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Abstract

Object inpainting is a task that involves adding objects
to real images and seamlessly compositing them. With the
recent commercialization of products like Stable Diffusion
and Generative Fill, inserting objects into images by using
prompts has achieved impressive visual results. In this pa-
per, we propose a prompt suggestion model to simplify the
process of prompt input. When the user provides an im-
age and a mask, our model predicts suitable prompts based
on the partial contextual information in the masked image,
and the shape and location of the mask. Specifically, we in-
troduce a concept-diffusion in the CLIP space that predicts
CLIP-text embeddings from a masked image. These diffused
embeddings can be directly injected into open-source in-
painting models like Stable Diffusion and its variants. Al-
ternatively, they can be decoded into natural language for
use in other publicly available applications such as Gen-
erative Fill. Our prompt suggestion model demonstrates a
balanced accuracy and diversity, showing its capability to
be both contextually aware and creatively adaptive.

1. Introduction
In traditional background image inpainting [2], the pri-
mary goal is to fill in a masked region using the surround-
ing background context, thus removing any original ob-
jects in that region. These methods usually do not take
conditions like text prompts and typically do not introduce
new elements into the image. However, with the advent of
diffusion-based text-to-image models such as Stable Diffu-
sion [25, 32], DALLE2 [30], and Imagen [33], conditional
models have been trained to insert objects to images us-
ing explicit text prompts. This is known as text-guided in-
painting. These methods encode the input text prompt into
latent embeddings, which then guide the image diffusion
process through cross-attention. With an appropriately de-
signed text prompt, they can generate highly detailed results
seamlessly blended with the background. Their remarkable
generation capability gained widespread attention spanning
from academic circles to various industries.

Figure 1. We propose a context-aware prompt generator for text-
guided object inpainting task. We provide diverse prompt sugges-
tions by analyzing both the image context and the shape of the
mask as soon as users draw a mask on the image. Our generator
can be compatible with any text-guided inpainting tools.

Text-guided inpainting can be used for object inpaint-
ing, which is the task of adding one or more new objects
to an indicated region of an image [42, 47]. In existing
models, this requires users to provide explicit text prompts
to describe their envisioned concepts. This necessity leads
to a question: Can object insertion be achieved without
an explicit user text prompt? Object insertion without a
text prompt could be beneficial for inexperienced users who
might not know what the text-to-image system is capable of,
or it might help experienced users generate creative ideas,
or it may simply help save time in case a proposed object
matches what the user was imagining. However, in ex-
isting models, if the user provides an empty text prompt
or uses vague terms like “high quality,” the model tends
to default to sampling dominant contents from its heavily
skewed training dataset. For instance, applying a mask to
the sky in an image will more likely result in the model fill-
ing in with sky textures or clouds, rather than a beautiful
bird. One study [3] proposed to sample meaningful diver-
sity using an inference technique that diversifies the out-
puts by distancing their generation paths from each other.
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This approach enables the generation of random objects for
inpainting without the need for a text prompt. However,
it sacrifices the precision of prompt guidance, resulting in
generations that are less controllable by users.

In this paper, we investigate solutions to simplify the pro-
cess of coming up with prompts for object inpainting. Our
proposed Brush2Prompt, a contextual prompt generator, is
designed to automatically suggest diverse and meaningful
prompts as soon as the user places a mask on the image.
We investigate three different kinds of masks that range in
how precisely they indicate the shape of an object, includ-
ing bounding boxes, convex hulls, and tight masks. The
primary objectives of our model are centered on three key
aspects: context awareness, mask awareness, and diverse
generation. Context awareness means that the proposed
prompts should be plausible given the surrounding con-
text. Mask awareness refers to making the prompt match
the users’ intentions if the mask provides useful shape in-
formation. Finally, diverse generation is aimed at fostering
creativity by generating different object categories and at-
tributes.

To realize context awareness, we developed a multi-
modality masked-Image-to-Text (m-I2T) model operating
in the CLIP [28] space. This model takes in pretrained CLIP
image embeddings of a masked image, and samples appro-
priate CLIP-text embeddings to be used in the image gen-
erator. In order to make our model seamlessly compatible
with general text-guided inpainting models, we also trained
a text decoder. It translates the embeddings into prompts
in natural language form. Additionally, it offers users the
flexibility to manually modify these prompts or to utilize an
auxiliary auto-completion feature for further ease of use.

