 1. Goal. AMUSE generates realistic emotional 3D body
gestures directly from a speech sequence (top). It provides user
control over the generated emotion by combining the driving
speech sequence with a different emotional audio (bottom).

a fundamental role in human communication [29, 35, 65]
and have become an important consideration when design-
ing computer systems that interact with humans in a nat-
ural manner [78, 79]. They are of central concern when
synthesizing human animations for a wide variety of appli-
cation contexts, such as Socially Interactive Agents [61].
Because of this, speech-driven animation systems must not
only align movement with the rhythm of the speech, but
should also be capable of generating gestures that are per-
ceived as expressing the suitable emotion.

Many factors contribute to the perception of emotion
and personal idiosyncrasies, such as facial expressions [19],
gaze and eye contact [42], physiological responses [47],
tone of voice [87], body language [66], and gestures [39].
When it comes to 3D animation, the most relevant factors
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are facial expressions, gestures, and body language [95].
While emotional speech-driven animation methods have re-
cently been proposed for 3D faces [18, 74, 90, 107], animat-
ing emotional bodies from speech remains under-explored.

Generating gestures solely from speech with emotional
control is a difficult task. First, the mapping from audio
to body motion is a non-deterministic many-to-many map-
ping, which is difficult to model. Gestures across subjects
can vary when uttering the same sentence, and a single in-
dividual’s motions can change significantly across repeti-
tions. Second, factoring out the impact of emotional state
on the body motion from other, unknown factors, is diffi-
cult. This requires disentangling the effects of three dif-
ferent factors on the generated motion, namely content-
based (i.e., gestures related to speech rhythm and word ut-
terances), emotion-based, and those based on personal style.
AMUSE addresses this by separating a speech sequence
into content, emotion, and style latent vectors, which are
then used to condition a latent diffusion model. Specifi-
cally, AMUSE consists of three main components: (1) an
audio autoencoder trained to produce disentangled vectors
of content, emotion, and style, (2) a 3D body motion prior
in the form of a temporal variational autoencoder (VAE) to
generate smooth and realistic gestures, and (3) a latent dif-
fusion model, which generates 3D body motion given the
input content, emotion, and style latent vectors.

Training such a model requires a speech-to-3D body
dataset of sufficient scale, which is rich and diverse in
speakers and emotions. BEAT [55] is a good candidate
because it provides a large set of 3D gestures associated
with single-person monologues. Unfortunately, the bodies
are represented as skeletons, and it lacks face mocap mark-
ers and FLAME expressions. Instead, to produce realistic
body animations, we require articulated 3D body surfaces.
To overcome this, we convert BEAT sequences to SMPL-X
[73] format using MoSh++ [62] and use the SMPL-X pa-
rameters for training. See [56] for comparison.

Our contributions are: (1) We present a framework
to synthesize emotional 3D body gestures directly from
speech. (2) We factor an input audio into disentangled con-
tent, emotion and style vectors, which enables us to sepa-
rately control emotion in generated gestures. (3) We adapt
temporal latent diffusion for multiple target conditions.

2. Related Work

2.1. 3D Conditional Human Motion Generation

Early works focus mostly on predicting [10, 16, 33, 41, 57,
64, 70, 86, 106, 109] or generating human motion [30, 49],
but do not consider multi-modal control. Recently, condi-
tional motion generation through other modalities, such as
text [2, 8, 9, 17, 22, 28, 77], music [50, 68, 94], speech [32],
or action labels [27, 75], has gained more attention. Be-

low, we focus on speech-driven motion generation methods,
since they are the most relevant to our work.

