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Abstract

Open-vocabulary semantic segmentation presents the
challenge of labeling each pixel within an image based on a
wide range of text descriptions. In this work, we introduce a
novel cost-based approach to adapt vision-language foun-
dation models, notably CLIP, for the intricate task of se-
mantic segmentation. Through aggregating the cosine sim-
ilarity score, i.e., the cost volume between image and text
embeddings, our method potently adapts CLIP for segment-
ing seen and unseen classes by fine-tuning its encoders, ad-
dressing the challenges faced by existing methods in han-
dling unseen classes. Building upon this, we explore meth-
ods to effectively aggregate the cost volume considering its
multi-modal nature of being established between image and
text embeddings. Furthermore, we examine various meth-
ods for efficiently fine-tuning CLIP.

1. Introduction

Open-vocabulary semantic segmentation aims to assign
each pixel in an image to a class label from an unbounded
range, defined by text descriptions. To handle the chal-
lenge of associating an image with a wide variety of text
descriptions, pre-trained vision-language foundation mod-
els, e.g., CLIP [43] and ALIGN [22], have drawn attention
as they exerted strong open-vocabulary recognition capa-
bilities achieved through training on extensive image-text
datasets. Nonetheless, these foundation models primar-
ily receive image-level supervision during training, which
introduces a notable disparity when applying them to the
pixel-level segmentation tasks [66].

To address this gap, recent works [9, 14, 30, 55–57, 60]
have reformulated the task into a region-level problem by
utilizing mask proposal generators. While this partially
bridges the discrepancy between the pre-training and the
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Figure 1. Comparison between feature and cost aggregation
for open-vocabulary semantic segmentation task. In contrast
to feature aggregation suffering severe overfitting to seen classes,
cost aggregation can generalize to unseen classes and achieve sig-
nificant performance improvements upon fine-tuning of CLIP.

downstream task, a discernible gap persists between the
conceptualization of regions and the entire image for CLIP.

In this work, we investigate methods to transfer the holis-
tic understanding capability of images to the pixel-level
task of segmentation. While a straightforward approach
would be to fine-tune the encoders of CLIP, existing meth-
ods struggle in such attempt [57, 60, 66] as they encounter
significant overfitting problems to the seen classes. This
results in the misalignment of the joint embedding space
for unseen classes, as the CLIP features undergo decoder
modules for aggregating them into segmentation masks,
hence losing their alignment. Consequently, most meth-
ods [9, 14, 30, 55–57, 60] opt for freezing the encoders of
CLIP instead, remaining the challenge underexplored.

In this regard, we extend the exploration of adapting
CLIP for open-vocabulary semantic segmentation and in-
troduce a novel cost-based framework. We propose to ag-
gregate the cosine similarity between image and text em-
beddings of CLIP, i.e., the matching cost, drawing parallels
to the visual correspondence literature [26]. Surprisingly,
we find that fine-tuning CLIP upon this framework effec-
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tively adapts CLIP to the downstream task of segmentation
for both seen and unseen classes, as shown in Fig. 1. Notic-
ing this, we delve into better aggregating the cost volume
between image and text for segmentation.

Intuitively, the cost volume can be viewed as rough se-
mantic masks grounded to their respective classes, as illus-
trated in Fig. 2. Subsequently, these rough masks can be fur-
ther refined to obtain accurate predictions, being the cost ag-
gregation process. In light of this, we aim to effectively ag-
gregate the cost volume and configure the process into spa-
tial and class aggregation, regarding its multi-modal nature
from being established between image and text. Further-
more, by observing the effectiveness of fine-tuning CLIP
for its adaptation to semantic segmentation, we explore var-
ious methods to facilitate this process efficiently.

We analyze our cost aggregation framework to be advan-
tageous in two aspects for adapting CLIP to dense predic-
tion: i) the robustness of cost aggregation against overfit-
ting, and ii) the direct construction of the cost volume from
image and text embeddings of CLIP. For cost aggregation,
the aggregation layers operate upon similarity scores, pre-
venting them from overfitting to the features [4, 32, 47].
Moreover, as opposed to existing methods where they of-
ten employ decoder layers upon the image embeddings of
CLIP [60, 66], we do not introduce additional layers that
can potentially project the embeddings to a different em-
bedding space.

