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Abstract

The use of models that have been pre-trained on natural
image datasets like ImageNet may face some limitations.
First, this use may be restricted due to copyright and li-
cense on the training images, and privacy laws. Second,
these datasets and models may incorporate societal and
ethical biases. Formula-driven supervised learning (FDSL)
enables model pre-training to circumvent these issues. This
consists of generating a synthetic image dataset based on
mathematical formulae and pre-training the model on it.

In this work, we propose novel FDSL datasets based
on Mandelbulb Variations. These datasets contain RGB
images that are projections of colored objects deriving
from the 3D Mandelbulb fractal. Pre-training ResNet-50
on one of our proposed datasets MandelbulbVAR-1k en-
ables an average top-1 accuracy over target classification
datasets that is at least 1% higher than pre-training on ex-
isting FDSL datasets. With regard to anomaly detection
on MVTec AD, pre-training the WideResNet-50 backbone
on MandelbulbVAR-1k enables PatchCore to achieve 97.2%
average image-level AUROC. This is only 1.9% lower than
pre-training on ImageNet-1k (99.1%) and 4.5% higher than
pre-training on the second-best performing FDSL dataset
i.e. VisualAtom-1k (92.7%). Regarding Vision Transformer
(ViT) pre-training, another dataset that we propose and coin
MandelbulbVAR-Hybrid-21k enables ViT-Base to achieve
82.2% top-1 accuracy on ImageNet-1k, which is 0.4%
higher than pre-training on ImageNet-21k (81.8%) and only
0.1% lower than pre-training on VisualAtom-1k (82.3%).

1. Introduction
Formula-driven supervised learning (FDSL) to pre-train
computer vision models such as Convolutional Neural Net-
works (CNNs) [12] or Vision Transformers (ViTs) [11, 17,
23, 24] has recently gained interest within the industry and
the research community. This consists of the following
steps. First, an artificial dataset of labeled images is gen-
erated based on mathematical formulae and rendering soft-

ware. Second, a model undergoes the supervised learning
over this labeled dataset. The trained model is then de-
ployed to solve a target (synonym for downstream) task
on a real-image dataset. In this transfer learning phase,
the model is generally fine-tuned on the target dataset, if
possible. FDSL presents remarkable advantages: first, its
annotation is free of errors and cost since labels are auto-
matically generated. Second, the synthesized dataset does
not contain any societal biases that can be harmful from
an ethical point of view. Third, it can replace other pre-
training datasets that either are not publicly available (e.g.
Instagram-3.5B [14] and JFT-300M/3B [29]) or present li-
cense, copyright or privacy issues. For example, as Ima-
geNet [8] is only available for non-commercial use, Ima-
geNet pre-trained models—that are largely available online
today—are not really licensed for commercial use. Also,
this dataset contains some images that either violate privacy
protection laws or are not cleared in terms of copyright.
Thus, using ImageNet pre-trained models can be legally not
suitable in some countries.

Figure 1. Example MandelbulbVAR-1k images. 10 classes are
randomly chosen and each image is an instance of one of them.

In this context, several FDSL datasets have been pro-
posed. One of them is meant to pre-train CNNs [12], oth-
ers are reportedly suitable to pre-train ViTs [11, 17, 24].
These datasets are classification datasets and are effective
for downstream supervised classifications, that involve fine-
tuning on target datasets. Yet, there is a small number
of datasets that are effective in pre-training both ViTs and
CNNs. Indeed, only FractalDB has been shown to be ef-
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fective in both CNN and ViT pre-trainings, in two separate
studies [12, 17]. Moreover, none of the existing FDSL stud-
ies verified whether their proposed datasets can be used in
order to pre-train CNNs with a view to freezing them after
pre-training and using them as off-the-shelf feature extrac-
tors. Indeed, such CNNs—if having been pre-trained on
a large and diverse enough image dataset like ImageNet—
have proven to be highly useful in cold-start anomaly detec-
tion [3, 6, 7, 21]. This task consists of having only a small
number of normal instances as training data and detecting
outliers in the test data. Such a task is frequently dealt with
in industrial scenarios when it is easy to collect normal data
but hard to collect abnormal ones. As previously stated, Im-
ageNet pre-training of such feature extractors can be legally
problematic. Therefore, an FDSL dataset that can effec-
tively pre-train these feature extractors can be a great asset
for the industry. To summarize, there is no FDSL dataset
construction scheme that is effective in pre-training all of
the following models at once: CNNs and ViTs for down-
stream supervised classifications and CNNs for downstream
anomaly detection. Finally, existing FDSL datasets are im-
ages of two-dimensional (2D) mathematical objects and/or
exclusively contain grayscale images. As target datasets of-
ten contain RGB images that are projections of real-life ob-
jects that are colored and three-dimensional (3D), we think
that it is preferable to model 3D objects that are colored and
project them onto RGB images. Moreover, in the 3D space,
we can simulate external light sources and alter the color
of the objects based on their light exposure. This process,
called shading in computer graphics, would enable realis-
tic depth perception and variation of darkness level, which
would contribute to the pre-training.

