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Abstract

Consistency learning is a central strategy to tackle unla-
beled data in semi-supervised medical image segmentation
(SSMIS), which enforces the model to produce consistent
predictions under the perturbation. However, most current
approaches solely focus on utilizing a specific single per-
turbation, which can only cope with limited cases, while
employing multiple perturbations simultaneously is hard to
guarantee the quality of consistency learning. In this paper,
we propose an Adaptive Bidirectional Displacement (ABD)
approach to solve the above challenge. Specifically, we first
design a bidirectional patch displacement based on reliable
prediction confidence for unlabeled data to generate new
samples, which can effectively suppress uncontrollable re-
gions and still retain the influence of input perturbations.
Meanwhile, to enforce the model to learn the potentially
uncontrollable content, a bidirectional displacement oper-
ation with inverse confidence is proposed for the labeled
images, which generates samples with more unreliable in-
formation to facilitate model learning. Extensive experi-
ments show that ABD achieves new state-of-the-art perfor-
mances for SSMIS, significantly improving different base-
lines. Source code is available at https://github.com/chy-
upc/ABD.

1. Introduction
Medical image segmentation derives from computer tomog-
raphy (CT) or magnetic resonance imaging (MRI), which is
crucial for various clinical applications [34, 45]. Obtaining
a large medical dataset with precise annotation to train seg-
mentation models is challenging, as reliable annotations can
only be provided by experts, which constrains the develop-
ment of medical image segmentation algorithms and poses
substantial challenges for further research and implementa-
tion [31, 43]. To mitigate the burden of manual annotation
and address these challenges, semi-supervised medical im-
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Figure 1. Illustration of prediction results. (a) Using only network
perturbation; (b) Combining network perturbation with input per-
turbation; (c) Incorporating ABD on top of the two perturbations.
Using a single perturbation has limitations while using multiple
perturbations makes it uncontrollable. Introducing ABD greatly
alleviates the issue and allows the model to perform significantly
better. The white dashed boxes highlight the regions with wrong
predictions.

age segmentation (SSMIS) [2, 28, 35, 42] is emerging as
a practical approach to encourage segmentation models to
learn from readily available unlabelled data in conjunction
with limited labeled examples.

Most recent approaches in SSMIS employ consistency
learning [9, 11, 15, 44] to make the decision boundary of
the learned model located within the low-density bound-
ary [12]. By ensuring consistent features or predictions
under diverse perturbations, this strategy becomes one of
the most effective solutions for learning from unlabelled
data. According to the perturbation differences, consistency
learning approaches can be divided into three categories:
1) Input perturbations, which mainly produce different in-
puts to the same model [5, 29, 41], e.g., weak and strong
data augmentation for the given image. 2) Feature pertur-
bations [17, 25, 47], which mainly include feature noise,
feature dropout, and context masking. 3) Network perturba-
tions [8, 13], which focus on using different network archi-
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tectures for the same input. To ensure the stability of con-
sistency learning, most previous approaches [16, 32, 38, 51]
solely utilize one of the above perturbations, restricting the
performance of the consistency learning and leading to im-
precise decision boundary since the specific single pertur-
bation can only handle limited cases, as shown in Fig. 1(a).

Utilizing mixed or multiple perturbations presents a di-
rect solution to solve the above problem. However, once
added multiple perturbations, the consistency learning pro-
cess is easily out-of-control, leading to restricted learning
quality. For example, Cross Pseudo Supervision (CPS) [8]
is a widely-used technique in consistency learning that pri-
marily applies network perturbation to produce two dis-
criminate predictions for further consistency learning. If
we directly add input perturbation by using weak and strong
augmentation to the input training data, consistency learn-
ing will be ineffective. As shown in Fig. 1(b), when the
original input is replaced with weak and strong augmenta-
tion inputs, the CPS model incorrectly classifies the back-
ground as the foreground with consistency learning mech-
anism, indicating decreased performance when mixed per-
turbations are introduced.

