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Abstract

We introduce a novel approach to single image denoising
based on the Blind Spot Denoising principle, which we call
MAsked and SHuffled Blind Spot Denoising (MASH). We
focus on the case of correlated noise, which often plagues
real images. MASH is the result of a careful analysis to
determine the relationships between the level of blindness
(masking) of the input and the (unknown) noise correlation.
Moreover, we introduce a shuffling technique to weaken the
local correlation of noise, which in turn yields an addi-
tional denoising performance improvement. We evaluate
MASH via extensive experiments on real-world noisy image
datasets. We demonstrate state-of-the-art results compared
to existing self-supervised denoising methods. Website:
https://hamadichihaoui.github.io/mash.

1. Introduction
The removal of noise from real images, i.e., image denois-
ing, is a fundamental and still open problem in image pro-
cessing despite having a long history of dedicated research
(see [9] for an overview of the classic and recent methods).
In classic methods, the primary strategies involve manually
designing image priors and optimization techniques to en-
hance both reconstruction accuracy and speed. In contrast,
in the context of deep learning methods, neural networks
naturally introduce a very powerful prior for images [24]
and provide models that could perform denoising efficiently
at inference time. These innate capabilities of neural net-
works opened the doors to a wide range of methods that
could not only learn to denoise image from examples of
noisy and clean image pairs, but, even more remarkably,
directly from single noisy images [12, 15, 25, 26].

In this work, we push the limits of these advanced meth-
ods one step further. We focus on the family of methods
called Blind Spot Denoising (BSD)[15], since it provides a
powerful and general framework. Moreover, we consider
the case where only a single image is used for denoising
(i.e., we do not rely on a supporting dataset). As also ob-

served by Wang et al [25], training on a dataset may not
generalize well on new data, where the noise distribution is
unknown. This is particularly true for real images, where
noise is often correlated. In these settings, most modern
methods find it challenging to handle non-iid data.

In our work, similar to the approach in [21], we explore
the more general setting of random masking beyond the sin-
gle blind spot method introduced in [15]. In our analysis,
we uncover valuable connections between the performance
of Blind Spot Denoising (BSD) methods trained with vari-
ous input masking techniques and the degree of noise cor-
relation. Surprisingly, we observe that models trained with
a higher masking ratio tend to perform better when dealing
with highly correlated noise, whereas models trained with a
lower masking ratio excel in denoising tasks with iid noise.
This discovery offers two key contributions: 1) it provides a
method to estimate the unknown level of noise correlation,
and 2) it offers a strategy for achieving enhanced denoising
performance. Furthermore, our analysis reveals that noise
correlation significantly hampers the denoising capabilities
of BSD models. This suggests that a more radical approach
would be to directly eliminate the correlation in the input
data. An intuitive method to achieve this would involve
randomly permuting all pixels that correspond to the same
clean-image color intensity. However, this presents a classic
chicken and egg dilemma, as we would typically need the
clean image to perform the permutation, yet the clean im-
age is precisely what we are trying to restore. To tackle this
challenge, we utilize an intermediate denoised image as a
pseudo-clean image to define the permutation set. Further-
more, given that adjacent pixels are likely to have similar
color intensities, we focus on shuffling only pixels within
small neighborhoods. We incorporate these insights into a
novel method called MAsked and SHuffled Blind Spot De-
noising (MASH), which we elaborate on further in Sec. 3.
Our contributions are summarized as follows

• We provide an analysis of BSD, showcasing the impact of
various masking ratios on correlated noise and presenting
a method for estimating the noise correlation level;

• We introduce MASH, an enhanced version of BSD that
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dynamically selects the optimal masking ratio. We also
introduce the local pixel shuffling technique to address
noise correlation at its source;

• MASH demonstrates marked enhancements over the
baseline BSD and attains on par or better results in real-
world denoising across multiple datasets.