2.2. Gesture Generation from Speech

Rule-based gesture synthesis. Embodied conversational
agents (ECA) are designed to interact and communicate
with humans. Using the Behavior Markup Language
(BML) [44] one can build rule-based systems for hu-
manoids based on predefined behaviors [80]. This is
used for completion of a storytelling task in an expressive
manner [45]. The BEAT rule-based toolkit [14] enables
adding non-verbal behavior on top of a pre-animated figure.
Thiebaux et al. [92] develop an ECA by using procedural
animation techniques and keyframe interpolation. Marsella
et al. [63] design a generalized rule-based agent to gener-
ate expressions, eye gaze, and gestures from speech. Each
of these approaches are based on non-trainable, rule-based
techniques that may require substantial manual modelling
effort to adapt to new tasks.
Data-driven gesture synthesis. More recently, data-driven
methods have superseded rule-based systems. Yoon et
al. [104] use a fusion of text, audio and upper body gestures
to learn an upper body gesture avatar, but can only control
the style of individual speakers by sampling from their la-
tent space. SpeechGestureMatching [32] generates 3D fa-
cial meshes and 3D keypoints of the body and hands from
speech, but the outputs are separated and the method does
not provide control over the generations. QPGesture [98]
uses phase to better align the generated 3D skeleton-
based gesturing avatars with the audio input. Ginosar et
al. [23] and Diverse-3D-Hand-Gesture-Prediction [82] gen-
erate hand and arm motions only. Audio2Gestures [48] en-
code motion and audio to a low-dimensional latent space
and generate gestures. SEEG [53] aims to generate ges-
tures that align well with the semantics of the speech. Diff-
TTSG [67] regresses speech and gestures at the same time,
joining the two modalities in a single system. DiffGAN [3]
retargets gestures across speakers in a low-resource setting.
The GENEA challenge [105] tackles gesticulation from
speech alone using the Talking-with-Hands dataset [46].
Gesture2Vec [99] uses a machine translation model to trans-
late text into gesture chunks and output full sequences using
such quantized representations. TalkSHOW [101] uses a
VQ-VAE to generate 3D human bodies gesturing with facial
expressions from speech segments, but in an uncontrolled
manner. Similarly, Co-speech gesture [60] uses an RQ-VAE
to generate different gestures from speech. Alternative ges-
ture generation from speech methods have been proposed
such as reinforcement learning [91], self-supervised pre-
training [40], and diffusion [67, 110]. BodyFormer [71] in-
troduces a dataset of pseudo-groundtruth and a transformer-
based method for generating gestures from speech. How-
ever, none of these methods provide explicit emotional con-
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trol over the generated motion.
For controllable generation, GestureDiffuCLIP [7] in-

corporates multiple conditions including CLIP [83] text fea-
tures, video, or motion prompts via AdaIn [37] layers to
generate gestures from speech, however, it does not allow
explicit control over the emotion conveyed by the driv-
ing audio. ListenDenoiseAction [5] combines conform-
ers and the DiffWave [43] architecture to generate gestures
that can be controlled by a style vector, RhythmicGesticu-
lator [6] disentangles the latent space into a vector related
to the semantics of the gesture and one related to the sub-
tle variations, while DisCo [54] models content and rhythm.
StyleGestures [4] adapts MoGlow [34], demonstrating lim-
ited control over some motion attributes like the speed and
expressiveness of gestures. DiffuseStyleGesture [97] uses
diffusion to generate diverse gestures from speech.

2.3. Emotion Control

Emotion classification and control has been little studied in
3D human motion generation with only a a few methods
using skeletal motion in multi-class classification. Ghaleb
et al. [20] employ a spatio-temporal graph convolution net-
work to classify gestures into four classes: preparation,
stroke, retraction, and neutral. Li et al. [52], on the other
hand, use hidden Markov models for emotion classifica-
tion of human movement mocap data. Karras et al. [38]
learn face animations of a single actor, and test their method
on different tasks by modifying the latent vectors. How-
ever, there is no disentanglement mechanism, and they do
not model the synchronization of the emotion with the with
the facial motions. Recently, EmoTalk [74], animates emo-
tional 3D faces from speech input with control over the
emotion intensity and EMOTE [18] disentangles emotion
and speech to allow emotion editing at test time. How-
ever, models solely intended for facial tasks like lip sync-
ing and capturing expressions might not smoothly adapt to
the complexity of whole-body movements and distinct ar-
ticulation. Regarding emotion-conditioned motion gener-
ation, Aberman et al. [1] show style-transfer from video
data to motion and provide some style-based control, but
do not address speech-driven emotional gestures. Similarly,
the ZeroEGGs [21] dataset contains some emotional ges-
ture controls but also includes more generic styles of mo-
tion. The method requires the input of arbitrary frames
of desired motion to encode a style, thereby relying on
motions and speech as conditions during inference. Text-
driven emotional gesticulation, as explored by Bhattacharya
et al. [11, 12], emphasizes the generation of gestures based
on textual cues, incorporating additional conditions such as
speech, speaker ID, seed poses, as well as valence, arousal,
and dominance triplets. However, these approaches do not
provide the means to distill explicit emotion features, lim-
iting free control over the generated gestures. Closer to