To tackle the aforementioned challenges, we propose
Adaptive Bidirectional Displacement (ABD) for SSMIS,
as shown in Fig. 1(c). Specifically, for each unlabelled im-
age, the input perturbation is firstly applied to produce a
pair of input images, e.g., weak augmentation image and
strong augmentation image. Then we generate two confi-
dence matrices (confidence rank maps) based on the predic-
tions from the above two perturbed images. The confidence
matrix assesses the certainty of predicted pixels belonging
to various categories, thereby reflecting the model’s reliabil-
ity to different perturbations. Then, for any augmented im-
age, its region with the lowest confidence rank is displaced
with the region from the other augmented image that has
the most similar output distribution with highly confident
scores. We refer to this as an adaptive bidirectional dis-
placement with reliable confidence (ABD-R). In this way,
the newly generated image can remove the uncontrolled re-
gion and obtain complementary and approximate semantic
information from another augmented image, which ensures
consistent predictions of the model across different pertur-
bations. Meanwhile, to enforce the model to learn those
potentially uncontrollable regions, we incorporate inverse
confidence for labeled data as an additional adaptive bidi-
rectional displacement (ABD-I). For any labeled augmented
image, the image regions with the highest confidence scores
are displaced with the regions from another augmented im-
age having the lowest confidence scores. This operation
will strengthen the model to tackle uncontrollable regions.
Combining these two strategies, our approach performs a
novel input perturbation method, which can be directly ap-
plied to existing consistency learning approaches. Exten-

sive experiments show that ABD achieves new state-of-the-
art (SOTA) performances for SSMIS, significantly improv-
ing different baseline performances.

We summarize our main contributions as follows:
• We observed that the combination of different perturba-

tions leads to instability in consistency learning. To ad-
dress this issue, we propose Adaptive Bidirectional Dis-
placement to enable the generation of semantically com-
plementary data by replacing model inadaptable regions
with credible regions, which assists the model in effec-
tively correcting erroneous predictions and enhances the
quality of consistency learning.

• To take full advantage of labeled data, we propose an en-
hanced Adaptive Bidirectional Displacement that incor-
porates inverse confidence for labeled data to enforce the
model to tackle those potentially uncontrollable regions.

• The proposed method can be easily plug-and-play, which
can be embedded into different approaches and enhance
their performance. Extensive experiments are conducted
to validate the feasibility of the method, resulting in sig-
nificant improvements compared to previous SOTA ap-
proaches on different datasets.

2. Related Work
2.1. Consistency Learning in Semi-Supervised

Medical Image Segmentation

Consistency learning has been widely used in recent ap-
proaches for SSMIS. It aims to improve the performance of
models by promoting consistent predictions for unlabeled
data under different perturbations. According to the per-
turbation differences, consistency learning has three cate-
gories: input perturbation, feature perturbation, and net-
work perturbation. Input perturbation is achieved through
producing different inputs. For instance, Huang et al. [11]
introduced cutout content loss and slice misalignment as
perturbations in the input. In contrast, ST++ [39] in-
volved strong augmentation on unlabeled images and di-
rectly utilizes the augmented samples for re-training. Pseu-
doSeg [51] was similar to FixMatch [30] in leveraging
pseudo-labels generated from weakly augmented images to
supervise the predictions of strongly augmented images.
BCP [2] encouraged the mixing of labeled and unlabeled
images on the input level, enabling unlabeled data to learn
comprehensive and general semantic information from la-
beled data in both directions. Meanwhile, feature pertur-
bation and network perturbation are achieved by producing
different features or outputs for the same input. Specifically,
for feature perturbation, Mismatch [38] introduced morpho-
logical feature perturbation, which is based on classic mor-
phological operations. For network perturbation, CPS [8]
encouraged consistent predictions from different initialized
networks with an input image. Mean Teacher [32] utilized
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Figure 2. Overview of our adaptive bidirectional displacement framework. (A) For the unlabeled data, one image is subjected to weak and
strong augmentations, resulting in two images that are separately input to two networks for cross-supervision. Then, based on the Au

w, Zu
w,

Au
s , and Zu

s , the patches in the images are bidirectionally displaced, resulting in the formation of new samples Xu
s→w and Xu

w→s. These
new samples are further fed into the networks for cross-supervision. (B) For the labeled images, they are also subjected to both weak and
strong augmentations, and their predictions are supervised by the labels. Afterward, based on the Al

w and Al
s, inverse bidirectional patch

displacement is performed on the images, resulting in the generation of new samples Xl
s→w and Xl

w→s. Similarly, the labels undergo
the same operation, leading to the creation of new labels Y l

s→w and Y l
w→s. The new samples are then fed into the network, and their

predictions are supervised by the new labels. Note that ABD-R and ABD-I are two parallel modules during training.

the exponential moving average (EMA) technique to trans-
fer semantic knowledge from the student network to the
teacher network. However, existing methods only guarantee
the consistency of predictions under a single perturbation,
which greatly limits the scalability of consistency learning.