2. Related Work
In this section, we only focus on work that is closely related
to unsupervised image denoising.
Non-learning-based image denoisers. Classic image de-
noisers [4, 22, 27] manually define image priors of what a
clean image is. Some approaches explore sparse represen-
tations [2, 7], while others benefit from the patch recurrence
prior [32]. BM3D [6], which applies collaborative filtering
to similar patches, is one of the best-known non-local meth-
ods, due to its high performance across several benchmarks.
NLM [3] and WNNM [10] also relate similar patches and
use them to reduce noise through a form of implicit averag-
ing.
Unsupervised learning-based image denoisers. The un-
supervised learning-based approaches can be classified into
two categories based on their training data. The first cate-
gory is the dataset-based one, which uses a dataset of noisy
images to train a denoising model. The second category is
the single-image one, which learns a denoiser from a single
image at a time.
1) Dataset-based learning approaches.
Noise2Noise [17] shows that it is possible to train a denois-
ing neural network without the need for clean images. In-
deed, using only pairs of noisy images of the same scene
as input/output training data leads to a comparable perfor-
mance of standard noisy/clean image pair supervised train-
ing. Some approaches [12, 15, 25, 26] go one step further
and remove the need for noisy image pairs altogether. The
main contributions in these approaches are ways to avoid
learning the trivial solution of the identity mapping. Re-
cently, [31] proposed the use of pixel-shuffle downsampling
(PD) to weaken the spatial correlation of structured noise.
In a similar vein, AP-BSN [16] utilized two PDs with differ-
ent strides for training and testing. CVF-SID [20] attempted
to separate the latent image and noise from the noisy input
through a cyclic module and self-supervised losses. LUD-
VAE [30] established two hidden variables for the noise do-
main and the latent image domain and optimize for them
using unpaired data. [13, 14] explicitly learned a model for
real-world noise. These methods rely on noisy or unpaired
data, and generalization issues persist.
2) Test-time training approaches.
A learning-based image denoising approach without any a-
priori dependence on training samples is the least demand-
ing option to denoise a given noisy image. There are a
few methods that use a single noisy image to train a deep

neural network for denoising. The DIP [24] shows that the
inductive bias of convolutional neural networks (CNN) fa-
vors the learning of noise-free texture patterns rather than
noisy ones, when trying to reconstruct a degraded image.
The method trains a CNN to generate a given degraded im-
age from a random input, while early stopping is used as
a regularization. DIP is highly sensitive to the choice of
the stopping time and thus is not practical as a denoising
method. ScoreDVI [5] recently proposes a method for de-
noising a single image by exploiting score priors embedded
in MMSE. [29] addresses the complexity of real noise by
mapping the noisy image into a latent space in which the
additive white Gaussian noise (AWGN) assumption holds.
An encoder-decoder is used for the mapping and an off-
the-shelf Gaussian denoiser is used to denoise the encoded
image. Finally the image is decoded back to the original
space. [21] is a self-supervised approach that use pairs of
Bernoulli-sampled instances of the input noisy image to
train a denoiser with dropout. The denoiser predicts the
masked pixels based on the visible ones. The final denoised
image is the average of the predictions generated from mul-
tiple instances of the trained model with dropout.

MASH belongs to the category of BSD methods applied
to a single noisy image. However, in contrast to the above
methods, it uses an optimal masking ratio that is automati-
cally estimated and introduced the technique of local pixel
shuffling. To the best of our knowledge, these contributions
have not been presented before.

3. Unsupervised Single Image Denoising
In this section, we begin by revisiting the concept of BSD
as introduced in a prior work by Krull et al. [15]. Subse-
quently, we conduct experimental analyses to delve deeper
into understanding the effects of various design factors in
the BSD method on its performance. For this purpose, we
generate a synthetic noisy dataset with noise ranging from
independent and identically distributed (iid) to highly cor-
related, using which we train a base blind spot network
with differing levels of ”blindness” (i.e., image masking ra-
tios). These empirical observations lead us to create a novel
self-supervised blind-spot framework for unsupervised sin-
gle image denoising, referred to as MAsked and SHuffled
Blind Spot Denoising (MASH), which achieves state-of-
the-art performance.