To attain mask awareness, we implemented a mask shape
augmentation strategy during the training phase. This ap-
proach was based on our observation that the shape of a
mask can convey significant conceptual information, re-
flecting the user’s intentions. For example, a mask shaped
like a car should encourage the model to focus on car-
related concepts. Alternatively, a simple bounding box
shape should allow a more flexible and creative concept
suggestion. The process of generating suggested prompts
in our model is stochastic, which facilitates generation of
diverse object categories and attributes. To summarize, our
contributions of this work are:

• We propose a contextual-aware prompt generator de-
signed for object insertion in image inpainting tasks. It is
trained to sample text embeddings given masked images.
We employ mask shape augmentation during training to
align users’ intentions with mask shapes. A prompt de-
coder is also developed to convert the embedding to natu-
ral language prompts. The model is seamlessly compati-
ble with generic text-guided inpainting models, making it
a versatile plug-and-play tool.

• We investigate the influential factors of the prompt gen-
eration quality: image context and mask shape. Our find-
ings reveal that the accuracy and diversity of the gener-
ated results can vary based on different configurations of
the inputs and models.

• To evaluate the accuracy and diversity of the generated
prompts, we curate and organize the first benchmark
dataset Brush2PromptBench. This dataset provides a
comprehensive baseline for evaluating the performance
of contextual and mask-aware prompt generation in ob-
ject inpainting.

2. Related work
Diffusion Models. Diffusion models [7, 31, 37] drastically
improved the quality of generated images compared to more
traditional generative models such as GANs. These mod-
els work by learning to reverse an iterative noising process,
where random Gaussian noise is added to the original im-
age. As a result, during inference, the trained model can
then progressively perform denoising on a randomly sam-
pled Gaussian map and generate images close to the trained
data distribution. Following the success of unconditional
diffusion models, numerous extensions have been made to
enable various use cases. For example, by conditioning the
denoising process on encoded text inputs from pretrained
vision-language models such as CLIP [28], diffusion mod-
els [29, 31, 34] can be used to generate images that corre-
spond to the text description from the user, leading to very
impressive results. Furthermore, an additional mask condi-
tion can be imposed onto these text-to-image models, where
the model is trained to only generate the prompted concept
within the masked region. This leads to various text-guided
inpainting models [1, 23, 42] that enables even finer control
for image generation. Alternatively, [44] proposed to use a
reference image instead of a text prompt for more precise
style and structure control in the generation process.
Image-to-Text Models. Different from these text-to-image
models, researchers also focused on predicting text given an
image condition. One such popular task is image caption-
ing, where the goal of the model is to generate an accurate
description of objects or the scenery in an image. These
models usually consist of an image encoder for feature ex-
traction, and a text generator in the form of RNNs [8, 9, 21],
attention-based networks [20, 43, 49], and eventually trans-
formers [11, 12, 14, 41]. More recent approaches directly
leverage pretrained vision-language models to extract rich
image features, and either train a transformer or fine-tune
language models [15, 22, 39, 40] to generate captions. Note
that image captioning is fundamentally different from our
task, since they focus on describing the scene or subjects in
the image, while our task focuses on suggesting reasonable
new concepts given a masked image context.
Object Inpainting. Object inpainting [38, 42, 47] shares
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Figure 2. Given an image and mask, we first encode the the global and local crop of the masked image using frozen CLIP image encoder.
Then we train the m-I2T diffusion prior network Fθ (CatDiff for category label generation, and CapDiff for caption generation) to generate
diverse results aligned with the possible concepts within the masked regions. We further train the embedding classifier or text decoder to
translate the embeddings into text prompts. Both the generated embeddings or text can be applied to text-guided image inpainting models.

a similar objective with background inpainting, where the
model attempts to fill in missing regions of an image. How-
ever, instead of drawing background pixels, object inpaint-
ing aims to restore either partially [46] or completely miss-
ing [26] objects based on the surrounding context. As op-
posed to generating objects purely from the input photo-
graph, diffusion models have also been used to compos-
ite and harmonize objects extracted from real photos [38]:
this is a different problem than we address. Some meth-
ods [26, 35] also attempt to construct a scene-graph based
on unmasked objects to establish stronger scene correla-
tion for more accurate object prediction, they evaluate their
models based on the accuracy of the predicted object to be
restored. However, we find that object inpainting, especially
in the context of whole-object insertion, is inherently am-
biguous, and as a result cannot be properly evaluated with
accuracy alone. For example, given a background image
of a table and a circular mask, one cannot judge whether
the masked object is a coin or an orange. Therefore, we
propose to reformulate the problem as a generative problem
and encourage creativity of the concept to be generated.