2.2. Consistency Learning in Other Tasks

Consistency learning [18, 46] is a major technique to tackle
unlabeled data in semi-supervised learning. Several meth-
ods are proposed with consistency learning in various do-
mains, including image segmentation [26, 40], domain gen-
eralization [49, 50], image classification [33, 48], pre-train
language model [10], etc. For image segmentation, Revisit-
ing UniMatch [40] proposed a unified approach using dual-
stream perturbations for semi-supervised semantic segmen-
tation by combining input and feature perturbations. Addi-
tionally, ViewCo [26] introduced text-to-view consistency
modeling, incorporating additional text to learn comprehen-
sive segmentation masks. In domain generalization, Zhou et
al. [50] exploited the latent uncertainty information of the
unlabeled samples to design an uncertainty-guided consis-

tency loss. StyleMatch [49] enforced prediction consistency
between images from one domain and their style-transferred
counterparts. In image classification, SimMatch [48] ap-
plied consistency regularization on both the semantic level
and instance level to generate high-quality and reliable tar-
gets. ICT [33] introduced the interpolation consistency
training which encourages the prediction at an interpolation
of unlabeled points to be consistent with the interpolation
of the predictions at those points. In addition, in the pre-
train language model, GALAXY [10] applied consistency
regularization on all data to minimize the bi-directional KL
divergence between model predictions.

3. Method

3.1. Problem Setting

In the semi-supervised segmentation, we utilize a labeled
dataset Dl =

{(
X l

i , Y
l
i

)}N

i=1
along with an unlabeled

dataset Du = {Xu
i }

M+N
i=N+1. Here, X l

i represents a labeled
image and Y l

i represents its corresponding label. Similarly,
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Xu
i denotes an unlabeled image. For convenience, i will be

omitted in the following part. It is worth emphasizing that
the number of labeled images is significantly larger than the
number of unlabeled images, i.e., N ≫ M .

3.2. Overview

The overall framework of our approach is shown in Fig. 2,
which can be divided into the following steps:
1. For the input labeled image, we first apply input pertur-

bation to generate two different samples, e.g., a weak
augmentation image and a strong augmentation image,
both of which are input to the model with network per-
turbation: the weak augmentation image is input to one
network and the strong augmentation image is input to
the other network to generate two corresponding predic-
tions, using the provided label as supervision.

2. For an unlabeled image, two predictions are obtained
following the above pipeline. Then using our proposed
ABD-R, the corresponding confidence matrices are used
to perform bidirectional displacement between two aug-
mented unlabeled images to generate new input samples.

3. Meanwhile, to enforce learning from the potentially un-
controllable regions, the ABD-I strategy based on in-
verse confidence is applied to labeled data to generate
two new samples with the corresponding labels.

4. Finally, all generated new samples are input to the model
to produce the corresponding predictions. The predic-
tions of unlabeled data are used for cross-supervision,
and the predictions of labeled data are supervised by the
newly generated labels.

3.3. Adaptive Bidirectional Displacement with Re-
liable Confidence

Under various perturbations, the segmentation model pro-
duces unreliable predictions for unlabeled data. Impos-
ing alignment using these predictions can render consistent
learning ineffective. A direct solution is to remove the re-
gions related to unreliable prediction. In practice, we first
generate the confidence matrix based on the model’s pre-
dictions. The confidence matrix measures the confidence
of each predicted pixel belonging to different categories,
it reflects the model’s reliability to different perturbations.
Utilizing the confidence matrix, our ABD-R can generate a
new training sample that exhibits more reliable regions.