3.1. Revisiting Blind Spot Denoising (BSD)

BSD operates as a self-supervised technique, meaning that
its training process does not necessitate pairs of noisy im-
ages or pairs of noisy and clean images. Instead, only
noisy images are employed. The method applies a mask-
ing scheme that hides part of the image at the input and
then aims to predict the same hidden part at the output. In
this paper, we apply this idea to a single image at a time.
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(a) β = 0 (b) β = 0.5 (c) β = 1

Figure 1. Samples of generated noisy images depending on the
spatial correlation level. From left to right: noisy image with iid
noise, noisy image with moderately correlated noise and noisy im-
age with heavily correlated noise

Formally, considering the noisy observation y ∈ RH×W×C

corresponding to the clean image x ∈ RH×W×C , where
H × W represents the image dimensions and C denotes
the color channels (usually 1 for grayscale or 3 for RGB),
the objective of BSD is to minimize the following empirical
risk:

argmin
θ

∑
i∈Ω

∥fθ(ymasked(i))[i]− y[i]∥22 (1)

In Eq. (1), fθ : RH×W×C → RH×W×C represents the
denoising model realized through neural networks with pa-
rameters θ, which transforms noisy images into denoised
versions. Here, ymasked(i) denotes the image y where the
pixel i ∈ Ω (Ω = [1, . . . ,H] × [1, . . . ,W ]), has been
masked. Additionally, y[i] refers to the RGB color at the
pixel i. Notice that the above formulation is used for a sin-
gle image y. It is also possible to extend it to a dataset
of images simply by taking the expectation of the above
loss with respect to the distribution of y. However, as al-
ready mentioned, in this paper we only consider denoising
a single image without additional data. In our terminology,
we also refer to signal when talking about the clean image.
BSD assumes that noise at each pixel is statistically inde-
pendent of its neighbors (thus a noise instance cannot be
predicted by nearby noise), while a pixel of the signal (i.e.,
the clean image) is spatially correlated to its neighboring
pixels. These assumptions are key in enabling the separa-
tion of noise from signal. More in general, the BSD method
can also be seen as an extreme case of masking or sparse
image reconstruction/inpainting such as MAE [11], where
the masking consists of a single pixel. In practice, the BSD
method avoids trivial solutions, such as the identity map-
ping (simply reconstructing the noisy image), only as long
as fθ does not overfit the data. This is particularly important
in the context of single image denoising, where the training
dataset is limited in size. Therefore, considering that the
degree of masking may have a regularizing effect on fθ, we
investigate the influence of this design choice on single im-
age denoising.

3.2. Diving Deep into Blind Spot Denoising

In this section, our goal is to empirically evaluate the perfor-
mance of the BSD method by examining the effects of two
key factors: 1) the masking ratio used in the BSD method
and 2) the characteristics of the noise (specifically, its level
of spatial correlation). To conduct this analysis, we gener-
ate a denoising dataset synthetically using images from the
Kodak dataset [8]. We model the noise using a multivariate
normal distribution with a variance-covariance matrix Σ to
simulate real-world correlated noise. The correlation Σ[i, j]
between pixels i and j in the set Ω is defined as follows:

Σ[i, j] =


σ2 i = j

β k−∥i−j∥
k σ2 0 < ∥i− j∥≤ k

0 otherwise
(2)

where ∥i− j∥ is the distance between the pixels i and j and
k > 0 denotes the correlation kernel width. The parameter
β > 0 is used to control the level of spatial correlation in
the noise. A higher value of β indicates stronger correlation
in the noise. We define three distinct regimes based on the
noise correlation: 1) The iid regime, where β = 0, and
the noise is independent and identically distributed (iid); 2)
The moderately correlated regime, where β = 0.5; 3) The
heavily correlated regime, where β = 1.0; We set k = 3
and σ = 25. An extension to this analysis, considering
lower noise levels (σ = 15) and higher noise levels (σ =
40), is provided in the supplementary material due to space
constraints. In this extension, we draw similar conclusions
to those obtained for σ = 25. Fig. 1 illustrates an example
of an image with synthetically generated noise for each of
the defined regimes.