3. Methodology
3.1. Preliminary: Diffusion Models

We follow the same diffusion model formulation as
Xie et al. [42]. The diffusion process involves a data sam-
ple z0 (e.g. image, text, or embedding), and an iterative
noising/denoising step. In the forward Markov diffusion
process t ∈ [1..T ], z0 is progressively corrupted into zT
by adding noise with a controlled variance q(zt|zt−1) =
N (

√
1− βtzt, βtI), and it gradually approaches a Gaus-

sian N (0, I). At the same time, zt can be computed by
zt =

√
ᾱtz0 +

√
1− ᾱtϵ, where ᾱt =

∏t
i=1(1 − βi), ϵ ∈

N (0, I). In the backward diffusion process, a model can be
trained to either estimate the added noise at each step ϵt or
directly predict the unnoised sample z0. During inference,
additional samplers [19, 36] can be used to speed up the
reverse process.

3.2. Problem Definition

Given an image I and a mask M , our goal is to generate
K text prompts Tk,k∈{1..K} that describe reasonable con-
cepts to be inserted into the image in the masked region.
Previous works [26, 35] defined this problem as a determin-
istic process, and only predicted a single object category.
In our work, we reformulate this problem as a stochastic
caption generation process. The generated text allows us
to leverage powerful pretrained inpainting models for their
image generation capability, and at the same time add user
interaction in the process by allowing users to modify the
predicted descriptions and refine the output image to their
desire. Our pipeline design is similar to image-to-text diffu-
sion methods [45], but our goal is to generate novel object
descriptions rather than describing existing image context.

3.3. Masked-Image-to-Text (m-I2T) Diffusion Prior

We show our overall pipeline in Figure 2. Given a training
sample in a 3-tuple (Image I , Object mask M , Object de-
scription T ), we first create a masked image IM = I ⊙M .
We then use a frozen CLIP-image encoder to extract visual
features from IM . Here, we do not take the <cls> token
from CLIP-image embeddings, but instead use the 256-D
patch embeddings to preserve spatial and local context in-
formation. The obtained masked-image embedding eIM
(we use eM as a shorthand from now on) is used as input
condition for the diffusion prior network Fθ.

Inspired by DALLE-2 [29], where they train a diffusion
prior network to translate input text embeddings into im-
age embeddings for better alignment in the image space,
here we take the opposite direction, and train a diffusion
prior that learns to translate the masked-image embeddings
eM into CLIP-text embeddings eT . The generated embed-
dings should encode a description of the potential object
candidate for object insertion. By leveraging the generative
power of the diffusion prior, we can obtain a diverse set of
object descriptions for each image. Since the objective of
the model is to predict CLIP-text embeddings, it is natu-
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rally compatible with all text-guided inpainting models that
use CLIP as the prompt encoder, such as Stable Diffusion-
v1 [31] and Smartbrush [42]. Next, we describe how to
decode the text embeddings into either simple shorter cate-
gory labels or longer captions for evaluation.
Category Diffusion and Decoding (CatDiff). In our ap-
proach, where the diffusion prior network generates text
prompts within the embedding space, it is essential to find a
method to decode these prompts into natural language for-
mat which can be evaluated independently of any specific
text-to-image model. To simplify this process, we initially
reframe the task as a category generation problem. In this
scenario, the model is trained specifically to diffuse embed-
dings related to object categories. Following this, the de-
coder functions as a straightforward category label classi-
fier. Its role is to predict class labels from the generated
embeddings. We found that the classifier can be trained to
exhibit high accuracy, so we can leverage this classifier as a
reference model to evaluate the diffusion prior network.