Given these observations, our study proposes new FDSL
datasets based on Mandelbulb Variations [19]. These
datasets contain RGB images that are projections of 3D
fractals augmented with colors and shading. Fig. 1 visu-
alizes some instances of one of our proposed datasets,
MandelbulbVAR-1k. The rest of this article is structured
in the following way. First, we review related studies. Then,
we explain the mathematical theory behind our proposed
datasets. Finally, we empirically evaluate them and demon-
strate their effectiveness.

2. Related work

2.1. FDSL

The work [12] introduced FDSL to pre-train CNNs for the
first time. It proposed FractalDB, a dataset of either col-
ored or grayscale images of 2D fractals generated based on
an iterated function system. After this, the same dataset
was used in [17] to pre-train ViTs. This study used FDSL
to pre-train ViTs for the first time. The authors of this pa-
per intuited that FDSL enables effective pre-training of a

ViT thanks to its self-attention mechanism that enables it
to focus on the formula-based patterns without consider-
ing background areas. They additionally showed that this
mechanism makes the models focus on the contours i.e. out-
lines, rather than the textures. This discovery was in ac-
cordance with one of the conclusions from [25] stating that
compared to CNNs, ViTs are more biased towards shape
than texture. Motivated by these observations, [11] pro-
posed ExFractalDB and Radial Contour DataBase (RCDB).
The former is formed by grayscale images that are pro-
jections of 3D fractals. The latter consisted of grayscale
images of 2D contours and enabled a better ViT-Base pre-
training than ImageNet-21k when fine-tuned on ImageNet-
1k. The work [24] represents an improvement in this direc-
tion by proposing VisualAtom, a dataset of grayscale im-
ages of 2D contours with a larger design space. This dataset
showed even better pre-training performance than RCDB
when considering ViTs.

Inspired by some of the previously mentioned studies,
the following works proposed FDSL datasets for specific
downstream tasks, other than classification: [23] proposed
a dataset of 2D contours that is suitable for semantic seg-
mentation ViT pre-training; [27] proposed a point cloud
fractal database for 3D object detection. Besides, authors
of [1] improved the CNN pre-training of [12] by proposing
to generate the 2D fractal images on-the-fly at training time.

2.2. Anomaly detection

Studies such as [3, 6, 7, 21] showed that using ImageNet
pre-trained and frozen CNNs to extract features from im-
ages was an effective approach in cold-start anomaly de-
tection. This task consists in having only a small num-
ber of normal examples as training data and detecting ab-
normal ones in the test data. The paper [3] was the first
study that showed that kNN combined with ImageNet pre-
trained feature extractor was effective in anomaly detec-
tion. The study [6] proposed SPADE, an algorithm that
uses memory banks containing several ImageNet-feature
hierarchies to do kNN-based anomaly segmentation and
image-level anomaly detection. Authors of [7] proposed
PaDiM, which estimates statistics of patch-level ImageNet-
features (mean and covariance) and considers patch-level
Mahalanobis distances. Finally, [21] proposed PatchCore,
which uses a memory bank of neighborhood-aware patch-
level ImageNet features. Its coreset subsampling mech-
anism enables reduced inference cost while keeping high
performance. As stated in Sec. 1, cold-start anomaly de-
tection is frequently dealt with in an industrial context, but
ImageNet pre-training may face some limitations. Having
a dataset other than ImageNet that is licensed and free of
privacy/copyright issues, labeling costs/errors and ethical
biases—like an FDSL one—would be greatly beneficial to
industrial anomaly detection applications.
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To conclude this section, we observe that most of the ex-
isting FDSL datasets were either tailored to pre-train CNNs
or ViTs. Moreover, their capabilities to pre-train CNNs to
use them as off-the-shelf feature extractors for cold-start
anomaly detection have not been evaluated. Finally, as tar-
get data are often colored images that are projections of
3D real-life objects, we think that differently from exist-
ing works, we should model 3D mathematical objects, color
them and project them onto RGB images via virtual cam-
eras. On top of this, shading would benefit the pre-training,
enabling realistic depth perception and variation of dark-
ness level. Considering these points, our contributions are
the following.