Our framework, dubbed CAT-Seg, combines our cost
aggregation-based framework consisting of spatial and class
aggregation, with our optimal approach for fine-tuning the
encoders of CLIP. We achieve state-of-the-art results on ev-
ery standard open-vocabulary benchmark with large mar-
gins, gaining +3.6 mIoU in A-847 and +8.1 mIoU in PC-
459 compared to the recent state-of-the-art. Not only CAT-
Seg it is effective, but is also efficient both for training
and inference compared to region-text methods, being over
×3.7 faster for inference. Furthermore, even in the extreme
scenario [1] where the domain of the image and text de-
scription differs significantly from the training dataset, our
model outperforms existing state-of-the-art methods with a
large margin, paving the way for various domain-specific
applications.

We summarize our contribution as follows:
• We propose a cost aggregation-based framework for

open-vocabulary semantic segmentation, effectively
adapting CLIP to the downstream task of segmentation
by fine-tuning its encoders.

• To aggregate the image-text cost volume, we consist of
our framework with spatial and class aggregation to rea-
son the multi-modal cost volume and explore various
methods to enhance our cost aggregation framework.

• Our framework, named CAT-Seg, establishes state-of-
the-art performance for standard open-vocabulary bench-

(a) CLIP (b) Fine-tuned CLIP (c) Aggregated Cost

Figure 2. Visualization of the cost volume. We visualize the
raw cost volume obtained from frozen CLIP in (a) and fine-tuned
CLIP in (b), and the aggregated cost in (c) through CAT-Seg. The
top row correspond to the seen class “chair” and the bottom row
correspond to the unseen class “sofa”.

marks, as well as for extreme case scenarios [1], demon-
strating versatility and practicality.

2. Related Work

Open-vocabulary semantic segmentation. Classical ap-
proaches to the task [2, 54, 64] attempt to learn visual em-
beddings that align with pre-defined text embeddings [36,
37]. However, the limited vocabulary of the words has
been the major bottlenecks. To address this, LSeg [28]
leveraged CLIP for learning pixel-level visual embeddings
aligned with the text embeddings of CLIP. Alternatively,
OpenSeg [14] proposed to identify local regions within
the image and correlate with the text embeddings with
class-agnostic region proposals. Similarly, ZegFormer [9]
and ZSseg [56] proposed two-stage frameworks for deal-
ing with the task. Typically, they first learn to predict
class-agnostic region proposals similar to [14], and feed
them to CLIP for final predictions. To better recognize
these regions, OVSeg [30] collects region-text pairs to fine-
tune the CLIP encoder, while MaskCLIP [10] leverages the
self-attention map from CLIP to refine the region propos-
als. Alternatively, ODISE [55] leverages pre-trained Sta-
ble Diffusion [45] model for generating high-quality class-
agnostic masks. However, these region-to-text matching
methods [9, 14, 30, 55–57, 60] require a region generator,
which is trained on a limited scale of annotated datasets.

More recently, ZegCLIP [70] and SAN [57] proposed
one-stage frameworks, where they attempt to leverage the
embeddings from CLIP to predict masks instead of having
class-agnostic mask generators parallel to CLIP. Although
these methods can better leverage the pre-trained knowl-
edge from CLIP, they introduce learnable tokens or adapter
layers to the CLIP image encoder, which can be only trained
on the seen classes. FC-CLIP [60] implements CLIP as the
visual backbone for the segmentation model but opts for a
frozen image encoder as they find fine-tuning the image en-
coder hinders performance for unseen classes. In contrast,
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we refrain from adding external layers to CLIP and achieve
fine-tuning of its encoders by aggregating the cost volume,
which is obtained solely from the embeddings of CLIP.

Fine-tuning vision-language models. Along with the ad-
vance of large-scale vision-language models, e.g. CLIP, nu-
merous attempts have been made to adapt CLIP to vari-
ous downstream tasks [52]. CoOp [68] and CoCoOp [67]
learn prompt tokens instead of optimizing the full model.
Another stream of work is CLIP-Adapter [13] and TIP-
Adapter [63], where they aggregate the image and text em-
beddings from CLIP through adapter layers instead of tun-
ing the encoder itself. However, such methods mainly fo-
cus on few-shot settings rather than zero-shot evaluation.
We explore end-to-end fine-tuning of CLIP for zero-shot
pixel-level prediction, which has failed in numerous at-
tempts [57, 60, 66].