Suppose Xu
w ∈ R3×H×W is an unlabeled medical image

with weak augmentation. Xu
s ∈ R3×H×W is the same un-

labeled medical image but with strong augmentation. After
passing the model, we generate their corresponding outputs:

logitsuw = fθ1(X
u
w), logits

u
s = fθ2(X

u
s ), (1)

where fθ1 and fθ2 are two networks, which usually have
different architecture or initialization to build the network

perturbation. logitsuw and logitsus are the logits outputs that
correspond to Xu

w and Xu
s , respectively. Applying softmax

to these logits yields the corresponding prediction probabil-
ity scores:

Pu
w = softmax(logitsuw), P

u
s = softmax(logitsus ), (2)

where Pu
w is the prediction of Xu

w and Pu
s is the prediction

of Xu
s . After upsampling them to the same height and width

with input, we can generate Pu
w ∈ RC×H×W and Pu

s ∈
RC×H×W . C is the number of classes.

Then we divide Xu
w into K patches, each with a size of

k × k, denoting as Xu
w = {Xu,j

w }Kj=1, where Xu,j
w ∈ Rk×k

and K =
(
H
k

)
×
(
W
k

)
. For any patch Xu,j

w (j is the index of
the patch), the corresponding logits outputs are represented
as logitsu,jw ∈ RC×k×k and predictions are represented as
Pu,j
w ∈ RC×k×k.

Then, for each patch of Xu
w, its logits scores is:

Zu,j
w,c =

k×k∑
m=1

logitsu,jw,c(m)

|k × k|
, (3)

where Zu,j
w,c represents the average logits score of the j-th

patch for the class c and c ∈ {1, 2, .., C}, logitsu,jw,c(m) is
the logit score of the class c for the m-th pixel in the j-th
patch. We regard Zu,j

w as the output distribution for the j-th
patch of Xu

w.
Meanwhile, the corresponding confidence score for the

j-th patch is computed as follows:

Au,j
w =

k×k∑
m=1

max
c∈C

(Pu,j
w,c(m))

|k × k|
, (4)

where j is the index of the corresponding patch, Pu,j
w,c(m) is

the probability of the class c for the m-th pixel in the patch.
max(·) is a maximum operator to select the highest confi-
dence score for each pixel. Au,j

w is the average confidence
score for the j-th patch, which measures the reliability of
the corresponding patch.

Then the index of the patch with the lowest confidence
for Xu

w is computed as:

induw-min = argmin
j∈K

(
Au,j

w

)
. (5)

Simultaneously, using the confidence map Au
w, the top

n highest confidence patches in Xu
w are selected, and the

corresponding index set is represented as:

Induw-top = {induw-max1 , induw-max2 , ..., induw-maxn} , (6)

where Induw-top is an index set that includes the indices of
the selected top n highest confidence patches. indu

w-max1-n
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is the selected indices, for example, indu
w-max1 is the index

of the patch that has the highest (top 1) confidence score.
Similarly, following the above operations, we divide Xu

s

into K patches, the corresponding logits and confidence
score are represented as Zu,j

w and Au,j
s , respectively. After

processing from Eq. (5) to Eq. (6), the indices of the top-
highest and the lowest confidence for Xu

s are generated,
representing as Indu

s-top and indus-min, respectively. And
Indus-top = {indu

s-max1 , indus-max2 , ..., indus-maxn} .
To achieve controlled effects of the mixed perturbations

and enhance semantic coherence of the displacement oper-
ation, we select the most similar patch from the obtained in-
dex sets (Induw-top and Indu

s-top) by calculating the difference
of the output distribution between the selected top-n highest
confidence patches in one image and the lowest confidence
patch in the other image:

indw-maxs = argmin
i∈n

(
kldiv(Z

u,indu
w-maxi

w , Z
u,indus-min
s )

)
inds-maxs = argmin

i∈n

(
kldiv(Z

u,indu
s-maxi

s , Z
u,induw-min
w )

), (7)

where kldiv is to compute the KL divergence [14], e.g.,
kldiv(Z

∗
w, Z

∗
s )) = softmax (Z∗

w) log
softmax(Z∗

w)
softmax(Z∗

s )
, which re-

flects the difference in the output distribution. indw-maxs

and inds-maxs represent the indices of final selected patches.
Finally, the bidirectional displacement operation is per-

formed for Xu
s and Xu

w. The patch of one augmented image
with the lowest confidence score is displaced with the final
selected patch from the other augmented image:

Xu,j
s→w =

{
X

u,indus-maxs
s , if j = induw-min

Xu,j
w , else

, (8)

Xu,j
w→s =

{
X

u,induw-maxs
w , if j = indus-min

Xu,j
s , else

. (9)

After removing the patching operation and reshaping
them to the image, two new samples Xu

s→w and Xu
w→s are

generated, which are then input to two networks fθ1 and fθ2
for cross-supervision, as shown in Eq. (18).