• We propose novel FDSL datasets that are free of
copyright/privacy issues, ethical biases and labeling
costs/errors. They contain RGB images that are projec-
tions of Mandelbulb Variations [19], augmented with col-
orful, light and shaded areas. We explain the mathemat-
ical theory behind these 3D fractals. We implement our
original fractal modeling and rendering software based on
OpenGL Shading Language (GLSL) [20] and we make it
publicly available on our GitHub repository, with a per-
missive license that allows commercial use.

• We evaluate the pre-training performance of our proposed
datasets. For comparison purposes, we also evaluate ex-
isting FDSL datasets. We demonstrate the following.
First, one of our proposed datasets MandelbulbVAR-1k
is on average the best when pre-training CNNs for the
downstream classification and anomaly detection tasks.
Our dataset approaches the most ImageNet in pre-training
performance. Second, regarding ViT pre-training, com-
pared to existing FDSL datasets, another dataset that
we propose and name MandelbulbVAR-Hybrid-21k
performs the second-best when considering ImageNet-
1k fine-tuning and average performance over CIFAR-
10/100, ImageNet-100 and Flowers.

3. Dataset generation method

3.1. Motivation

Instead of relying on FDSL, simulating 3D scenes of
real-life objects can also produce datasets that are free
of copyright/privacy issues, ethical biases and labeling
costs/errors. However, increasing the diversity (i.e. the
number of classes) of such datasets requires coming up with
a lot (thousand) of different 3D models, which is costly. In
contrast, with FDSL we can increase the diversity by sim-
ply changing the parameters used in the generative formula.
This is one of the motivations behind our FDSL process.
Moreover, as target datasets often contain RGB images of
real-life objects with colors, light and shaded areas, we seek
to model a parametrized 3D mathematical object and aug-
ment it with colors and shading. Therefore, we propose new

datasets that derive from the 3D Mandelbulb fractal [26].
This fractal extends the 2D Mandelbrot set—a typical ex-
ample of a 2D fractal[15, 16]—to the 3D space. As fractals
are objects in which the smaller portions are similar to those
on a larger scale, they present infinite levels of smaller de-
tail. Displaying it is only limited by computer capability.
Therefore, their rendering can result in images with an im-
portant amount of information. If used for pre-training, they
can hopefully make the model learn features that are useful
when dealing with target tasks.

3.2. Mandelbulb Variations

Let n ∈ N and the following function gn : R3 → R3:

gn :

x
y
z

 7→ rn

sin(nθ) cos(nφ)
sin(nθ) sin(nφ)

cos(nθ)

 (1)

where 
r =

√
x2 + y2 + z2

θ = arccos(z/r)

φ = atan2(y, x)

(2)

A 3D Mandelbulb Mn is defined as the set of data points
c ∈ R3 for which the sequence (vk) defined by vk+1 =
gn(vk) + c does not diverge i.e. sup(||vk||) < +∞ when
starting at v0 = 0 [26].

This definition of 3D Mandelbulb has only a parame-
ter n. For our FDSL approach, we want a 3D model with
more parameters, to increase the diversity of the generated
dataset. Therefore, we rely on Mandelbulb Variation V(n,b).
Its definition [19] derives from the one of 3D Mandelbulb
presented above. It relies on a new function f(n,b) : R3 →
R3 parametrized by b = (b1, ..., b9) ∈ {0, 1}9. b is equiv-
alent to a boolean vector. We use the following definition:

V(n,b) =

 c ∈ R3

∣∣∣∣∣∣∣∣
sup
k
(∥vk∥) < +∞

vk+1 = f(n,b)(vk) + c

v0 = 0

 (3)

f(n,b) :

x
y
z

 7→ rn

s1h1(nω1)
s2h2(nω2)
s3h3(nω3)

 (4)

where 
si = 1− 2bi

ωi = bi+3θ + (1− bi+3)φ

hi = bi+6 sin+(1− bi+6) cos

r, θ, φ are defined by Eq. (2).

(5)

The vector b being of length 9, one would think the
maximum number of different Mandelbulb Variations is
29 = 512 for a given n. However, some vectors b result in
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sets that either are not bounded or have inconvenient shapes.
Therefore, we do not use these vectors. Then we apply ad-
ditional selection and retain 61 vectors i.e. variations. Fi-
nally, by letting n take the 17 values in [[2, 18]] we obtain
61× 17 = 1037 variations. We associate each of them with
a different class label, resulting in 1037 classes.