Cost aggregation. Cost aggregation [5, 8, 15, 19, 21, 26,
47, 58] is a popular technique adopted for the process of
establishing correspondence between visually or semanti-
cally similar images [7, 15, 18, 26, 58] by reducing the im-
pact of errors and inconsistencies in the matching process.
A matching cost, an input to cost aggregation, is typically
constructed between dense features extracted from a pair of
images [44], and often cosine-similarity [32, 44] is used.
In this work, we view the cosine-similarity score between
image and text embeddings of CLIP from the viewpoint of
establishing the matching cost volume. Especially, we find
the robustness of the cost aggregation layers to be favorable
to open-vocabulary semantic segmentation, as these layers
operate upon the similarity scores rather than the embed-
dings itself [32, 47]. However, our approach diverges from
traditional methods as the cost volume obtained from CLIP
is inherently multi-modal, originating from both image and
text modalities. This contrasts with conventional cost ag-
gregation techniques [7, 15, 18, 26, 58]. Consequently, we
explore methods to effectively aggregate the multi-modal
cost volume.

3. Methodology
Given an image I and a set of candidate class categories
C = {T (n)} for n = 1, . . . , NC , where T (n) denotes tex-
tual description of n-th category and NC is the number of
classes, open-vocabulary semantic segmentation assigns a
class label for each pixel in image I . Different from classi-
cal semantic segmentation tasks [16, 17, 24, 34, 59, 61, 69],
open-vocabulary segmentation is additionally challenged
by varying C, given as free-form text description.

In this section, we describe our cost-based approach for
open-vocabulary semantic segmentation. In specific, we re-
fine the cosine-similarity scores from image and text em-
bedding of CLIP, as illustrated in Fig. 2. The process of re-
fining the cosine-similarity scores, or cost aggregation [26],

was initially developed for the image correspondence prob-
lem and specifically designed to process an image-to-image
cost volume. Consequently, traditional cost aggregation
methods leverage image-specific priors, such as the as-
sumption of local smoothness of images [27, 38, 39] for
aggregating the cost volume.

On the other hand, we aim to aggregate the image-to-text
cost volume, hence need to consider the multi-modality of
the cost volume and the respective characteristics of each
modality. In this regard, as shown in Fig. 3, we break down
the aggregation stage into two separate modules, i.e., spa-
tial and class aggregation, reasonably addressing the unique
challenges presented by the task of open-vocabulary seman-
tic segmentation. This includes aspects such as handling
varying numbers of classes during inference and guaran-
teeing the permutation invariance between classes. Specifi-
cally, we perform spatial aggregation followed by class ag-
gregation and alternate both aggregations. In the following
section, we describe the cost aggregation process in detail,
as well as introduce additional techniques for enhancing the
cost aggregation framework.

3.1. Cost Computation and Embedding

Given an image I and a set of classes C, we extract the dense
image embeddings DV = ΦV (I) ∈ R(H×W )×d and the
text embeddings DL = ΦL(T ) ∈ RNC×d, where ΦV (·)
and ΦL(·), denotes the image and text encoders of CLIP re-
spectively. For extracting dense CLIP image embeddings,
we follow the method described in [66], wherein we mod-
ify the last attention layer of the image encoder to eliminate
the pooling effect. We use the image and text embeddings
DV (i) and DL(n), where i denotes 2D spatial positions of
the image embedding and n denotes an index for a class, to
compute a cost volume C ∈ R(H×W )×NC by cosine simi-
larity [44]. Formally, this is defined as:

C(i, n) =
DV (i) ·DL(n)

∥DV (i)∥∥DL(n)∥
. (1)

To enhance the processing of cost in high dimensional fea-
ture space, we feed the cost volume to a single convolution
layer that processes each cost slice C(:, n) ∈ R(H×W )×1

independently to obtain initial cost volume embedding F ∈
R(H×W )×NC×dF , where dF is the cost embedding dimen-
sion, as shown in Fig. 3.