This approach allows the two networks to adapt to each
other’s input perturbations, resulting in higher quality and
more reliable pseudo-labels. As a cross-supervised pro-
cess for the unlabeled data, it also reduces the likelihood of
one model making erroneous predictions, thereby prevent-
ing the degradation of the other model’s training process.

3.4. Adaptive Bidirectional Displacement with In-
verse Confidence

In the above ABD-R module, unlabeled images are manip-
ulated to create new samples by replacing the potentially

uncontrollable patches with new patches, it does not di-
rectly learn from the original regions. To enforce the model
to learn from these potentially uncontrollable regions, we
propose Adaptive Bidirectional Displacement with Inverse
Confidence (ABD-I) for the labeled images to strengthen
the learning for uncontrollable regions.

Specifically, for a labeled image X l, we perform a strong
augmentation to obtain a sample X l

s and a weak augmenta-
tion to obtain a sample X l

w. Let X l
w as an example, we

execute Eq. (1) to Eq. (6) on X l
w to get its region index, i.e.,

indlw-max1 and indl
w-min. Similarly, we repeat the above op-

eration for the strong augmented image X l
s to get indl

s-max1

and indls-min. Note that indlw-max1 and indls-max1 are the in-
dices of the patches that have the highest (top 1) confidence
score, we directly use them rather than selecting from can-
didates since these regions are the most potentially control-
lable region and we do not need to consider the semantic co-
herence with the given annotations. indl

w-min and indl
s-min

share the same definition with Eq. (5).
Then ABD-I is used, the region of one image with the

highest confidence scores is displaced with the region from
the other image having the lowest confidence scores:

X l,j
s→w =

{
X

l,indls-min
s , if j = indlw-max1

X l,j
w , else

, (10)

X l,j
w→s =

{
X

l,indlw-min
w , if j = indls-max1

X l,j
s , else

. (11)

Using Eq. (10) and Eq. (11), the new samples X l
s→w and

X l
w→s are generated. To effectively supervise the displaced

samples, the same displacement is applied to the original la-
bel. Suppose Y l is the label of images X l

s and X l
w, we also

divide Y l into K patches, denoting as Y l,j = {Y l,j}Kj=1.
The corresponding displacement operation is expressed as:

Y l,j
s→w =

{
Y l,indls-min , if j = indlw-max1

Y l,j , else
, (12)

Y l,j
w→s =

{
Y l,indlw-min , if j = indls-max1

Y l,j , else
. (13)

Finally Y l
s→w and Y l

w→s are used to supervise the gener-
ated samples X l

s→w and X l
w→s, as shown in Eq. (16).

3.5. Loss Functions

The overall loss function consists of two parts, the super-
vised loss Lsup for labeled data and the unsupervised loss
Lsemi for unlabeled data, defined as:

L = Lsup + λLsemi

=
(
Laug
sup + Labd

sup

)
+ λ

(
Laug
semi + Labd

semi

) (14)
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where λ is a weight that balances different losses, which
gradually increase with iterations increases based on the
Gaussian warming up: λ = 0.1 · e−5×(1−t/ttotal)

2

, t is the
current iteration and ttotal is the total iteration.

The Lsup consists of Laug
sup and Labd

sup. Laug
sup is used for

the original augmented labeled images, Labd
sup is used for the

newly generated labeled samples.
The loss Laug

sup is computed as:

Laug
sup =

1

2
× (Lce(fθ1(X

l
w), Y

l) + Ldice(fθ1(X
l
w), Y

l))

+
1

2
× (Lce(fθ2(X

l
s), Y

l) + Ldice(fθ2(X
l
s), Y

l))

(15)

where Lce, Ldice are the cross-entropy loss and dice loss
[24], respectively. Y l is the label.