We implement our original Mandelbulb Variation model-
ing and rendering software based on OpenGL Shading Lan-
guage (GLSL) [20]. We make it publicly available on our
GitHub repository. Using this software, we first simulate a
Mandelbulb Variation model V(n,b) by entering the input pa-
rameters n and b. We color this variation by randomly gen-
erating a coloring pattern and using an orbit trap algorithm
[16], and an external light source is simulated to determine
the surface brightness via shading. Then, we simulate a vir-
tual camera with a random location that points toward the
variation. Through the rendering process, the fractal is pro-
jected onto an RGB image of size 512×512 via the camera.
Given a Mandelbulb Variation model V(n,b), we repeat the
above coloring, shading and rendering process 1000 times,
which results in 1000 images of the variation having dif-
ferent colors and viewing angles. All of these images are
labeled with the same class label corresponding to the vari-
ation. By repeating this process for all of the 1037 Man-
delbulb Variations, we obtain a dataset of 1037 classes and
1000 images per class. This dataset has therefore around
1M images in total. We coin it MandelbulbVAR-1k. Fig. 2
shows 5 instances belonging to a same class of this dataset.
Using an NVIDIA GeForce RTX 3090 GPU, it takes 38
hours (about 1.5 days) to generate this dataset.

Figure 2. 5 instances of a class of MandelbulbVAR-1k. Better
seen in color and zoomed in.

3.3. Hybrid Mandelbulb Variations

To further increase the fractal shape diversity, we model Hy-
brid Mandelbulb Variations. A Hybrid Mandelbulb Varia-
tion V(n,b),(n′,b′) is generated by combining two Mandel-
bulb Variations V(n,b) and V(n′,b′) [16]:

V(n,b),(n′,b′) =

 c ∈ R3

∣∣∣∣∣∣∣∣∣∣

sup
k
(∥vk∥) < +∞

uk+1 = f(n,b)(vk) + c

vk+1 = f(n′,b′)(uk) + c

v0 = 0

 (6)

The hybrid variation presents a shape combining prop-
erties of the two input variations. The general shape of the

V(8,u(302)) V(7,u(128)) V(8,u(302)),(7,u(128))

Figure 3. Illustration of a Hybrid Mandelbulb Variation. (Left)
an instance of the Mandelbulb Variation V(8,u(302)). (Center) an
instance of V(7,u(128)). (Right) an instance of the hybrid variation
V(8,u(302)),(7,u(128)) combining the two variations. These images
present the same viewing angle. We show uncolored variations for
illustrative purposes. The bijection u : [[0, 511]] → {0, 1}9, u−1 :
(b1, . . . , b9) 7→

∑
i bi2

i−1 converts the input integer into a vec-
tor containing its 9-bit binary representation. The general shape of
the hybrid fractal is more similar to the one of V(8,u(302)) while
the hybrid fractal presents deformations. Shapes of these defor-
mations are somehow similar to the shape of V(7,u(128)).

fractal is more similar to the one of V(n,b) (because f(n,b)
is first applied to compute v1). The presence of the second
function f(n′,b′) in the subsequent computations of (vk) in-
troduces deformations. Shapes of these deformations are
somehow similar to the shape of V(n′,b′). Fig. 3 illustrates
the formation of a Hybrid Mandelbulb Variation.

From the 1037 Mandelbulb Variations that were used in
order to generate MandelbulbVAR-1k, we combine around
20k pairs of them to define 20k hybrid variations. The 1037
Mandelbulb Variations and the 20k hybrid ones are added
together to give a set of 21k variations. These variation
models undergo the previously mentioned coloring, shading
and rendering processes within our software, which gener-
ates a new dataset having 21k classes and 50 images per
class. This dataset, again, has therefore around 1M images
in total. We coin it MandelbulbVAR-Hybrid-21k. Us-
ing an NVIDIA GeForce RTX 3090 GPU, it takes 23 hours
(about 1 day) to generate this dataset. This duration is simi-
lar to the ones needed to generate the existing VisualAtom-
1k [24], RCDB-1k and ExFractalDB-1k [11].

4. Experiments

4.1. Datasets, models and implementations

We split our experiments into two parts. First, we evalu-
ate the performance of MandelbulbVAR-1k regarding CNN
pre-training when target tasks are supervised classifications
and anomaly detection. Second, we evaluate our proposed
datasets in terms of ViT pre-training when target tasks are
supervised classifications. Each of these parts involves
comparisons to existing pre-training datasets—including
FDSL ones—and the cases where there is no pre-training.
Therefore, we download existing FDSL datasets from the
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project pages of the studies [11, 12, 24]. Unless otherwise
specified, we also pre-train models on them and evaluate
them on target tasks.