3.2. Spatial Cost Aggregation

For spatial aggregation, we aim to consider the character-
istics of images within the image-text cost volume, such as
spatial smoothness within the image. Specifically, we ap-
ply spatial aggregation for each class, respectively. Con-
sidering that we pursue the holistic understanding of im-
ages of CLIP to effectively transfer to segmentation, we
adopt Transformer [33, 51] over CNNs for its global [51]
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Figure 3. Overview of CAT-Seg. Our cost aggregation framework consists of spatial aggregation and class aggregation, followed by an
upsampling decoder. Please refer to the supplementary material for a detailed illustration.

or semi-global [18, 33] receptive fields. In practice, we em-
ploy Swin Transformer [33] for computational efficiency.
We define this process as follows:

F ′(:, n) = T sa(F (:, n)), (2)

where F (:, n) ∈ R(H×W )×dF , and T sa(·) denotes a pair of
two consecutive Swin transformer block for spatial aggre-
gation, where the first block features self-attention within
a local window, followed by the second block with self-
attention within shifted window. Note that we treat dF as
channel dimensions for each token, and attention is com-
puted within individual classes separately. Intuitively, we
can roughly relate the process of spatial aggregation to the
bottom row of Fig. 2, where the cost volume for “sofa” is
well-refined after aggregation, and the noise in the back-
ground region is suppressed.

3.3. Class Cost Aggregation

Subsequent to spatial aggregation, class aggregation is ap-
plied to consider the text modality, explicitly capturing re-
lationships between different class categories. We also con-
sider the unique challenges of open-vocabulary semantic
segmentation of handling varying numbers of categories C
while being invariant to their ordering. To address these
challenges, we employ a Transformer [51] layer without po-
sition embedding for aggregation, as this can achieve both
of the aforementioned criteria. This process is defined as:

F ′′(i, :) = T ca(F ′(i, :)), (3)

where F ′(i, :) ∈ RNC×dF , and T ca(·) denotes a trans-
former block for class aggregation. In contrast to spatial
aggregation, we instead employ a linear transformer [25]
as we do not need to consider spatial structure of the input
tokens in this aggregation, as well as benefitting from the
linear computational complexity with respect to the number
of the tokens. The class aggregation process can be related
to the top row of Fig. 2, where the aggregated cost volume

depicts its prediction to only chairs and excluding the sofa,
as both classes are given together for reasoning.

3.4. CAT-Seg Framework

Upon the aggregated cost volume through spatial and class
aggregation, we further enhance our methodology by in-
corporating an upsampling and aggregation process to de-
rive semantic segmentation predictions. Additionally, draw-
ing insights from state-of-the-art cost aggregation tech-
niques [7, 8, 18], we refine our cost aggregation strategy
by leveraging guidance derived from the embeddings of
CLIP. Finally, we examine various methods to fine-tune the
encoders of CLIP, in pursuit of effectively, yet efficiently
adapting CLIP for open-vocabulary semantic segmentation.
Altogether, we introduce Cost AggregaTion approach for
open-vocabulary semantic Segmentation (CAT-Seg). We
describe the upsampling decoder, embedding guidance, and
our fine-tuning approach in detail in the subsequent sec-
tions. For detailed illustrations of the architecture for each
component, please refer to the supplementary materials.

Upsampling decoder. Similar to FPN [31], we employ
bilinear upsampling on the aggregated cost volume and con-
catenate it with the corresponding level of feature map ex-
tracted from CLIP, followed by a convolutional layer with
a 3×3 kernel of fixed size. We iterate this process NU

times, generating a high-resolution output which is fed into
the prediction head for final inference. To extract the high-
resolution feature map, we avoid using an additional feature
backbone that would introduce a heavy computational bur-
den. Instead, similarly to [29], we extract these maps from
the middle layers of the CLIP image encoder. Specifically,
we extract the feature map from the output of intermedi-
ate layers of CLIP ViT [11] and then upsample them us-
ing a single learnable transposed convolution layer. This
approach allows us to efficiently leverage the well-learned
representations of CLIP for obtaining detailed predictions.
For additional details, refer to the supplementary materials.
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Embedding guidance. As a means to enhance the cost
aggregation process, we additionally leverage the embed-
dings DL and DV to provide spatial structure or contextual
information of the inputs. Intuitively, we aim to guide the
process with embeddings, based on the assumption that vi-
sually or semantically similar input tokens, e.g., color or
category, have similar matching costs, inspired by cost vol-
ume filtering [20, 48] in stereo matching literature [46]. Ac-
cordingly, we redefine Eq. 2 and Eq. 3 as:

F ′(:, n) = T sa([F (:, n);PV (DV )]),

F ′′(i, :) = T ca([F ′(i, :);PL(DL)]),
(4)

where [·] denotes concatenation, PV and PL denote linear
projection layer, DV ∈ R(H×W )×d, and DL ∈ RNC×d,
where d denotes the feature dimension. Notably, we only
provide the embeddings to query and key as we find this is
sufficient for embedding guidance.