We define the blindness mask m : Ω 7→ {0, 1}H×W×C ,
where Ω represents the set of pixels in our noisy image y.

m[i] =

{
0 with probability τ ;

1 with probability 1− τ .
(3)

m is of the same size as the input images and is determined
by a masking ratio parameter τ . The masking ratio τ repre-
sents the proportion of zeros in the mask m, calculated as
the number of zeros divided by the total number of pixels in
the image (HWC). We adopt a similar BSD formulation as
[21] with the blindness mask via the following loss

L(θ) = Em

[
∥(1−m)⊙ (fθ(y ⊙m)− y)∥22

]
(4)

where Em denotes the expectation with respect to the mask
m and ⊙ denotes the element-wise product.

3.2.1 Impact of the masking ratio on BSD performance

We investigate the impact of the masking ratio τ on the
denoising performance depending on the correlation mag-
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Figure 2. Impact of the masking ratio τ on the generalized BSD
denoising performance (PSNR). On the horizontal axis we con-
sider several masking ratios τ and for each we train a BSD model
on data with different levels of correlation β. The optimal per-
formance of the trained model shows a strong correlation between
the masking ratio an the noise correlation. Low masking benefits
the training on data with iid noise and high masking benefits the
training on data with highly correlated noise.

nitude controlled by β. We train a denoising network by
minimizing the loss (4) with different masking levels in the
three noise regimes (i.e., with different correlation magni-
tudes β). The results are shown in Fig. 2. We plot the Peak
Signal-to-Noise Ratio (PSNR) values in decibels across the
three regimes for various masking configurations (displayed
on the x-axis). We notice that the effectiveness of our gen-
eralized BSD is greatly influenced by: 1) the correlation of
the noise, and 2) the masking ratio. Specifically, in the case
of independent and identically distributed (iid) noise, we
discovered that a lower masking ratio results in the best per-
formance. Conversely, in scenarios where the noise exhibits
high correlation, a higher masking ratio produces superior
performance. In situations of moderate correlation, an inter-
mediate masking ratio (ranging from 0.3 to 0.5) is deemed
optimal. As observed in the analysis of DIP [24] a neural
network model, such as fθ, tends to first fit clean image pat-
terns and then noise patterns. In scenarios of high spatial
noise correlation, the noise tends to exhibit patterns resem-
bling textures present in clean images (refer to the rightmost
image in Fig. 1). Consequently, in cases of increased noise
correlation, the efficacy of BSD could potentially improve
with greater regularization, i.e., a higher masking ratio τ .

3.2.2 Handling correlation with local pixel shuffling

By comparing the top performances of BSD under each
noise regime in Fig. 2, we can readily observe a signifi-
cant decrease in performance in the highly correlated noise

Figure 3. Impact of the local pixel shuffling on the denoising
performance (PSNR) when noise is highly correlated. The shuf-
fling of image regions that are approximately constant destroys the
noise correlation. This brings a consistent benefit across all mask-
ing ratios.