In the first part, when target tasks are supervised
classifications, we pre-train ResNet-50 backbones [10].
When the target task is anomaly detection, we pre-train
WideResNet-50 [28] backbones. In the second part, we
pre-train ViT-Tiny (ViT-T) and ViT-Base (ViT-B) [9] back-
bones. Downstream classification tasks are evaluated on
the following datasets: ImageNet-1k (IN1k) [8], CIFAR-
10/100 (C10/100) [13], Flowers [18] and ImageNet-100
(IN100) [22]. The last dataset is a subset of ImageNet-1k
with 100 classes. The anomaly detection is evaluated on the
MVTec AD dataset [4]. The codes we use are detailed in
the supplementary material.

4.2. Training procedures

To pre-train CNNs and fine-tune them on supervised clas-
sification tasks, we use the momentum stochastic gradient
descent (SGD) with a momentum value of 0.9 and a ba-
sic batch size of 256. The initial learning rate equals re-
spectively 0.1 and 0.01 at the pre-training and fine-tuning
phases. The learning rate is divided by 10 when the train-
ing epoch reaches 100 and then again at epoch 200. Both
pre-training and fine-tuning are done for 300 epochs. Train-
ing images are randomly cropped with the size 224 × 224.
Training hyper-parameters we use to pre-train and fine-tune
ViTs are provided in the supplementary material.

When dealing with the downstream anomaly detec-
tion task, WideResNet-50 feature extractors are pre-trained
based on the following hyperparameters. We use the mo-
mentum SGD with a value of 0.9 and an overall batch size
of 512. The learning rate is initially set to 0.1 and the weight
decay equals 1e-4. The learning rate is divided by 10 when
the training epoch reaches 300 and the training is performed
up to 600 epochs. Training images are randomly cropped
and resized to 224 × 224.

4.3. Evaluations

Regarding comparisons to existing FDSL datasets, unless
otherwise specified, we mainly compare models pre-trained
on our proposed datasets against models that are pre-trained
using similar numbers of images i.e. similar products of
number of epochs and total numbers of images in the
datasets. Thus, unless otherwise indicated, we mainly com-
pare our FDSL datasets against RCDB-1k, ExFractalDB-
1k, FractalDB-1k and VisualAtom-1k. These datasets, like
our proposed ones, contain around 1M images each.

Regarding performance metrics, for supervised classi-
fication tasks, we employ the top-1 accuracy. For the
anomaly detection task, the image-level area under the
receiver-operator curve (AUROC) measures the image-level
anomaly detection performance. The pixel-wise AUROC

and PRO metric measure the segmentation performance.
The second metric weights ground-truth regions of differ-
ent sizes equally, in contrast to the first one [5, 21].

For anomaly detection, we also make qualitative eval-
uations, by first visualizing anomaly scores outputted by
PatchCore algorithms in the form of segmentation images.
Second, we also visualize convolutional filters learned on
MandelbulbVAR-1k and compare them to the ones learned
on ImageNet-1k.

5. Results

5.1. CNN pre-training

For downstream supervised classification tasks. Tab. 1
shows accuracies of ResNet-50 on the validation sets of var-
ious datasets. When compared to the models trained from
scratch or pre-trained on existing FDSL datasets, on 4 out
of 5 target datasets (IN1k, C10, Flowers and IN100) the
network pre-trained on MandelbulbVAR-1k performs the
best. Furthermore, the performance on C10 and Flowers
enabled by our dataset is the closest to the one achieved
by ImageNet-1k pre-training. On the remaining C100,
MandelbulbVAR-1k is the second-best FDSL dataset. On
average, when compared to the models pre-trained on ex-
isting FDSL datasets or trained from scratch, the one pre-
trained on our dataset performs the best. The gap in average
accuracy between ours and the second-best FDSL dataset
i.e. FractalDB-10k is 1.0% (84.5% vs. 83.5%). Since
ResNet-50 pre-trained on FractalDB-10k has seen around 3
times more pre-training images than the one pre-trained on
our dataset, this result confirms the high pre-training per-
formance of our dataset. Indeed, the former model has been
pre-trained for 90 epochs on a dataset that contains around
10 times more images than MandelbulbVAR-1k [12].
For downstream anomaly detection. Tab. 2 compares
anomaly detection performance of PatchCore algorithms re-
lying on different WideResNet-50 feature extractors. These
networks are either pre-trained on different datasets or ini-
tialized with random weights. We observe that in terms
of each performance metric, PatchCore used along with
WideResNet-50 pre-trained on MandelbulbVAR-1k per-
forms the second best right after the algorithm based on
ImageNet-1k pre-training. The gaps between them are only
1.9, 1.3 and 3.8 points in average image-level AUROC
(97.2% vs. 99.1%), pixel-wise AUROC (96.8% vs. 98.1%)
and PRO (89.6% vs. 93.4%), respectively. Also, pre-
training on our proposed dataset outperforms existing FDSL
methods. Among them, the one based on VisualAtom-1k
performs the best. But between the latter and ours, the gaps
are 4.5, 2.9 and 9.3 points in average image-level AUROC
(92.7% vs. 97.2%), pixel-wise AUROC (93.9% vs. 96.8%)
and PRO (80.3% vs. 89.6%), respectively.