our work, EMoG [102] incorporates emotion cues from
the BEAT dataset [55] to generate improved gesture quality
without explicit emotion control. EmotionGesture [81] uses
a TED Emotion Dataset and BEAT to incorporate emotion
features in gesture generation and generate emotional ges-
tures. Although they can generate emotional gestures, their
method is not end-to-end and has no explicit motion con-
trol. Specifically, it uses an emotion-conditioned VAE after
training to acquire diverse emotion features that are used to
generate gestures without guarantees and control over emo-
tion types. Wu et al. [96] introduce the first multi-cultural
gesture dataset containing 200 individuals of 10 different
cultures. In contrast to prior work, we explicitly control the
emotions conveyed by the generated gestures solely through
emotional speech without relying on additional conditions.

3. Method

The AMUSE pipeline consists of two separately trained net-
works. The audio disentanglement module, which encodes
input speech into latent vectors for content, emotion, and
style is described in Sec. 3.2. The main architecture is de-
scribed in Sec. 3.3. It consists of a 3D human motion prior
coupled with a latent diffusion model. It takes random noise
(or partially denoised latent vectors) on the input and out-
puts a human motion sequence. We introduce broader ap-
plications in gesture editing in Sec. 3.4.

3.1. Preliminary: Expressive 3D Body Model

SMPL-X [73] is a 3D model of the body surface. SMPL-X
is defined as function M(β,θ,ψ) that produces a 3D body
mesh. It is parameterized by identity shape β ∈ R

300, pose
θ ∈ R

J×3 including finger articulation for rotations around
J joints, and facial expression ψ ∈ R

100. We adopt the
continous 6D rotation representation for training following
Zhou et al. [108], making θ ∈ R

J×6. Given pose param-
eters and any shape parameter, we can obtain body mesh
vertices V using the differentiable SMPL-X layer [73]. As
the focus of our paper is on synthesizing body gestures and
not locomotion, we disregard 8 joints that correspond those
of the lower body joint poses, leaving J = 47. Further, we
omit the facial expression parameters, i.e., set ψ = 0.

3.2. Speech Disentanglement Model

Architecture. The goal of the this model is to factor an
input speech into three disentangled latent representations,
one for content (i.e., the words spoken), one for emotion,
and one for personal style. To do so, we devise a special-
ized encoder–decoder architecture with three separate en-
coders, one for each latent space. We denote the encoders
as: Ec(a) = c, Ee(a) = e, Es(a) = s, where a is
the input filterbank, c, e and s denote the latent vectors for
content, emotion and style and Ec, Ee and Es are their en-
coders. The architecture of the three encoders follows the
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Figure 2. Training. We train the motion prior (PE ,PD) and the latent denoiser ∆ jointly, while keeping the audio encoding networks
frozen. In the forward pass, we take an input audio a

1:T and pose sequence m
1:T . Firstly, we do a forward pass of m1:T through PE and

PD and compute Lrec, LV rec, and LKL. Then, we apply the diffusion process to a gradient-detached sg [zm] obtaining the noisy z
(D)
m ,

which is then denoised with ∆ and LLD is computed. Finally, we use ∆ to fully denoise zn into gradient-detached sg [zm̃], further decode
m̃

1:T using PD , and compute Lalign and LV align.

design by Gong et al. [25, 26] (i.e., leveraging the DeiT vi-
sual transformer [93] adapted for processing filterbank im-
ages extracted from the input audio). The decoder takes
the three latent vectors and produces a reconstructed filter-
bank. Formally D(c, e, s) = â, where â denotes the recon-
structed filterbank. The decoder architecture consists of a
fusion module and transformer-encoder layers.
Training. The audio module is trained with a multiple loss
terms that ensure that the three latent spaces are properly
disentangled. In addition to the standard autoencoder recon-
struction loss, we also employ three cross-reconstruction
losses, in which we enforce the correct reconstruction of the
audio signal where we modify one of the content, style or
emotion latents. Additionally, we employ three loss terms
on the latent vector predictions – namely emotion and style
classification losses over e and s, and a content similarity
loss between pairs of two content latent vectors extracted
from audios that have the same spoken content. For a de-
tailed description of the encoder–decoder architecture, a
formal definition of the loss functions and a detailed de-
scription of the training process please refer to the Sup. Mat.