To train the diffusion prior network for category genera-
tion, we can simply encode the class label as text using the
CLIP-text encoder. Following [28], we use the prompt tem-
plate “A photo of a <category>”. We define the encoded
category embedding as xc

0, where c stands for “category”,
and add noise at each step to generate a noised embedding
xc
t =

√
ᾱtx

c
0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I). The prior network

θ then estimates xc
0 conditioned on the noised embedding,

timestep and masked-image embedding. We use MSE to
compute the loss for the prior network:

Lcategory = E
[
||xc

0 − Fθ(x
c
t , t, eM )||22

]
(1)

We then train the classifier to predict object categories
conditioned on text embeddings. We use a single trans-
former block with 2 attention heads and 64 hidden dimen-
sions for the classifier, and a linear layer to map to the
categories. During training, the classifier takes in ground
truth text embeddings of the masked object, and predicts its
category. To train both modules, we can use popular ob-
ject segmentation datasets such as COCO [17] and Open-
Images [10]. The human-labelled segmentation mask and
ground truth label pairs are accurate enough for training and
evaluation.

Caption Diffusion and Decoding (CapDiff). To further
improve the diversity of the results and make the model
more practical in real user cases, we extend the work to dif-
fusion for the caption and translate the embeddings using
text decoders. The diffusion prior network can be trained
in a similar way as category diffusion, where we simply re-
place category labels with longer descriptive local captions:

Lcaption = E
[
||xd

0 − Fθ(x
d
t , t, eM )||22

]
, (2)

where d stands for “description”.
Decoding the caption embeddings is more complicated

than embedding classification. In our experiments, we find
that directly predicting text tokens from each CLIP-text em-
bedding leads to poor quality text outputs. As a result, we
opt to instead finetune a pretrained text decoder to translate
the embeddings into a caption.

Specifically, we finetune a pretrained GPT-2 [27] text de-
coder that takes in the generated clip-text embedding as pre-
fix. The model is then trained to predict a caption which
conveys the object encoded in the embeddings. Similar to
the category diffusion set up, we train the text decoder using
the ground truth caption and the corresponding CLIP-text
embeddings. During inference, we can then feed the gener-
ated text embedding from the diffusion prior and obtain the
corresponding generated caption. Following [22], we train
the text decoder using cross entropy loss, where the model
tries to predict the next text token given the CLIP-text em-
bedding as prefix and previous text tokens. The objective of
text decoder is:

max
ϕ

L∑
i=1

log pϕ(wi|xd
0, w0, w1, ..., wi−1), (3)

where ϕ is the text decoder parameters, L is the token
length of the sentence, and wi, i ∈ [1..L] are the text tokens
of the caption.

3.4. Context and Diversity

Context Control via Global-Local Image Conditions In
our experiments, we found that the size of the mask relative
to the image can also impact the final concept generation
quality. If we use the entire global image as input and the
masked area is too small or off-centered, the model tends
to ignore the mask shape and region, and instead generates
concepts related to the global context or other objects in the
image. On the other hand, if we crop tightly around the
hole regions, the input of the model will lack in global con-
text and generate some concepts irrelevant to the original
image. Therefore, we propose to use both the global and
local CLIP image embedding by concatenating them as the
inputs to our diffusion model. This approach achieves the
balance between global context and shape precision, yield-
ing overall better accuracy and diversity.

Diversity Control via Mask Shape Augmentation The
shape of the input mask can sometimes provide strong hints
to certain object categories. For example, a mask that
closely resembles an object category (e.g. elephant) should
provide a stronger constraint on the output variety of the
model, while a simple bounding box should allow for higher
diversity. To enable control of the concept diversity, we
randomly augment the shape of the mask during training.
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Specifically, for each training sample, we randomly aug-
ment the mask into one of four shapes, which are the orig-
inal tight mask for precise control, a dilated mask for ap-
proximate control, a dilated convex hull for loose hints, and
a bounding box for maximum diversity. We then separately
evaluate them to study the impact of the mask shape towards
concept diversity.