Fig. 4 shows some segmentation images produced by the
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Pre-training IN1k C10 C100 Flowers IN100 Average

From scratch 71.8 88.9 62.1 78.0 72.1 74.6
FractalDB-1k 72.4 93.0 74.3 91.8 79.7 82.2

FractalDB-10k* 72.9 93.9 77.1 92.7 81.1 83.5
VisualAtom-1k 73.2 93.5 74.4 93.2 81.4 83.1

RCDB-1k 73.0 92.4 73.6 90.3 81.3 82.1
ExFractalDB-1k 72.5 93.0 73.7 93.4 79.2 82.4

MandelbulbVAR-1k (ours) 73.4 93.9 76.2 96.6 82.3 84.5
ImageNet-1k - 97.1 84.4 98.3 - -

Table 1. Top-1 accuracies of ResNet-50 models on the validation sets of various datasets. These models are either trained from scratch
or fine-tuned after being pre-trained on different datasets. Bold and underlined values indicate the best scores, and bold values show the
second-best scores. The model with * is downloaded from the project page of the work [12]. For the ImageNet-1k pre-trained model, we
use the official weight that is available on PyTorch.

Input MandelbulbVAR-1k ImageNet-1k VisualAtom-1k ExFractalDB-1k FractalDB-1k RCDB-1k

Figure 4. Segmentation images on MVtec AD produced by PatchCore algorithms, merged with the input images. These algorithms
use WideResNet-50 feature extractors pre-trained on various datasets (indicated below the second row). First row: transistor object and
damaged case anomaly class. Second row: zipper object and fabric interior anomaly class. The red boundaries denote the contours of the
anomaly regions of the actual GT mask. Best viewed in color and zoomed in.

Pre-training
Img.

AUROC
Pw.

AUROC PRO

Rand. init. 77.2 85.9 55.8
ImageNet-1k 99.1 98.1 93.4

ExFractalDB-1k 87.4 92.8 72.3
RCDB-1k 77.7 88.6 68.1

VisualAtom-1k 92.7 93.9 80.3
FractalDB-1k 90.6 90.7 70.8

MandelbulbVAR-1k 97.2 96.8 89.6

Table 2. Anomaly detection performance (average image-level
AUROC, pixel-wise AUROC and PRO in %) on MVTec AD [4].
PatchCore [21] with WideResNet-50 feature extractor is used. The
memory bank subsampling rate is 10%. The pre-training col-
umn indicates the feature extractor has been either pre-trained on
a dataset or randomly initialized. Best, and second-best scores are
shown in underlined bold, and bold, respectively.

(a) ImageNet-1k (b) MandelbulbVAR-1k

Figure 5. Filters of the first convolutional layer of the
WideResNet-50 backbones that give the results reported in Tab. 2.
These backbones are pre-trained on (a) ImageNet-1k (b)
MandelbulbVAR-1k. Each set of filters is normalized by the
minimum and maximum values over all of its filters. Some of
the Gabor-like and colored Gaussian-like filters are respectively
framed in red and cyan. Best viewed in color and zoomed in.
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PatchCore algorithms based on the WideResNet-50 back-
bones. These images visualize the anomaly score at each
pixel with the viridis colormap i.e. pixels with low scores
tend to be colored in blue and the higher the score is, the
more the pixel is colored in yellow. The red boundaries
denote the anomaly contours of the GT mask. Regarding
the input image of transistor object, the segmentation im-
age related to our proposed dataset seems to be the most
in accordance with the GT mask, for the following reasons.
First, the abnormal region is accurately covered with high
anomaly scores. Second, it contains fewer false positives
i.e. green or yellow regions outside of the red boundary than
the segmentation images related to other datasets. When
the input image is the one related to zipper object, Patch-
Core based on our dataset accurately covers the abnormal
region with high anomaly scores. Moreover, contrary to the
algorithm based on other datasets, it does not produce false
positives at the lower-left border of the cloth i.e. it produces
relatively low anomaly scores at this part of the image.
Discussion. A drawback of our proposed and existing
FDSL datasets is that they do not contain any semantic
content. As a result, they are potentially not good for
semantic-related representation learning. On the one hand,
we think that Mandelbulb Variation images are good for
learning low-level statistics i.e. the first layer filters. This is
shown by Fig. 5, which shows that the set of filters learned
on our dataset is close to the one based on ImageNet-1k,
presenting similar patterns of filters (Gabor-like and col-
ored Gaussian-like filters) and similar gray-colored back-
grounds. On the other hand, the high anomaly detection
performance also shows that Mandelbulb Variation images
are also good for learning mid-level feature representations.
Indeed, these features (the outputs of the 2nd and 3rd blocks
of WideResNet-50) are used in PatchCore [21].