Efficient fine-tuning of CLIP While we aim to fully
adapt CLIP to the downstream task through fine-tuning its
image and text encoders, fine-tuning such foundation mod-
els can scale up to hundreds of millions of parameters, being
computationally expensive and memory-intensive. On the
other hand, freezing some of its layers, not only would be
more efficient but also can help CLIP preserve its original
embedding space, allowing it to be more robust to overfit-
ting. To this end, we extensively investigate which layers
should be frozen within CLIP [11], among examining vari-
ous approaches for fine-tuning pre-trained models. We pro-
vide a detailed analysis of our exploration in Sec. 4.4.

4. Experiments
4.1. Datasets and Evaluation

We train our model on the COCO-Stuff [3], which has 118k
densely annotated training images with 171 categories, fol-
lowing [30]. We employ the mean Intersection-over-Union
(mIoU) as the evaluation metric for all experiments. For
the evaluation, we conducted experiments on two different
sets of datasets [12, 40, 65]: a commonly used in-domain
datasets [14], and a multi-domain evaluation set [1] con-
taining domain-specific images and class labels.

Datasets for standard benchmarks. For in-domain eval-
uation, we evaluate our model on ADE20K [65], PASCAL
VOC [12], and PASCAL-Context [40] datasets. ADE20K
has 20k training and 2k validation images, with two sets
of categories: A-150 with 150 frequent classes and A-847
with 847 classes [9]. PASCAL-Context contains 5k training
and validation images, with 459 classes in the full version
(PC-459) and the most frequent 59 classes in the PC-59 ver-
sion. PASCAL VOC has 20 object classes and a background
class, with 1.5k training and validation images. We report
PAS-20 using 20 object classes. We also report the score for

PAS-20b, which defines the “background” as classes present
in PC-59 but not in PAS-20, as in Ghiasi et al. [14].

Datasets for multi-domain evaluation. We conducted
a multi-domain evaluation on the MESS benchmark [1],
specifically designed to stress-test the real-world applicabil-
ity of open-vocabulary models with 22 datasets. The bench-
mark includes a wide range of domain-specific datasets
from fields such as earth monitoring, medical sciences,
engineering, agriculture, and biology. Additionally, the
benchmark contains a diverse set of general domains, en-
compassing driving scenes, maritime scenes, paintings, and
body parts. We report the average scores for each domain
in the main text for brevity. For the complete results and
details of the 22 datasets, please refer to the supplementary
material.

4.2. Implementation Details

We train the CLIP image encoder and the cost aggrega-
tion module with per-pixel binary cross-entropy loss. We
set dF = 128, NB = 2, NU = 2 for all of our mod-
els. We implement our work using PyTorch [41] and Detec-
tron2 [53]. AdamW [35] optimizer is used with a learning
rate of 2 ·10−4 for our model and 2 ·10−6 for the CLIP, with
weight decay set to 10−4. The batch size is set to 4. We use
4 NVIDIA RTX 3090 GPUs for training. All of the models
are trained for 80k iterations.

4.3. Main Results

Results of standard benchmarks. The evaluation of
standard open-vocabulary semantic segmentation bench-
marks is shown in Table 1. Overall, our method sig-
nificantly outperforms all competing methods, including
those [14, 30] that leverage additional datasets [6, 42] for
further performance improvements. To ensure a fair com-
parison, we categorize the models based on the scale of the
vision-language models (VLMs) they employ. First, we
present results for models that use VLMs of comparable
scale to ViT-B/16 [11], and our model surpasses all previous
methods, even achieving performance that matches or sur-
passes those using the ViT-L/14 model as their VLM [57].
For models employing the ViT-L/14 model as their VLM,
our model demonstrates remarkable results, achieving a
16.0 mIoU in the challenging A-847 dataset and a 23.8
mIoU in PC-459. These results represent a 29% and 52%
increase, respectively, compared to the previous state-of-
the-art. We also present qualitative results of PASCAL-
Context with 459 categories in Fig. 4, demonstrating the
efficacy of our proposed approach in comparison to the cur-
rent state-of-the-art methods [9, 30, 56].