3.3. Gesture Generation Model

Motion prior. Similar to [15, 76], our motion prior net-
work is a VAE transformer architecture with encoder PE

and decoder PD. Specifically, both PE and PD follow a U-
Net-like [85] structure with skip connections between trans-
former blocks (see Sup. Mat. for details). The positional
embeddings are learnable and injected into each multi-head
attention layer, following the design of Carion et al. [13].
Formally, the encoder takes a sequence of T frames of the
SMPL-X pose vectors m1:T ∈ R

6J×T and the first two to-
kens of its output, µ ∈ R

dm and Σ ∈ R
dm×dm are used to

extract the motion latent zm ∈ R
dm via the reparametriza-

tion trick. The decoder takes zero positional encodings as

query input and the motion latent is fed as memory to ev-
ery cross-attention transformer layer, producing the recon-
structed motion m̂1:T .
Diffusion process. The forward diffusion process is similar
to [36, 69]. We employ fixed variance and linearly scaled
noise scheduler. We add noise to the motion latent zm for
D diffusion timesteps to obtain z(D) following:

q(z(td)m | z(0)m ) = N (z(td)m ;
√
ᾱtdz

(0)
m , (1− ᾱtd)I),

with αtd = 1 − βtd , ᾱtd =
∏td

s=1 αs, and βtd denotes dif-
fusion process variance.
Conditional denoising process. The denoising process
consists of iteratively denoising a conditioned noisy mo-
tion latent vector to obtain the denoised motion latent zm̃1:T .
Our denoiser ∆ is a latent variable model [84] and its archi-
tecture is similar to the U-Net-like structure of the motion
prior encoder PE . The input of the model is a concatena-
tion of: z

(td)
m , SE(td), c, e, s ∈ R

256, where SE(td) is a si-
nusoidal positional encoding of diffusion timestep td as de-
fined in [36]. ∆ iteratively denoises through each reversed
diffusion step:

z(td−1)
m = ∆([z(td)m , SE(td), c, e, s]).

Training. We optimize the motion prior and the latent
denoiser jointly to ensure audio–motion latent code align-
ment during conditional fusion in the denoising process us-
ing a 3-step forward pass through the gesture generation
model. First, following standard VAE practice, we recon-
struct m̂1:T by the motion prior forward pass. As shown
in Fig. 2, we then disable gradient calculation in PE to
infer the intermediate motion latent sg [zm], which serves
as input to the denoiser. At this stage, we obtain the de-
noiser noise prediction, δ and use to compute the diffu-
sion model gradients. Finally, in the third step we com-
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pute m̃1:T = PD(sg [zm̃]), where zm̃ is obtained by iter-
atively using the ∆ to obtain a fully denoised latent from
z
(tD)
n ∼ N (0, I). We indicate computations done without

gradients with a stop-gradient operation sg [.].
Losses. To train the motion prior, we include the standard
VAE losses, namely the reconstruction loss on pose parame-
ters Lrec and on vertex coordinates LV rec using the smooth
L1 metric introduced in [24], which we denote as Ls

1:

Lrec = Ls
1(m

1:T , m̂1:T ), LV rec = Ls
1(V

1:T , V̂ 1:T ),

where the root-centered vertices V are obtained by feed-
ing in pose parameters m to a differentiable SMPL-X layer
(without learnable parameters) and a mean shape β = 0⃗.
The KL divergence loss of the motion prior is:

LKL =
1

2

[
z∑

i=1

(µ2
i + σ2

i )−
z∑

i=1

(
log(σ2

i ) + 1
)
]
.

To ensure the alignment of the diffusion-generated mo-
tions and the input audio, we apply the alignment recon-
struction loss on the inferred motion pose parameters and
the vertex coordinates:

Lalign = Ls
1(m

1:T , m̃1:T ), LV align = Ls
1(V

1:T , Ṽ 1:T ).