As CNNs are more biased toward texture than shape
[2, 25], the high CNN pre-training performance of
MandelbulbVAR-1k suggests that this dataset is good for
learning texture. This is indeed in accordance with the high
anomaly detection performance, because a significant pro-
portion of anomalies in MVTec AD occurs at the texture
level.

5.2. ViT pre-training

Results on ImageNet-1K. Tab. 3 shows accuracies of
ViT-T/B models on the validation set of ImageNet-1K.
We first observe that regarding ViT-T, pre-trainings on
MandelbulbVAR-1k and MandelbulbVAR-Hybrid-21k en-
able the same 73.8% top-1 accuracy. Regarding ViT-B, pre-
training on MandelbulbVAR-Hybrid-21k enables a better
performance than MandelbulbVAR-1k (82.2% vs. 82.1%;
0.1 points higher performance). These datasets contain sim-
ilar overall numbers of images but differ in shape diversity
thus in the number of classes. This result may suggest that

Pre-training ViT-T ViT-B

Scratch 72.6 79.8
ImageNet-21k 74.1 81.8
ExFractalDB-1k 73.7 80.4
RCDB-1k 73.1 82.3
VisualAtom-1k 74.2 82.3
MandelbulbVAR-1k (ours) 73.8 82.1
MandelbulbVAR-Hybrid-21k (ours) 73.8 82.2

Table 3. Accuracy of ViT-T/B on the validation set of ImageNet-
1k. The pre-training column indicates whether the models are
trained from scratch or fine-tuned after being pre-trained on var-
ious datasets. Best, second-best, and third-best scores are shown
in underlined bold, bold, and underlined, respectively. Results re-
ported on non-gray rows are taken from [24].

the shape diversity of MandelbulbVAR-Hybrid-21k benefits
the ViT pre-training.

As expected, ViT-T and ViT-B pre-trained on our pro-
posed datasets outperform the ones that are trained from
scratch. These performance gaps are 1.2 points for ViT-T
and at least 2.3 points for ViT-B. More remarkably, ViT-
B models pre-trained on MandelbulbVAR-1k (82.1%) and
MandelbulbVAR-Hybrid-21k (82.2%) outperform the same
model pre-trained on ImageNet-21k (81.8%) by 0.3 and 0.4
point gaps, respectively. This shows the high ViT-B pre-
training performance of our datasets.

Compared to existing FDSL datasets, our datasets are
better than ExFractalDB-1k for both ViT-T and ViT-B (by
respective margins of 0.1 and at least 1.7 points). ViT-
T pre-trained on our dataset performs better than the one
pre-trained on RCDB-1k, by a 0.7 point gap. Regarding
the pre-training of ViT-B, MandelbulbVAR-Hybrid-21k en-
ables slightly worse performance than the top-performing
RCDB-1k and VisualAtom-1k (only 0.1 point difference
between 82.2% and 82.3%).
Results on CIFAR-10/100, Flowers and IN100. Tab. 4
shows accuracies of ViT-T/B on the validation sets of
CIFAR-10/100, IN100 and Flowers. By first compar-
ing the pre-training performance of MandelbulbVAR-1k
and MandelbulbVAR-Hybrid-21k, the previously formu-
lated suggestion is confirmed: the shape diversity of
MandelbulbVAR-Hybrid-21k enables better pre-training
performance regarding ViTs, even with a similar number
of images in the dataset. When ViT-T is pre-trained, for all
target datasets MandelbulbVAR-Hybrid-21k is better than
MandelbulbVAR-1k. When ViT-B is pre-trained, the same
tendency is observed except for IN100. The difference in
average performance between ViT-T models pre-trained on
these datasets is 0.7 points (91.9% vs. 91.2%). For ViT-B,
this difference is 0.3 points (92.0% vs. 91.7%).