scenario compared to the iid case, despite both scenarios
having the same noise level. This observation prompts the
consideration of another strategy to enhance performance
in the presence of correlated noise. The idea is to reduce
noise correlation without altering the underlying image sig-
nal. One intuitive approach is to identify sets of noisy pix-
els corresponding to identical colors in the clean image and
then randomly permute them. By doing so, we can dis-
rupt the spatial correlation of these pixels without affecting
the clean image structure. A practical method to implement
this concept is to utilize the predicted denoised image as a
pseudo-clean image. This pseudo-clean image can be lever-
aged to identify sets of iso-intensity pixels. Since neighbor-
ing pixels are more likely to share similar intensities, the
swapping process can be performed locally to maintain co-
herence in the image. To implement this idea, we first di-
vide the image into two categories of regions: regions with
nearly constant intensity and regions with texture. We de-
fine the image partition denoted as Ωconst as the set of pix-
els where the local neighborhoods, such as those defined by
4×4 pixel blocks, exhibit similar or identical color intensity
values. The remaining partition is categorized with texture
( significant variation in intensity patterns).

We define c(y) as the mapping that assigns a value of
1 to the pixels within the constant intensity regions (Ωconst)
of y and a value of 0 to all other pixels within the image
domain Ω. c(y) helps to differentiate between the constant
intensity regions and the textured regions within y. The il-
lustration in Fig. 4 provides a visual representation of this
partitioning concept. Let Γ(y) define the local random per-
mutation of pixels within s × s (e.g., s = 4) tiles of y. We
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note that the pixel shuffling is performed only within each
tile. We now define the shuffled noisy image yshuffled as:

yshuffled = c(y)⊙ Γ(y) + (1− c(y))⊙ y (5)

Then, the shuffled image can serve as the target for the BSD
loss in Eq. (4). We call this decorrelation technique Local
Pixel Shuffling (LPS). Now we are ready to define the loss
of MASH to further reduce the model overfitting caused by
highly correlated noise in the BSD approach:

L(θ) = Em

[
∥(1−m)⊙ (fθ(y ⊙m)− yshuffled)∥22

]
(6)

To determine the region Ωconst, we adopt a similar approach
to [18]. We utilize the intermediate pseudo-clean image out-
put ŷ, which we obtain from fθ (details in the following
sections) after a certain number of training iterations. An
intuitive indicator of the similarity of pixels within a tile is
their standard deviation σ : Ω 7→ [0,∞). Specifically, we
calculate the standard deviations within patches of the size
of the local tiles independently for each color channel and
then average them. Finally, we can derive the partition as
defined in Eq. (7), with the parameter λ > 0 serving as a
threshold for the color similarity.

Ωconst = {i : σ[i] < λ}, (7)

Fig. 3 shows that applying the local pixel shuffling im-
proves the denoising performance when the noise is spa-
tially highly correlated.

(a) (b) (c)

Figure 4. (a) Original noisy image (b) Mask capturing region flat-
ness derived from pseudo-clean prediction (c) Noisy image with
local pixel permutation on flat regions.

3.2.3 Automated selection of the BSD masking ratio

To make MASH of practical use, it is essential to have an
automated mechanism for determining the noise correlation
and, consequently, selecting the optimal masking ratio. To-
wards this goal, we analyze the estimated noise level pre-
dicted by our BSD method using different masking ratios.
We denote by σ̂τ the estimated noise level of the noisy im-
age y when using a masking scheme with a masking ratio
τ :

σ̂τ =

√
1

HWC
∥fθ(m⊙ y)− y∥22. (8)

Fig. 5 illustrates the estimated noise level σ̂τ during the de-
noising iterations, which is dependent on the estimated pa-
rameters θ, for varying correlation regimes and masking ra-
tios. To ensure a dependable indicator, we focus solely on
the noise level estimated at convergence and we define the
noise level estimation gap ε as the difference in noise levels
when utilizing a low masking ratio τ low and a high masking
ratio τ high:

ε = |σ̂τ high − σ̂τ low | (9)

We set τ low = 0.2 and τ high = 0.8. We experimentally
verify that ε is proportional to the level of correlation in the
noise. Therefore, we can use ε as a proxy for assessing the
degree of spatial noise correlation present in the input image
y.