The loss Labd
sup is computed as:

Labd
sup =

1

2
× (Lce(fθ1(X

l
s→w), Y

l
s→w)

+Ldice(fθ1(X
l
s→w), Y

l
s→w))

+
1

2
× (Lce(fθ2(X

l
w→s), Y

l
w→s)

+Ldice(fθ2(X
l
w→s), Y

l
w→s))

(16)

The unsupervised loss Lsemi consists of Laug
semi and

Labd
semi. L

aug
semi is used for the original augmented unlabeled

images, Labd
semi is for the newly generated unlabeled images.

The loss function Laug
semi is computed as follows:

Laug
semi = Ldice(fθ1(X

u
w), argmax

c∈C
(Pu

s,c))

+Ldice(fθ2(X
u
s ), argmax

c∈C
(Pu

w,c))
(17)

where Pu
s,c and Pu

w,c are the predictions in Eq (2).
The loss function Labd

semi is defined as:

Labd
semi = Ldice(fθ1(X

u
s→w), argmax

c∈C
(Pu

s→wθ2
,c))

+Ldice(fθ2(X
u
s→w), argmax

c∈C
(Pu

s→wθ1
,c))

+Ldice(fθ1(X
u
w→s), argmax

c∈C
(Pu

w→sθ2 ,c
))

+Ldice(fθ2(X
u
w→s), argmax

c∈C
(Pu

w→sθ1 ,c
))

(18)

where Pu
s→wθ1

= fθ1(X
u
s→w) and Pu

s→wθ2
= fθ2(X

u
s→w),

which are the predictions from fθ1 and fθ2 , respectively.
Similarly, Pu

w→sθ1
and Pu

w→sθ2
are obtained using the same

operation.

4. Experiments
4.1. Dataset and Evaluation Metrics

ACDC dataset: The ACDC dataset [4] comprises 200 an-
notated short-axis cardiac cine-MR images from a cohort

of 100 patients with four classes. 2D segmentation is more
common than direct 3D segmentation [1]. The data split re-
mains 70 patients’ scans for training, 10 for validation, and
20 for testing. Following previous approaches, four evalua-
tion metrics are chosen: Dice Similarity Coefficient (DSC),
Jaccard, 95% Hausdorff Distance (95HD) and Average Sur-
face Distance (ASD).

PROMISE12 dataset: The PROMISE12 dataset [19]
was made available for the MICCAI 2012 prostate segmen-
tation challenge. MRI of 50 patients with various diseases
was acquired at different locations. All 3D scans are con-
verted into 2D slices. Following previous approaches, DSC
and ASD are used as evaluation metrics.

4.2. Implementation Details

We evaluate our approach on two baselines: Cross Teach-
ing [23] and BCP [2].

Cross Teaching [23] is a cross-supervision framework,
which utilizes two networks to perform the network per-
turbation: fθ1 and fθ2 , representing UNet [27] and Swin-
UNet [6], respectively. We add the input perturbation using
weak and strong data augmentation to provide two kinds of
inputs. For weak data augmentation, random rotation and
flipping are used. For strong data augmentations, colorjit-
ter, blur [7] and Cutout [39] are used. During training, all
inputs are cropped to 224 × 224 and divided into K = 16
patches. The networks are trained with a batch size of 16,
including 8 labeled slices and 8 unlabeled slices.

BCP [2] is a mean-teacher framework, which applies
weak and strong augmentation to perform input perturba-
tion. We add the network perturbation by providing two
student networks with different initializations. Our ABD is
used on these two student networks following the above de-
sign. During training, all inputs are cropped to 256 × 256
and divided into K = 16 patches.

All other settings follow the default settings with original
Cross Teaching [23] and BCP [2].

4.3. Comparison with Sate-of-the-Art Methods

ACDA dataset: Table 1 shows the average performance on
the ACDC dataset using 5% and 10% labeled ratios. For
the 5% label ratio, our ABD achieves state-of-the-art per-
formance compared to recent methods, surpassing the base-
line Cross Teaching by a large margin. BCP is one of the
newly released methods, it achieved high performance on
the ACDC dataset. By incorporating our method into BCP,
i.e., Ours-ABD (BCP), it has a noticeable improvement,
which highlights the flexibility and scalability of our ap-
proach. Specifically, we observe a 20.75% DSC improve-
ment compared to Cross Teaching and a 1.37% DSC im-
provement compared to BCP. Considering the 10% labeled
ratio, our ABD outperforms SCP-Net [44] in all evaluation
metrics and achieves a new state-of-the-art performance. It
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Table 1. Comparisons with other methods on the ACDC test set, “Ours-ABD (Cross Teaching)” and “Ours-ABD (BCP)” represent the
baseline is Cross Teaching [23] and BCP [2] respectively.