Again, the ViT-T models pre-trained on our datasets
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Model Pre-training C10 C100 Flowers IN100 Average

ViT-T Scratch 78.3 57.7 77.1 75.2 72.1
ImageNet-1k 98.0 85.5 99.4 88.5 92.9
FractalDB-1k 96.8 81.6 98.3 86.4 90.8
ExFractalDB-1k 97.2 81.8 98.9 87.4 91.3
RCDB-1k 97.0 82.2 98.9 87.5 91.4
VisualAtom-1k 97.6 84.9 98.9 87.8 92.3
MandelbulbVAR-1k (ours) 97.2 81.7 98.7 87.1 91.2
MandelbulbVAR-Hybrid-21k (ours) 97.3 83.8 98.9 87.5 91.9

ViT-B RCDB-21k 96.8 82.9 99.0 88.1 91.7
VisualAtom-21k 97.7 86.7 99.0 88.6 93.0
MandelbulbVAR-1k (ours) 97.8 82.5 98.8 87.6 91.7
MandelbulbVAR-Hybrid-21k (ours) 98.2 83.6 98.9 87.4 92.0

Table 4. Accuracy of ViT-T/B on CIFAR-10/100, Flowers and IN100. The pre-training column indicates whether the models are trained
from scratch or fine-tuned after being pre-trained on various datasets. Best, second-best, and third-best scores are shown in underlined
bold, bold, and underlined, respectively. Results reported on non-gray rows are taken from [24], except for IN100. For this dataset, models
are fine-tuned by ourselves since we are not sure that we are using the same subset of ImageNet-1k as [24].

outperform the ones trained from scratch. Compared to
existing FDSL datasets, regarding both ViT-T and ViT-B,
MandelbulbVAR-Hybrid-21k enables the second-best av-
erage performance after VisualAtom-1k and VisualAtom-
21k, respectively. Related performance gaps are 0.4% for
ViT-T (91.9% vs. 92.3%) and 1.0% for ViT-B (92.0% vs.
93.0%). The latter gap is partly explained by the fol-
lowing fact: ViT-B pre-trained on VisualAtom-21k has
seen around 6 times more pre-training images than the
one pre-trained on our dataset. Indeed, the former model
has been pre-trained for 90 epochs on a dataset that con-
tains around 20 times more images than MandelbulbVAR-
Hybrid-21k [11, 24]. Furthermore, ViT-T pre-trained on
MandelbulbVAR-Hybrid-21k presents an average perfor-
mance that is 0.5 points higher than the third-best aver-
age performance enabled by RCDB-1k (91.9% vs. 91.4%).
ViT-B pre-trained on MandelbulbVAR-Hybrid-21k shows
an average performance that is 0.3 points above the third-
best average performance enabled by RCDB-21k (92.0%
vs. 91.7%). This shows the power of our dataset because
again, ViT-B pre-trained on RCDB-21k has seen around 6
times more pre-training images than the one pre-trained on
our dataset, for the same reason as described previously.

Discussion. In contrast with CNN-pretraining, regard-
ing ViT-pretraining, MandelbulbVAR-1k does not outper-
form, on average, the datasets composed of images of con-
tours, namely RCDB and VisualAtom. Making ViTs learn
contours i.e. shapes is indeed a good strategy when pre-
training. As ViTs have higher shape bias than CNNs [25],
this result is not surprising. However, Hybrid Mandel-
bulb Variations make MandelbulbVAR-Hybrid-21k contain
more diverse fractal shapes than MandelbulbVAR-1k. This

is why MandelbulbVAR-Hybrid-21k performs better than
MandelbulbVAR-1k when pre-training ViTs. At the end
of the day, MandelbulbVAR-Hybrid-21k performs better
than RCDB and worse than VisualAtom when considering
the average ViT-T/B pre-training performance over CIFAR-
10/100, Flowers and IN100.

6. Conclusion

We proposed new FDSL datasets containing colored im-
ages that are projections of Mandelbulb Variations. These
are 3D fractals augmented with colors and shading. We
made their rendering codes publicly available, with a li-
cense that allows commercial use. Contrary to many ex-
isting natural image datasets, their annotation is free of er-
ror and cost, they do not contain any societal and ethical
biases, and they are free of privacy, copyright and license
issues. Regarding CNN pre-training, one of our proposed
datasets MandelbulbVAR-1k outperformed existing FDSL
datasets and approached the most ImageNet-1k when tar-
get tasks were supervised classifications (at least 1% higher
in average accuracy than existing FDSL datasets) and
anomaly detection (for instance only 1.9% lower image-
level AUROC than ImageNet pre-training). Regarding ViT
pre-training, compared to existing FDSL datasets, another
dataset that we proposed and named MandelbulbVAR-
Hybrid-21k performed the second-best when considering
both ImageNet-1k fine-tuning and average performance
over CIFAR-10/100, Flowers and IN100. Notably, ViT-
B pre-trained on our dataset recorded 82.2% accuracy on
ImageNet-1k, which was 0.4% higher than pre-training on
ImageNet-21k and only 0.1% lower than pre-training on the
best-performing existing FDSL dataset.
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