3.3. MASH

As a conclusion of our prior experimental analysis, we pro-
pose to integrate the adaptive masking and local pixel shuf-
fling in the BSD approach. The pseudo-code of our method
(MASH) is described in Algorithm 1. We begin by training
a model fθ using two different masking ratios: a high one
(τ high) and a low one (τ low). Subsequently, we calculate the
noise level estimation gap ε as outlined in Eq. (9). Based on
the value of ε, we dynamically determine the masking ratio
τ to utilize, as well as whether to activate the local pixel
shuffling. Our automated selection of the optimal masking
ratio is depicted in Eq. (10).

τ optimal =


τ low if ε ≤ εlow;

τmedium if εlow < ε < εhigh;

τ high if εhigh < ε.

(10)

If ε ≤ εhigh, we do not apply the local pixel shuffling (in-
dicating low noise correlation) and directly optimize the
loss (4). If εhigh < ε (implying highly correlated noise), we
optimize the loss (4) for N1 iterations. Subsequently, we
determine the partition Ωconst. We then apply local random
permutation Γ within Ωconst and compute yshuffled. Finally,
we resume training using the loss (6). The recovered image
ŷ is an ensemble of K predictions. To get each prediction,
we sample a random binary mask mp with a masking ratio
τ optimal and apply it to the input image. We set K = 10.

ŷ =
1

K

K∑
p=1

fθ(mp ⊙ y). (11)

4. Experiments
In this section, we will first introduce the experimental set-
tings. We will then present the quantitative and qualitative
results of MASH, along with comparisons with other meth-
ods.
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β = 0.0 β = 0.5 β = 1.0

Figure 5. Estimated noise level based on different correlated noise magnitude and masking ratios.

Algorithm 1 MASH
Require: Noisy image y, fθ ,τ high, τmedium, τ low, εlow, εhigh, N and N1 < N
Ensure: Restored image ŷ
1: Apply the BSD baseline with τ high and τ low respectively.
2: Compute ε from eq. (9)

3:


if ε < εlow then τ optimal = τ low

if εlow ≤ ε < εhigh then τ optimal = τmedium

if εhigh ≤ ε then τ optimal = τ high

4: if ε < εhigh then
5: for t : 1 → N do
6: Update fθ by optimizing eq. (4) using τ optimal

7: end for
8: else
9: for t : 1 → N1 do
10: Update fθ by optimizing eq. (4) using τ optimal

11: end for
12: compute the partition Ωconst using eq. (7)
13: compute yshuffled using eq. (5)
14: for t : N1 → N do
15: Update fθ by optimizing eq. (6) using τ optimal

16: end for
17: end if
18: Return the restored image ŷ = 1

K

∑K
p=1 fθ(mp ⊙ y)

4.1. Experimental settings

Datasets We evaluated our method on four widely-used
real-world noise datasets: SIDD (validation and benchmark
datasets) [1], FMDD [28], and PolyU [19]. The validation
and benchmark datasets of SIDD contain natural sRGB im-
ages captured by smartphones, with each dataset consisting
of 1280 patches sized 3× 256× 256. FMDD contains fluo-
rescence microscopy images with a size of 512× 512. The
PolyU dataset consists of 100 natural images taken from di-
verse commercial camera brands, with each image having a
size of 3× 512× 512.
Implementation details The network architecture for
MASH is the same as in Noise2Noise [17]. The denoising
network is trained from scratch using the Adam optimizer
with cosine annealing. By default, we use the following hy-
perparameters in our implementation unless otherwise spec-
ified: τ high = 0.8, τ low = 0.2, τmedium = 0.5, εlow = 1.5,
εhigh = 2.5, s = 4 and N = 800. In our supplementary

Figure 6. Top: from left to right: original noisy image, Mask cap-
turing region flatness derived from pseudo-clean, Shuffled noisy
image (using LPS). Bottom: from left to right: Result using the
baseline (τ = 0.5), Result without local pixel shuffling , Ours.

material, we provide a more in-depth discussion on the se-
lection of hyperparameters.