Finally, we utilize the objective similar to [15, 36, 84] to
supervise the denoiser:

LLD =
∥∥∥δ(td) −∆(z(td)m , SE(td), c, e, s)

∥∥∥
2

2
,

where δ(td) is the noise vector sampled from N (0, I) in
the corresponding diffusion step td. The combined gesture
model loss is:

Lges = Lrec + LV rec + LKL + Lalign + LV align + LLD

Inference. We employ DDIM [89] to infer high quality
conditional motion samples with a small number of denois-
ing timesteps. During inference we draw a sample vector
from N (0, I) to iteratively denoise in reversed timesteps.
The denoised sample is then passed through the decoder
PD(zm̃1:T ) to obtain motion m̃1:T .

3.4. Gesture Editing

Due to the disentangling of the inputs, AMUSE achieves se-
mantic gesticulation control using two driving input audios.
Specifically, given two input audio signals a1 and a2, we
extract their latent representations of content c1, c2, emo-
tion e1, e2, and style s1, s2. Then, we simply initialize the
denoising procedure of ∆ with the triplet (c1, e2, s1), gen-
erating the gesture with the content and style of a1 but the
emotion of input audio a2. Similarly, instead of emotion we
can also change the gesticulation style to that of the speaker
of a2 by initializing with (c1, e1, s2).

4. Implementation Details

MoCap data preparation. The BEAT [55] mocap se-
quences, captured in a Vicon system at 120 Hz, are down-
sampled to 30 Hz and processed using MoSh++ [58, 62] to
obtain SMPL-X parameters. Given a sequence of 3D mocap
marker positions, we jointly optimize SMPL-X shape and
pose parameters, 3D body translation, and embedding of the
mocap markers in the SMPL-X surface. Once processed,
the sequences are then divided according to the emotion an-
notations in the BEAT dataset. We use sequences of English
speaking subjects in monologue speaking style for training
and evaluating AMUSE. For each sequence we draw m1:L

at 30 FPS and concatenate with audio content c, emotion e,
and style s latent vectors. Then, we segment it to 10-sec
windows T , beginning from the timestamp 0 and discard-
ing additional unaligned information at the end. This pre-
processing choice allows us to train transformer networks
without masking. We provide additional data processing
information in the Sup. Mat.
Audio preprocessing. We use audio sequences belong-
ing to eight categorical emotion labels (neutral, happy, an-
gry, sad, contempt, surprise, fear, and disgust). Each audio
chunk of 10s is converted into a filter bank with 128 mel-
frequency bins with a 25ms Hamming frame window and
10ms frame shift. We mask each sample with a maximum
length of 24 in the frequency domain and a maximum length
of 96 in the time domain, employing Park et al. [72]. Fol-
lowing [25, 26], we standardize the filter bank and augment
it via noise injection and circular shifting. Before feeding in
our speech disentanglement model, each filter bank is split
into a sequence of fixed 1209 patches of 16 x 16 each having
6 units overlap in frequency and time domain.
Motion prior. The motion prior is a VAE encoder–decoder
with 9 layers and 4 heads, following Chen et al. [15]. The
encoder–decoder is a U-Net-like transformer with residual
connections. Learnable positional embeddings are injected
in each multi-head attention layer. We have a linear projec-
tion at the start and the end of our motion prior network.
The KL divergence term is weighted with a factor of 1e−4.
Denoiser. The denoiser follows the same network archi-
tecture as our prior encoder. The hidden dimension of all
transformer layers is 1024. We use 1000 diffusion steps D
during training and 50 during inference. Noise betas are in
range [0.00085, 0.012]. We jointly optimize the prior and
denoiser networks for 5000 epochs with batch size of 64,
learning rate 0.0001, and the AdamW optimizer [59].