4. Experiments

4.1. Implementation Details

Datasets. As mentioned in Section 3, we use the COCO
instance segmentation dataset [17] for classification and
a subset of the OpenImages [10] dataset for both classi-
fication and caption generation. COCO contains around
118K/5K training/validation images and 80 categories with
instance segmentation masks. Our collected OpenImages
subset contains around 935K/13.4K training/testing images,
where all images selected are larger then 512× 512. Train-
ing the diffusion prior network for object caption generation
requires local captions that describe the masked object. We
follow [42] and use BLIP [13] to obtain local object cap-
tions from the OpenImages dataset. Since the local captions
are not always accurate, we additionally apply a strict filter
that removes all object masks where the caption does not
contain the label category. The resulting mask-caption pair
then allows us to train and evaluate the models. We have
named our testing partition Brush2PromptBench and plan
to release this test set to the research community.
Model Details. We use a transformer-based architecture for
the prior network. The transformer has 12 attention blocks,
each with 12 attention heads and 128 hidden dimensions.
Both input and output embeddings have a dimension of 768,
which is the same as CLIP and can therefore be directly in-
jected into text-guided inpainting models with CLIP embed-
dings as the text inputs. Similar to [29], we train the model
to directly predict the noise-free embedding. For sampling
at inference time, we use 10 and 50 iterations with DDIM
sampler [37] for CatDiff and CapDiff respectively. Both
CatDiff and CapDiff models, including the respective de-
coders, are trained for 20K iterations with an effective batch
size of 1024 and a learning rate of 10−4. We train the diffu-
sion prior and the decoders separately.

During training, we randomly crop 512 × 512 patches
from each image, then select a random instance mask within
the cropped region. We use the 512×512 region to calculate
the global CLIP embedding and then center crop around the
masked region with 1.5× expansion (e.g. if mask has a size
of 100× 100, we center crop 150× 150 and resize to 512×
512) around the hole to form the local CLIP embedding.
To avoid masks that are too small or too large, such that
the context is either unrelated or completely lost, we further
filter masks that are smaller than 1% or larger than 50%

of the image area. During testing, center crop is used to
obtain 512 × 512 images. Unless otherwise specified, the
first instance in each image by index is used for evaluation.
Baselines. As far as we are aware, our diverse prompt rec-
ommendation pipeline is novel in this field, distinct from
prior research works. Some related studies like [26, 35]
were conducted under more constrained conditions. For
instance, they might focus on a limited subset of class
categories and images, and their evaluations are primar-
ily centered on classification accuracy without considering
the diversity of concepts. Therefore, we compare our task-
specific model with recent generic visual-language instruc-
tion tuning models, including BLIP-VQA [13] 1, Instruct-
BLIP [4] 2 and LLaVA [18] 3. We treat these multi-modal
instruction models as generic language agents that are both
aware of image context and have high domain-diversity,
thus they are the most suitable candidates to compare with
in this novel task compared to models trained on limited do-
mains, such as image captioning models. Prompting these
models can be tricky, as it requires careful adjustment of
the questions to achieve the desired results. For instance,
we might pose a question such as “Write one text prompt
that describes reasonable objects to be inserted in the gray
area.” This approach is used to guide LLaVA to either return
one prompt each time, a method we refer to as LLaVA-
Resample, or to respond with five prompts at once, which
we call LLaVA-5-Prompt, aligning more closely with our
experiments. Detailed explanations and methodologies re-
lated to these prompting strategies are available in the sup-
plementary material.
Metrics. For CatDiff experiments, we use K-1 and K-5
classification accuracy to measure context awareness. K-
n means we sample n predictions and see whether one of
them match with the ground truth category of the masked
region. For generation diversity, we propose to use K-50
entropy, which means we sample 50 predictions, and com-
pute the average entropy of the predicted class probabili-
ties. For CapDiff, we follow [6] and report BLEU [24],
ROUGE [16], BERTScore [48] of the generated sentences
to evaluation context awareness. We also report Dist-1 [6],
Self-BLEU [50] and Div-4 [5] to evaluate caption diver-
sity. For each image, we sample five captions for evalua-
tion. The evaluation is also conducted on different levels of
mask coarseness to validate mask awareness.