4.2. Evaluation on real-world noise

In our evaluation, we compare our method against sev-
eral single image-based denoising methods, including
Self2Self [21], NN+denoiser [29], DIP [24], BM3D [6],
PD-denoising [31], NN+denoiser [29], scoreDVI [5], and
APBSN-single [16]. For APBSN-single, we adapt the
APBSN method from [16] to directly denoise a single im-
age. The strides of PD in training and testing are 5 and 2,
respectively. For NN+denoiser [29], we use its best ver-
sion, which is NN+BM3D for single image denoising. For
the other methods, we either use the authors’ code or di-
rectly adopt their published results if available. We also
include a comparison with a baseline method (denoted as
Baseline in Table) which is a blind spot method with the
same network architecture as our method but with a fixed
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Category Method SIDD Validation SIDD Benchmarck FMDD PolyU
BM3D [6] 25.65/0.475 25.65/0.685 30.06/0.771 37.40/0.953
DIP [24] 32.11/0.740 - 32.90/0.854 37.17/0.912

Single Image Self2Self [21] 29.46/0.595 29.51/0.651 30.76/0.695 37.52/0.926
(test-time training) PD-denoising [31] 33.97/0.820 33.61/0.894 33.01/0.856 37.04/0.940

NN+denoiser [29] - 33.18/0.895 32.21/0.831 37.66/0.956
APBSN-single [16] 30.90/0.818 30.71/0.869 28.43/0.804 29.61/0.897

ScoreDVI [5] 34.75/0.856 34.60/0.920 33.10/0.865 37.77/0.959
Baseline 33.12/0.805 32.67/0.850 32.25/0.824 37.12/0.911

Ours 35.06/0.851 34.78/0.900 33.71/0.882 37.62/0.932
Noisy/Impaired APBSN [16] - 36.91/0.931 31.99/0.836 37.03/0.951

Dataset CVF-SID [20] 34.81/0.944 34.71/0.917 32.73/0.843 35.86/0.937
LUD-VAE [30] 34.91/0.944 34.82/0.926 - 36.99/0.955

Supervised DnCNN [23] 37.73 / 0.943 37.61 / 0.941 - -

Table 1. Quantitative comparisons (PSNR(dB)/SSIM) of our method and other real-world denoising methods including single image-based
methods and dataset-based methods on SIDD, FMDD, PolyU datasets. The best results of the unsupervised approaches are marked in bold,
while the second best ones are underlined.

Noisy DIP Self2Self NN+denoiser Baseline Ours Ground-truth

26.64/0.546 25.78/0.579 28.35/0.646 28.13/0.663 31.79/0.812

29.67/0.908 28.79/0.854 30.68/0.921 30.13/0.918 32.05/0.937

Figure 7. Visual comparison of our method against other single image-based denoising methods in SIDD validation and FMDD datasets.
The PSNR/SSIM results are reported under each image.

masking ratio of τ = 0.5. Additionally, we compare against
dataset-based methods including CVF-SID [20], LUD-VAE
[30], and APBSN [16]. We also provide a reference com-
parison with the supervised DNCNN [23]. The quantitative
comparisons are summarized in Tab. 1. Qualitative com-
parisons among different single image-based methods on
SIDD and FMDD are displayed in Fig. 7. Additional vi-
sual comparisons are included in the supplementary mate-
rial. MASH shows a significant boost over the baseline,
with an improvement of about 2 dB for both SIDD datasets
and 1.5 dB for the FMDD dataset, highlighting the impor-
tance of our adaptive masking scheme and local pixel shuf-

fling. MASH yields competitive results compared to exist-
ing single image-based methods. Our method excels in the
FMDD dataset by outperforming both the single-image and
dataset-based methods, which encompass images with vary-
ing noise levels and correlations. Fig. 6 shows the output of
MASH on an image from the SIDD validation dataset. Uti-
lizing our adaptive masking scheme and pixel local shuf-
fling results in a significant improvement over the baseline.
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SIDD FMDD

Adaptive masking accuracy 88.7 % 92.4 %

Table 2. Adaptive masking accuracy on SIDD and FMDD
datasets.