5. Experiments

Speech disentanglement model. We evaluate the per-
formance of the speech disentanglement model quantita-
tively using classification accuracy and F1 scores on emo-
tion and style. The accuracy is computed as average scores
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for all 8 emotion as well style categories that are part
of the test dataset. The emotion and style accuracy is
91.53% and 96.06%, respectively. The emotion F1 score
and style F1 scores are 0.914 and 0.960, respectively. See
the Sup. Mat. for ablations and a detailed metric analysis.
Gesture generation model. We evaluate the performance
of our gesture generation model quantitatively, qualita-
tively, and perceptually against following methods: Talk-
SHOW [101] and the re-implementation of Habibie et
al. [31] provided by the TalkSHOW authors in the official
TalkSHOW release [100], DiffuseStyleGesture (DSG) [97],
MoGlow [34], and CaMN [55]. Additionally, we adapt
TalkSHOW to include categorical emotion labels as input
along with the existing architecture that only allows one-
hot encodings of personal style. We then retrain it on our
training data. We refer to it as TalkSHOW-BEAT. There are
some concurrent works [5, 7, 56], which introduce methods
for gesture generation from speech, however, direct com-
parison is hindered by the unavailability of released code
our task. Refer to the Sup. Mat. for the ablation experi-
ments, the emotion and style editing experiments, and their
quantitative evaluation.

5.1. Quantitative Evaluation

To quantitatively evaluate our method’s gesture generations
and edited gesture generations, we train a transformer-based
encoder architecture (denoted as M ) similar to Petrovich
et al. [76] in an autoencoder setting, where we append a
CLS token at the beginning of the motion sequence. M is
trained with a cross-entropy emotion classification objec-
tive applied to the output CLS token. We train M on the
BEAT training dataset and use its features to compute the
following metrics: (1) Fréchet gesture distance (FGD): We

Method SRGR↑ BA↑ FGD↓ Div→ GAa↑

GT — 0.83 — 27.83 64.04

Ours 0.36 0.81 388.63 25.06 46.76
Ours-EmoEditb — 0.79 792.58 24.68 34.18
TalkSHOW-BEAT 0.31 0.64 808.99 24.16 22.71
TalkSHOW [101] 0.30 0.60 762.15 23.19 29.41
DSG [97] 0.23 0.40 763.10 19.77 22.70
Habibie et al. [31] 0.23 0.39 809.17 21.34 16.67
MoGlow [34] 0.21 0.35 1097.03 19.50 16.62
CaMN [55] 0.21 0.39 1063.87 18.90 14.17

a GA is average of all 8 emotions.
b GA for these are average accuracy for all generations with 7 edited
audio sequences.

Table 1. Gesture quantitative results. We compare our methods
against several SOTA methods using metrics explained in Sec. 5.1.
We observe that AMUSE outperforms in all scores compared to
baseline methods. Additionally, AMUSE-EmoEdit outperforms
in Beat Align, Diversity, and Gesture Emotion Accuracy scores
compared to the baseline methods.

follow [88, 103, 104] to compute the feature distance be-
tween generated and ground truth motion features. (2) Ges-
ture diversity (Div): Similarly to Chen et al. [15], we com-
pute variance across generated features. (3) Gesture emo-
tion accuracy (GA): We report top-1 emotion classification
accuracy predicted by a classifier trained on the motion M -
predicted latents. (4) Beat align (BA): We follow [51, 55],
to evaluate the motion-speech correlation in terms of the
similarity between the kinematic motion beats and speech
audio beats. The kinematic motion beats are directly com-
puted from the generated motion sequences. (5) Semantic-
Relevant Gesture Recall (SRGR): We follow Liu et al. [55],
to evaluate the semantic relevancy of gestures with GT mo-
tion. We use the ground truth semantic scores to compute
this metric. The scores are obtained from the BEAT au-
thors, representing a continuous score on a scale 0-1 per
gesture style for 4 gesture semantic categories: beat, deic-
tic, iconic, and metaphoric. While comparing with methods
that output coarse skeletal data (DSG [97], MoGlow [34],
and CaMN [55]), we convert the skeleton motion data into
the SMPL-X axis angle representation. For details on the
architectures and training of M , and the losses, please refer
to the Sup. Mat.