4.2. Quantitative and Qualitative Results

CatDiff Results. The class category prediction results for
our model on the COCO and OpenImages datasets are pre-
sented in Figure 3. We evaluated the model using three dif-
ferent mask types: tight mask, convex hull, and bounding

1https://github.com/salesforce/LAVIS#visual-question-answering-vqa
2https://huggingface.co/docs/transformers/model doc/instructblip
3https://github.com/haotian-liu/LLaVA
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Figure 3. Classification results on COCO and OpenImages. Our
diffusion prior network CatDiff has significantly higher diversity
compared to a deterministic network, and achieves similar accu-
racy when sampled for 5 times. As expected, the diversity of cat-
egory generation increases as we relax the mask shape constraint.

box. Our findings indicate a decrease in prediction accuracy
as the mask becomes coarser. However, the entropy, which
represents the diversity of the results, increases with coarser
masks. This trend can be attributed to the fact that larger
masks reduce the amount of contextual information avail-
able from the image, as well as the conceptual information
provided by the shape of the mask. As a result, when the
mask is enlarged, the CatDiff model compensates by gen-
erating a broader range of diverse results. This balance be-
tween accuracy and diversity is a key aspect of our model’s
performance, demonstrating its adaptability to varying lev-
els of contextual and conceptual input.
CapDiff Results. In Table 1 and Figure 4, we present a
comparison of our model with open-sourced generic visual-
language models. It is important to note that prompting
these models in various ways can yield different outcomes,
and fine-tuning the questions to achieve optimal results can
be challenging. Under our specific testing settings and the
questions we formulated, baseline models—which are typ-
ically trained for general visual-language tasks—tend to
score lower on our benchmark dataset. This lower per-
formance could be attributed to their training, which fo-
cuses on extracting information from complete image con-
texts and describing existing objects, rather than under-
standing partial images tailored to our specific task. This
highlights both the uniqueness and the challenges inher-
ent in our proposed task. In contrast to these baselines,
our model demonstrates superior performance, achieving
higher scores in BLEU, ROUGE, and BERTScore metrics.
These results suggest that the captions generated by our
model are more closely aligned with the original masked

objects. This alignment indicates that our method is more
likely to meet users’ intentions. Meanwhile, our model’s
performance in metrics that measure sentence-level diver-
sity is either higher or comparable to the baselines. This is
a significant observation, as it underscores our model’s abil-
ity to generate a variety of different sentence structures and
ideas. However, the word diversity in our model’s outputs
(i.e. Dist-1) is not at an optimal level. This limitation could
be attributed to the size of our training dataset. Currently,
our dataset might not provide a sufficiently wide range of
vocabulary and concepts to enhance word-level diversity.
This could be improved by expanding the training prompts.
We also demonstrate the full pipeline results in Figure 5.

4.3. Ablation Studies

Diffusion Prior We assert that incorporating a diffusion
prior into our prompt suggestion pipeline, which includes
both CatDiff and CapDiff models, significantly enhances
the diversity of prompt suggestions for the masked area in
an image, particularly when the context image is processed
through a CLIP-image embedding of the masked image. To
validate this hypothesis, we conducted an ablation study by
omitting the diffusion prior from the process.

For category prediction, we trained a deterministic trans-
former that shares the same architecture as the prior network
to predict category embeddings without diffusion steps. For
caption prediction, we finetuned a pretrained GPT-2 de-
coder to generate captions directly from the CLIP embed-
dings of the masked image. To introduce variability in the
outputs, we utilized multinomial sampling without beam
search during the inference phase. The results are shown
in Table 3 and 4.

As shown in Table 3 and Figure 3, a deterministic trans-
former without CatDiff demonstrates a high level of ac-
curacy in predicting the actual category behind the mask.
However, it significantly lacks diversity in its outputs. This
limitation is critical since it does not suggest alternative pos-
sibilities that could also be contextually appropriate. In con-
trast, models with CatDiff sample various reasonable cate-
gories that can be inserted into the region, and even attain
slightly higher accuracy when multiple samples are drawn.
The results for caption generation also highlight the effec-
tiveness of CapDiff in enhancing the diversity of generated
captions. A few examples are illustrated in Figure 4. More
are in the supplementary material.
Global-Local Embeddings. In Section 3.4 of our paper,
we mentioned the importance of integrating both global and
local contexts to enhance the accuracy of context compre-
hension in our model. We validate this in experiments on
CatDiff. As depicted in Table 2, the use of combined global-
local embeddings leads to an overall improvement in accu-
racy, particularly in the K-1 accuracy metric. This finding
underscores the effectiveness of our approach in accurately
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Mask shape Method BLEU ↑ ROUGE ↑ BERTScore ↑ Dist-1 ↑ Self-BLEU ↓ Div-4 ↑