Results of multi-domain evaluation. In Table 2, we
present the qualitative results obtained from the MESS
benchmark [1]. This benchmark assesses the real-world
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Model VLM Additional Backbone Training Dataset Additional Dataset A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

SPNet [54] - ResNet-101 PASCAL VOC ✗ - - - 24.3 18.3 -
ZS3Net [2] - ResNet-101 PASCAL VOC ✗ - - - 19.4 38.3 -
LSeg [28] CLIP ViT-B/32 ResNet-101 PASCAL VOC-15 ✗ - - - - 47.4 -
LSeg+ [14] ALIGN ResNet-101 COCO-Stuff ✗ 2.5 5.2 13.0 36.0 - 59.0
ZegFormer [9] CLIP ViT-B/16 ResNet-101 COCO-Stuff-156 ✗ 4.9 9.1 16.9 42.8 86.2 62.7
ZegFormer† [9] CLIP ViT-B/16 ResNet-101 COCO-Stuff ✗ 5.6 10.4 18.0 45.5 89.5 65.5
ZSseg [56] CLIP ViT-B/16 ResNet-101 COCO-Stuff ✗ 7.0 - 20.5 47.7 88.4 -
OpenSeg [14] ALIGN ResNet-101 COCO Panoptic ✓ 4.4 7.9 17.5 40.1 - 63.8
OVSeg [30] CLIP ViT-B/16 ResNet-101c COCO-Stuff ✓ 7.1 11.0 24.8 53.3 92.6 -
ZegCLIP [70] CLIP ViT-B/16 - COCO-Stuff-156 ✗ - - - 41.2 93.6 -
SAN [57] CLIP ViT-B/16 - COCO-Stuff ✗ 10.1 12.6 27.5 53.8 94.0 -

12.0 19.0 31.8 57.5 94.6 77.3CAT-Seg (ours) CLIP ViT-B/16 - COCO-Stuff ✗ (+1.9) (+6.4) (+4.3) (+3.7) (+0.6) (+11.8)

LSeg [28] CLIP ViT-B/32 ViT-L/16 PASCAL VOC-15 ✗ - - - - 52.3 -
OpenSeg [14] ALIGN Eff-B7 COCO Panoptic ✓ 8.1 11.5 26.4 44.8 - 70.2
OVSeg [30] CLIP ViT-L/14 Swin-B COCO-Stuff ✓ 9.0 12.4 29.6 55.7 94.5 -
SAN [57] CLIP ViT-L/14 - COCO-Stuff ✗ 12.4 15.7 32.1 57.7 94.6 -
ODISE [55] CLIP ViT-L/14 Stable Diffusion COCO-Stuff ✗ 11.1 14.5 29.9 57.3 - -

16.0 23.8 37.9 63.3 97.0 82.5CAT-Seg (ours) CLIP ViT-L/14 - COCO-Stuff ✗ (+3.6) (+8.1) (+5.8) (+5.6) (+2.4) (+12.3)

Table 1. Quantitative evaluation on standard benchmarks. The best-performing results are presented in bold, while the second-best
results are underlined. Improvements over the second-best are highlighted in green. †: Re-implementation trained on full COCO-Stuff.