We prepare the evaluation data by randomly selecting 72
unique motion sequences each of length 10s and compris-
ing 8 emotions across test subjects and compute the afore-
mentioned metrics. We use 9 sequences for each emotion
per subject. The results are reported in Tab. 1. All best
scores are highlighted in green and second best in blue .
AMUSE outperforms the baseline methods in all given met-
rics. To validate the performance of gesture emotion edit-
ing, we also report the same metrics for the emotion editing
task (Ours-EmoEdit). During inference, the input style and
content latents are extracted from neutral-emotion audio,
while the emotion latent comes from a different audio of dif-
ferent emotion. These emotional edits offer numerous pos-
sibilities, allowing for transitions from any to any emotion.
Tab. 1 shows the average for editing from neutral to other
emotions. Since we require the GT gesture semantics score
to compute SRGR metric, it is not possible to compute the
SRGR for the synthetic edited-emotion gestures as they are
not part of the original BEAT dataset. Ours-EmoEdit out-
performs the baseline methods in BA, Div, and GA metrics.
This demonstrates the capability of our model to maintain
highly discriminative cues when switching between differ-
ent emotions. TalkSHOW-BEAT has the second best score
for SRGR whereas TalkSHOW demonstrates second best
FGD score. Although, our model and ours-EmoEdit show
improvements over the baseline methods, GT motions have
higher diversity, Beat alignment score, and are easier to
classify than generations of AMUSE, highlighting the chal-
lenging nature of the problem.
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(Contempt) ... rude comment from other... (Fear) ... in a dangerous situation... (Neutral) ... has more meaning than... (Disgust) ... children begging on streets...

(Happy) ... people pass by,  and I want... (Surprise) ... Wow!  You are here too! .. (Sad) ... I went to collect rent from... (Angry) ... I normally get angry when a...

Figure 3. Qualitative comparison across all emotions. We evaluate generation on different test audios. AMUSE exhibits well-
synchronized beat gestures and consistently produces gestures that accurately convey the emotional content expressed in the input speech.

GT

Ours

TalkSHOW

TalkSHOW-BEAT

Habibie

et al

(Angry Speech) ... teacher, I'd put them into detention for ... 

Figure 4. Qualitative comparison with baseline methods. The
speech segment describes intense angry speech.

5.2. Qualitative Evaluation

Comparison with baseline methods. In Fig. 4, we demon-
strate comparison with baseline methods that output a
3D body mesh: Habibie et al. [31], TalkSHOW [101],
TalkSHOW-BEAT, and the BEAT ground truth (GT) [55].
We observe that AMUSE generates gestures that are se-
mantically closer to the speech content and produces ex-
pressive emotional gestures closer to the perceived emo-
tion. For example, the GT motion exhibits anger when
saying “put them into detention”. AMUSE demonstrates
tense posture and aggressive movements comparable with
the ground truth data and accurate synchronization with
the spoken words. TalkSHOW [101] and Habibie et
al. [31] exhibit limited movement and display inferior and
static gestures on test audios as seen in the last two rows

(Sad Speech) Some people get very depressed...

Figure 5. Qualitative evaluation of diverse generations. Multi-
ple generations overlayed.

of Fig. 4. TalkSHOW-BEAT slightly outperforms other
baseline methods by demonstrating enhanced synchronized
gestures, but it still does not perform as well as AMUSE.
Diverse emotional gestures. In Fig. 5, our probabilistic
model can generate diverse gestures for same input audio.
Emotional gesture generation. In Fig. 3 AMUSE demon-
strates strong correlation with the spoken utterances as well
as different emotions. We observe that our model is able to
correlate semantic words to associated gestures. For exam-
ple, gestures demonstrate forceful actions and tense stance
with angry audio “normally get angry” whereas it gener-
ates lowered and calm hand positions for sad audio “I went

to collect”. Similarly, our generations show hands that are
closer to body for fearful audio “in a dangerous situation”
while widely open expressing astonishment for happy and
surprised audio “people pass by” and “Wow! You are here”.
Emotion editing. We use two audio streams of a female
subject for neutral and sad emotion. This experiment edits
the subject’s gesture style from moderately controlled hand
movements to a sad style with lethargic posture conveying
a sense of heaviness, as seen in Fig. 7 (top).
Gesture style editing. We use audio streams of two male
subjects for the happy (ID - 13) and angry (ID - 2) emotion.
With the emotion, style and content latent fusion mecha-
nism from two driving audio streams, AMUSE is able to
adapt the male (ID - 13) subject’s body gestures from be-
ing close to their body to more open with squared tightened
shoulders, expressing a shift from happy to angry emotions
of a different subject (ID - 2), as shown in Fig. 7 (bot-
tom). Please refer to the supplemental video for qualita-
tive results and comparisons to additional gesture genera-
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TalkShow