Adaptive masking Local pixel shuffling SIDD FMDD

No No 33.12 32.25
No Yes 33.86 32.92
Yes No 34.45 33.56
Yes Yes 35.06 33.71

Table 3. Ablation of MASH components .

5. Ablations
We perform ablation studies to analyze the impact of each
component of our method.

5.1. Influence of Adaptive Masking

We evaluate the effectiveness of our adaptive masking
scheme. When the adaptive masking is not applied, we uti-
lize a default masking ratio of τ = 0.5. Tab. 3 demonstrates
that adaptive masking yields a notable performance en-
hancement for both the SIDD and FMDD datasets. We fur-
ther analyze the effects on each image individually by calcu-
lating the success rate of our adaptive masking scheme. To
do this, we denoise each image using the baseline with three
masking ratios: τ high = 0.8, τmedium = 0.5, and τ low = 0.2,
and we store the best result. Then, we denoise each im-
age using MASH. In Tab. 2, we show how many times our
algorithm succeeds in selecting the optimal masking ratio
that leads to the best performance. Our adaptive masking is
considered successful if it corresponds to the masking ratio
that results in optimal performance. Tab. 2 indicates that our
adaptive masking succeeds in selecting the optimal masking
ratio in approximately 90% of cases. Further analysis on the
robustness of MASH hyperparameters and showcasing of
failure cases can be found in our Supplementary materials.

5.2. Influence of Local Pixel Shuffling

We validate the significance of local pixel shuffling in our
method. As shown in Tab. 3, there is an improvement of ap-
proximately 0.7 dB for both the SIDD and FMDD datasets
when applying local pixel shuffling.

5.3. Influence of the neighberhood size s

Tab. 4 shows an ablation of the neighborhood size s con-
ducted on the SIDD valadition dataset. As s increases, the
performance improves then it starts to saturate. We note that
s is an hyperparameter related to the local pixels shuffling

s = 2 s = 3 s = 4 s = 5 s = 6

PSNR 34.65 34.85 35.06 35.15 35.09

Table 4. Ablation of the neighberhood size s on the SIDD valida-
tion dataset.

Method Infer. time (s) Params (M) FLOPs (G)

DIP 146.2 13.4 31.06
Self2Self 3546.5 1.0 9.55
NN+denoiser 897.6 13.4 31.06
APBSN-single 121.4 3.66 234.63
ScoreDVI 81.2 13.5 37.87
Baseline 24.6 0.99 11.44
Ours 75.3 0.99 11.44

Table 5. Efficiency comparisons of deep learning-based methods
under the input size 256 × 256 × 3.

which is applied only if a high spatial correlated noise is
detected.

5.4. Computational Efficiency

We provide an analysis of the inference time, model pa-
rameters and floating-point operations per second (FLOPs)
of the compared deep learning-based methods. According
to the results in Tab. 1 and Tab. 5, our method demon-
strates a balance between effectiveness and efficiency. It is
worth noting that there is room for speed enhancement with
MASH. For example, the initial training phase to determine
the optimal masking could be performed in parallel rather
than sequentially.

6. Conclusion

We have introduced MASH, a single image denoising
method that leverages the blind spot denoising framework.
Our approach includes an analysis to detect and alleviate
the impact of noise correlation. We demonstrated that the
masking ratio plays a critical role in denoising performance,
especially in the presence of correlated noise. Building on
this analysis, we proposed a method to automatically esti-
mate the level of noise correlation. Additionally, we intro-
duced a technique to directly de-correlate noise in the in-
put image by shuffling pixels with similar denoised color
intensities. As a result, our method, MASH, achieves state-
of-the-art results compared to existing test-time training ap-
proaches across various public benchmarks.
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