Tight mask

BLIP-VQA [13] 0.005 0.071 0.537 0.998 0.600 0.038
InstructBLIP [4] 0.071 0.308 0.704 0.882 0.466 0.570
LLaVA-Resample [18] 0.031 0.275 0.684 0.955 0.286 0.715
LLaVA-5-Prompt [18] 0.023 0.269 0.656 0.998 0.163 0.785
CapDiff (Ours) 0.177 0.427 0.732 0.845 0.169 0.858

BBox

BLIP-VQA [13] 0.004 0.053 0.526 0.999 0.627 0.025
InstructBLIP [4] 0.060 0.280 0.691 0.881 0.438 0.597
LLaVA-Resample [18] 0.026 0.254 0.678 0.970 0.312 0.694
LLaVA-5-Prompt [18] 0.020 0.245 0.648 0.998 0.128 0.881
CapDiff (Ours) 0.149 0.383 0.715 0.838 0.141 0.885

Table 1. Caption generation results on the OpenImages dataset. BLEU [24] and ROUGE [16] evaluates text quality. BERTScore [48]
further evaluates the semantics between the predicted and ground truth sentences. Following [6], Dist-1 measures the word diversity within
a sentence, whereas Self-BLEU [50] and Div-4 [5] measure the sentence level diversity of a group of sentences. For each experiment, we
generate five candidate text prompts for evaluation. For LLaVA [18], we either ask the same questions five times (LLaVA-Resample) or
instruct it to generate five prompts directly (LLaVA-5-Prompt). Top ranked result is indicated in blue; second best result indicated in green.

InstructBlip
Prompt: Write a text prompt that describes a 
reasonable object to be inserted in the gray 
area.

The man is holding an accordion
A man is holding an accordion while smiling
A man is holding an accordion while smiling
The man is playing an accordion
The man is playing an accordion

LLAVA-5-Prompt
Prompt: Write five text prompts that 
describe reasonable objects to be 
inserted in the gray area

A blue and white umbrella
A pair of black sunglasses
A small, colorful kite
A red and white sports ball
A small, decorative wind chime

Ours (w/o CapDiff)
(no prompt needed)

A wooden guitar shaped like a giant axe
A close up of a guitar’s neck and neck
A pair of shoes that are sitting on a bass guitar
An acoustic guitar flying in the air
A computer generated image of a piano

Ours
(no prompt needed)

A pair of jeans that are sitting on a table
A pair of black shorts with a white belt
A pair of blue jeans with a brown background
A pair of jeans with a belt
A pair of red jeans with holes in them

InstructBlip
Prompt: Write a text prompt that describes a 
reasonable object to be inserted in the gray area.

A yellow fire hydrant sits in front of a brick wall
A yellow fire hydrant sitting in front of a brick wall
A yellow fire hydrant next to a brick wall
A yellow fire hydrant sitting on the sidewalk in
front of a brick building
There is a fire hydrant on the sidewalk in front of a
brick building

LLAVA-5-Prompt
Prompt: Write five text prompts that 
describe reasonable objects to be 
inserted in the gray area

A metal bench
A large sculpture
A colorful mural
A set of stairs
A group of potted plants

Ours (w/o CapDiff)
(no prompt needed)

A motorcycle with a side car attached to it
A black car with a bunch of snow on it
A motorcycle is shown
A motorcycle is shown
A blue motorcycle parked on top of a gray
background

Ours
(no prompt needed)

An orange dog with a tag on it
A bicycle wheel is wrapped in a cage
A man in a baseball uniform holding a bat
An orange car parked in a parking lot
A guitar with a wooden body

Figure 4. Qualitative results. Compared to InstructBlip [4], LLaVA [18], and a baseline without CapDiff, our approach generates prompts
that are diverse and context-aware. We show the five generated prompts for each model.