Method Scans used Metrics
Labeled Unlabeled DSC↑ Jaccard↑ 95HD↓ ASD↓

U-Net (MICCAI’2015) [27]
3(5%) 0 47.83 37.01 31.16 12.62

7(10%) 0 79.41 68.11 9.35 2.70
70(All) 0 91.44 84.59 4.30 0.99

DTC (AAAI’2021) [21]

3(5%) 67(95%)

56.90 45.67 23.36 7.39
URPC (MICCAI’2021) [22] 55.87 44.64 13.60 3.74

MC-Net (MICCAI’2021) [36] 62.85 52.29 7.62 2.33
SS-Net (MICCAI’2022) [37] 65.83 55.38 6.67 2.28

SCP-Net (MICCAI’2023) [44] 87.27 - - 2.65
Cross Teaching (Reported) (MIDL’2022) [23] 65.60 - 16.2 -

BCP (CVPR’2023) [2] 87.59 78.67 1.90 0.67
Ours-ABD (Cross Teaching) 86.35 76.73 4.12 1.22

Ours-ABD (BCP) 88.96 80.70 1.57 0.52
DTC (AAAI’2021) [21]

7(10%) 63(90%)

84.29 73.92 12.81 4.01
URPC (MICCAI’2021) [22] 83.10 72.41 4.84 1.53

MC-Net (MICCAI’2021) [36] 86.44 77.04 5.50 1.84
SS-Net (MICCAI’2022) [37] 86.78 77.67 6.07 1.40

SCP-Net (MICCAI’2023) [44] 89.69 - - 0.73
PLGCL (CVPR’2023) [3] 89.1 - 4.98 1.80

Cross Teaching (Reported) (MIDL’2022) [23] 86.40 - 8.60 -
Cross Teaching (Reproduced) 86.45 77.02 6.30 1.86

BCP (CVPR’2023) [2] 88.84 80.62 3.98 1.17
Ours-ABD (Cross Teaching) 88.52 79.97 5.06 1.43

Ours-ABD (BCP) 89.81 81.95 1.46 0.49

Table 2. Comparisons with state-of-the-art semi-supervised seg-
mentation methods on the PROMISE12 test set.

Method Scans used Metrics
Labeled Unlabeled DSC↑ ASD↓

U-Net [27] 7(20%) 0 60.88 13.87
35(100%) 0 84.76 1.58

CCT [25]

7(20%) 28(80%)

71.43 16.61
URPC [22] 63.23 4.33
SS-Net [37] 62.31 4.36

SLC-Net [20] 68.31 4.69
SCP-Net [44] 77.06 3.52
Ours-ABD 82.06 1.33
Ours-ABD 3(10%) 32(90%) 81.81 1.46

demonstrates that ABD mitigates the uncontrolled effects
caused by the mixture of multiple perturbations and vali-
dates the mixed perturbations could expand the upper bound
of consistency learning.

Fig. 3 gives some qualitative results, our method effec-
tively suppresses areas that are inaccurately segmented by

Cross Teaching and BCP, while accurately segmenting the
foregrounds that are ignored by the two methods.

PROMISE12 dataset: Following SS-Net [37], we con-
duct experiments with 20% labeled data. We compare ABD
with CCT [25], URPC [22], SS-Net [37], SLC-Net [20] and
SCP-Net [44]. As shown in Table 2, Ours-ABD surpasses
all other approaches. Compared to the recently proposed
SCP-Net, ABD brings a 5.0% DSC increase.

4.4. Ablation Studies

We select Cross Teaching [23] as the baseline. All experi-
ments are conducted on the ACDC dataset with 10% labeled
data unless otherwise stated.