Talkshow-BEAT

13%

43%

42%

45%

22%

23%

23%

17%

12%

5.8%

6.7%

10%

22%

16%

16%

12%

30%

12%

12%

15%

25/25

23/25

20/25

22/25

valid / total
participantsPreferences for gesture synchronization with speech

Strongly ours Weakly ours Indifferent Weakly other Strongly other

Figure 6. The perceptual study results for gesture emotion preference (left) and synchronization with speech (right). The number of
attentive participants that passed the catch trials is indicated on the right and the reported results only consider these participants.

(Neutral) ...I like painting a lot...

(Happy ID-13) ...last week I also... (Happy ID-13 + Angry ID-2) ...last week I also...

(Neutral + Sad) ...I like painting a lot...

Figure 7. Gesture editing. Top: We modify style from being
neutral (left) to being sad (right) by combining the emotion latent
from sad audio with the content latent from neutral audio. Bottom:
We transform the style from Subject 13 being happy (left) to being
angry (right) by merging the content latent from happy audio with
the style and emotion latents from an angry audio of Subject 2.

tion methods [4, 55, 110] trained on coarse skeletal data.

5.3. Perceptual Study

Design. Our perceptual study is designed as a side-by-side
comparison of two gesture videos generated with the same
audio as input but by two different methods (AMUSE and
another model or GT). The participants are asked to rate
their preference of the methods on a five-point Likert scale
for “synchronization with speech” and “gesture emotion ap-
propriateness” given the GT emotion label of the input au-
dio. We recruit 25 participants per method-to-method com-
parison on Amazon Mechnical Turk. Each participant is
shown 24 pairs of randomly selected test set animations, 3
per emotion (neutral, happy, angry, sad, disgust, fear, sur-
prise, and contempt). To allow the participant to get used to
the task, we discard the answers of the first three compar-
isons and repeat these at the end. We incorporate three catch
trials and responses from participants that fail on more than
one are filtered out, as shown in Fig. 6 (right).
Results. The results of the study are shown in Fig. 6.
AMUSE outperforms all competing methods by a consider-
able margin on both tasks, suggesting that AMUSE’s gener-
ations are more appropriate for both the content of the input
speech and its emotion compared to the baselines. However,
it must be noted that there is still a significant gap between
AMUSE and the GT. Please refer to the Sup. Mat. for details
about the perceptual study.

5.4. Discussion and Future Work

Upper-body motion. We focus on the smooth coordination
between the pelvis and upper body animation for side-by-
side comparisons with other methods, as all other methods
primarily focus on upper body movements. Future work
should include lower-body motion and locomotion as these
impact the perceived emotional state of a sequence.
Semantics. While the generated gestures, synchronized
with the driving speech sequence, do not account for se-
mantics such as deictic and metaphoric gestures, incorporat-
ing the text/language modality could help further improve in
this direction.
Facial expressions. While emotional speech-driven face
animation methods [18, 74] can be combined with bodies
generated from AMUSE, jointly learning to generate emo-
tional 3D bodies from speech is a topic that needs attention.
End-to-end training. Joint audio-gesture training may en-
hance results but requires careful loss term balancing and
increased GPU memory. Therefore, we opted for separate
training.

6. Conclusion

We present AMUSE, a framework to generate emotional
body gestures from speech. The emotions and personal
styles of the synthesized gestures can be controlled, thanks
to the disentanglement of content, emotion, and style di-
rectly from the speech. The latent diffusion-based frame-
work can further generate variations of the same gesture
with the same emotion. Our quantitative evaluations show
that AMUSE achieves state of the art performance on a va-
riety of metrics: diversity, gesture emotion classification
accuracy, Frechét gesture distance, beat alignment score,
and semantic relevant gesture recall. Finally, our perceptual
study demonstrates that AMUSE generates motions that are
better synchronized and better match the emotion expressed
of the input speech than previous state of the art.
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