Figure 5. Full pipeline demonstration. Given an image and mask, we propose multiple diverse prompt suggestions. Users can select one
of them, and apply it to any text-guided inpainting tool, either with embedding or the decoded text prompts.
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Mask size Embed type
K-1

Accuracy
K-5

Accuracy
K-50

Entropy

Regular
Global 0.681 0.847 0.884
Local 0.681 0.843 0.845

Global-Local 0.700 0.864 0.815

Small
Global 0.604 0.804 1.073
Local 0.613 0.799 1.027

Global-Local 0.692 0.800 0.490

Table 2. Ablation on input embedding types on COCO classifica-
tion dataset. Top result is in blue; second result is in green.

identifying the most relevant categories for a given context.
Additionally, Figure 6 depicts up to 5 top categories after
predicting 50 samples. This demonstrates a decrease in di-
versity, which can be attributed to the model’s improved
capability to eliminate unrelated concepts. This improve-
ment occurs when there is limited context available (as in
the case of local embeddings) or when the mask size is rela-
tively small (as in global context scenarios). The reduction
in diversity, in this case, is not a drawback but rather an in-
dication of the model’s ability to focus on relevant concepts
and disregard those that are less pertinent to the given con-
text. This balance between accuracy and diversity is a key
aspect of the model’s performance, demonstrating its capa-
bility to adapt to varying levels of contextual information.

Local:
skateboard,
bench

Global:
Skateboard

Local + Global:
Skateboard

Local:
truck, traffic light, car,
bus, person

Global:
teddy bear, stop sign,
traffic light, bird, person

Local + Global:
truck, car, bus, parking
meter, person

Figure 6. Qualitative comparison of diffusion categories under dif-
ferent contextual conditions, with red marking less-relevant sug-
gestions. The top 5 (if any) unique categories after predicting 50
samples are shown. Integrating both local and global contexts usu-
ally better balances contextual relevance with diversity.

5. Extensions and Limitations
Our models can be extended to context-aware prompt com-
pletion tasks. However, in scenarios where users already
provide initial prompts, the CapDiff component might not
be essential. To address this, we developed a method where
the CLIP-image embedding from the masked image is di-
rectly injected into a GPT-2 decoder. This approach is de-
signed to efficiently complete prompts based on the given
context and initial user input. The details of the experiments
and results are shown in the supplementary material. Ad-
ditionally, our models currently have limitations in terms

Mask shape CatDiff K-1
Accuracy

K-5
Accuracy

K-50
Entropy

Tight Mask
✗ 0.847 0.847 0.043
✓ 0.700 0.864 0.815

Convex Hull
✗ 0.790 0.790 0.053
✓ 0.615 0.808 0.957

Bounding Box
✗ 0.687 0.687 0.106
✓ 0.503 0.735 1.260

Table 3. Ablation on CatDiff using COCO. Our diffusion prior
network leads to higher diversity compared to a deterministic net-
work, and achieves similar accuracy when sampled more.

Mask shape CapDiff BLEU ↑ BERT-
Score ↑

Self-
BLEU ↓ Div-4 ↑

Tight mask
✗ 0.249 0.785 0.215 0.808
✓ 0.177 0.732 0.169 0.858

Bounding
box

✗ 0.193 0.758 0.167 0.855
✓ 0.149 0.715 0.141 0.885

Table 4. Ablation on CapDiff. Diffusion prior network leads to
higher diversity. On the other hand, it also results in deviation
from the original caption, which leads to lower alignment scores.

of vocabulary depth. This aspect could be improved by
incorporating more diverse data into the training process.
Looking ahead, we are interested in exploring more com-
plex multi-modal visual-language architectures which have
the potential to significantly enhance the quality of genera-
tion, making the models more robust and versatile.

6. Conclusion

In our paper, we introduced a novel task on generating
meaningful and diverse prompts for object inpainting. We
identified three critical aspects for evaluating our model:
context awareness, shape awareness, and diverse genera-
tion. To effectively incorporate image contextual informa-
tion while also enhancing the diversity of prompt genera-
tion, we employed diffusion prior modules—CatDiff and
CapDiff—on top of CLIP image embeddings of masked
images. Our experiments demonstrated the effectiveness
of this approach through accurate and diverse category la-
bel and caption generation. We developed a classifier for
category generation and a text decoder for caption genera-
tion. These components not only aid in the inspection and
evaluation of results but also make our generator a plug-
and-play tool. Our research showed that our task-specific
model surpasses generic visual-language models in caption
generation. Looking forward, we see potential in applying
these ideas to more complex architectures and expanding
the training datasets.
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