Effectiveness of each module in ABD: Table 3 demon-
strates the effectiveness of each module in ABD by progres-
sively adding ABD-R and ABD-I. It can be observed that
the introduction of input perturbation (IP) decreases the per-
formance of the baseline, indicating that the mixed pertur-
bation easily leads to out-of-control. Incorporating ABD-R
and ABD-I brings increased performance. By incorporat-
ing both ABD-R and ABD-I into the baseline, the model
has the best result, reaching 88.52% DSC and surpassing
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(a) (b) (c) (d) (e)

Figure 3. Visualization of segmentation results on ACDC dataset
with 10% labeled data. (a) Ground-truth. (b) Cross Teaching re-
sults. (c) Ours-ABD (Cross Teaching) results. (d) BCP results.
(e) Ours-ABD (BCP) results. Best viewed in color on the screen.

Table 3. Effectiveness of ABD-R and ABD-I modules. “base”
means baseline is the Cross Teaching. “IP” means adding pertur-
bation to the input.

Base IP ABD-R ABD-I DSC↑ Jaccard↑ 95HD ↓ ASD↓
✓ 86.45 77.02 6.30 1.86
✓ ✓ 86.25 76.69 5.44 1.72
✓ ✓ ✓ 87.42 78.37 5.23 1.68
✓ ✓ ✓ 87.20 78.07 6.06 1.96
✓ ✓ ✓ ✓ 88.52 79.97 5.06 1.43

the baseline in 2.07%. The improvement indicates that the
two modules are complementary which is consistent with
the design targets. ABD-R enhances the upper limit of con-
sistency learning for mixed perturbations, and ABD-I en-
ables the model to learn potentially uncontrollable regions,
thereby the combination can learn more semantics.

Displacement Strategies: Table 4 illustrates the impact
of different displacement strategies. The default displace-
ment strategy (denoted as “Reliable”) in our ABD-R mod-
ule is displacing the region with the top-highest confidence
from one image with the region of lowest confidence from
the other image. “Random” refers to randomly selecting
patches for displacement. “Same” means the displacement
strategy is performed by displacing the region that has the
highest confidence from one image with the corresponding
region from the other image. “Same+Reliable” represents
that in each iteration, we randomly select a strategy from
the “Same” or “Reliable”. The “Same” generates samples
that have more uncontrolled regions and yields unsatisfac-
tory results. While the “Same+Reliable” alleviates the un-
favorable results, it is still not as effective as our approach.

Selection of Patch Number: Table 5 indicates the im-
pact of the patch number. K represents the number of
patches. An optimal result is achieved when K = 16.

Table 4. Influence of the displacement strategies in ABD-R.

Strategy DSC↑ Jaccard↑ 95HD↓ ASD↓
Random 86.55 77.07 6.13 1.74

Same 87.22 78.04 5.61 1.50
Same+Reliable 87.38 78.06 4.56 1.69

Reliable 87.42 78.37 5.23 1.68

Table 5. Ablation study of patch number K.

K DSC↑ Jaccard↑ 95HD ↓ ASD ↓
4 87.39 78.35 5.06 1.69

16 88.52 79.97 5.06 1.43
64 87.54 78.57 5.52 1.88

Table 6. Effectiveness of the strong data augmentation.

Cutout Colorjitter Blur DSC↑ Jaccard↑ 95HD↓ ASD↓
✓ 88.23 79.53 5.90 1.40

✓ 88.03 79.34 7.15 1.76
✓ 87.76 78.76 7.28 1.61

✓ ✓ 88.52 79.97 5.06 1.43
✓ ✓ ✓ 87.83 79.02 6.14 1.87

Choice of Strong Augmentation: Table 6 illustrates the
influence of three different augmentation methods: colorjit-
ter, blur, and cutout. Through comparison, combining col-
orjitter and cutout produces better performance.

5. Conclusion

In this paper, we proposed an adaptive bidirectional dis-
placement (ABD) for semi-supervised medical image seg-
mentation. Our key idea is to mitigate the constraints of
mixed perturbations on consistency learning, thereby en-
hancing the upper limit of consistency learning. To achieve
this, we designed two novel modules in our ABD: an ABD-
R module reduces the uncontrolled regions in unlabeled
samples and captures comprehensive semantic information
from input perturbations, and an ABD-I module enhances
the learning capacity to uncontrollable regions in labeled
samples to compensate for the deficiencies of ABD-R. With
the cooperation of two modules, our method achieves state-
of-the-art performance and is easily embedded into differ-
ent methods. In the future, we will design a patch adaptive
displacement strategy to tackle more complicated cases.
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