Model VLM Additional Backbone General Earth Monit. Medical Sciences Engineering Agri. and Biology Mean

Random (LB) - - 1.17 7.11 29.51 11.71 6.14 10.27
Best supervised (UB) - - 48.62 79.12 89.49 67.66 81.94 70.99

ZSSeg [56] CLIP ViT-B/16 ResNet-101 19.98 17.98 41.82 14.0 22.32 22.73
ZegFormer [9] CLIP ViT-B/16 ResNet-101 13.57 17.25 17.47 17.92 25.78 17.57
X-Decoder [71] UniCL-T Focal-T 22.01 18.92 23.28 15.31 18.17 19.8
OpenSeeD [62] UniCL-B Swin-T 22.49 25.11 44.44 16.5 10.35 24.33
SAN [57] CLIP ViT-B/16 - 29.35 30.64 29.85 23.58 15.07 26.74

38.69 35.91 28.09 20.34 32.57 31.96CAT-Seg (ours) CLIP ViT-B/16 - (+9.34) (+5.27) (-16.35) (-3.24) (+6.79) (+5.22)

OVSeg [30] CLIP ViT-L/14 Swin-B 29.54 29.04 31.9 14.16 28.64 26.94
SAN [57] CLIP ViT-L/14 - 36.18 38.83 30.27 16.95 20.41 30.06

44.69 39.99 24.70 20.20 38.61 34.70CAT-Seg (ours) CLIP ViT-L/14 - (+8.51) (+1.16) (-7.2) (+3.25) (+9.97) (+4.64)

Table 2. Quantitative evaluation on MESS [1]. MESS includes a wide range of domain-specific datasets, which pose significant chal-
lenges due to their substantial domain differences from the training dataset. We report the average score for each domain. Please refer to
the supplementary material for the results of all 22 datasets. Random is the result of uniform distributed prediction which represents the
lower-bound, while Best supervised represents the upper-bound performance for the datasets.

Methods A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

(I) Feature agg. + Freeze 3.1 8.7 16.6 46.8 92.3 69.7
(II) Feature agg. + F.T. 5.6 12.8 23.6 58.1 96.3 77.7

(III) Cost agg. + Freeze 10.0 14.5 26.0 46.9 94.2 65.1
(IV) Cost agg. + F.T. 14.7 23.2 35.3 60.3 96.7 78.9

Table 3. Quantitative comparison between feature and cost ag-
gregation. Cost aggregation acts as an effective alternative to di-
rect fine-tuning of CLIP image encoder. F.T.: Fine-Tuning.

performance of a model across a wide range of domains.
Notably, our model demonstrates a significant performance
boost over other models, achieving the highest mean score.
It particularly excels in the general domain as well as in
agriculture and biology, showing its strong generalization
ability. However, in the domains of medical sciences and
engineering, the results exhibit inconsistencies with respect
to the size of the VLM. Additionally, the scores for med-

ical sciences are comparable to random predictions. We
speculate that CLIP may have limited knowledge in these
particular domains [43].

4.4. Analysis and Ablation Study

Comparison between feature and cost aggregation. We
provide quantitative and qualitative comparison of two ag-
gregation baselines, feature aggregation, and cost aggrega-
tion, in Table 3. For both of baseline architectures, we sim-
ply apply the upsampling decoder and note that both meth-
ods share most of the architecture, but differ in whether they
aggregate the concatenated features or aggregate the cosine
similarity between image and text embeddings of CLIP.

For (I) and (III), we freeze the encoders of CLIP and
only optimize the upsampling decoder. Subsequently, in
(II) and (IV), we fine-tune the encoders of CLIP on top of
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(a) SAN (b) Ours (c) GT (d) SAN (e) Ours (f) GT
Figure 4. Qualitative comparison to SAN [57]. We visualize the results of PC-459 dataset in (a-c). For (d-f), we visualize the results
from the MESS benchmark [1] across three domains: underwater (top), human parts (middle), and agriculture (bottom).

(a) Image (b) Ground truth

(c) Feature aggregation (d) Cost aggregation

Figure 5. Qualitative comparison between feature and cost ag-
gregation. Our approach (d) successfully segments the previously
unseen class, such as “birdcage,” whereas approach (c) fails.

(I) and (III). Our results show that feature aggregation can
benefit from fine-tuning, but the gain is only marginal. On
the other hand, cost aggregation benefits significantly from
fine-tuning, highlighting the effectiveness of cost aggrega-
tion for adapting CLIP to the task of segmentation.

For the qualitative results in Fig. 5, we show the pre-
diction results from (II) and (IV). As seen in Fig. 5(c-d),
we observe that feature aggregation shows overfitting to the
seen class of “bucket,” while cost aggregation successfully
identifies the unseen class “birdcage.”

Component analysis. Table 4 shows the effectiveness of
the main components within our architecture through quan-
titative results. First, we introduce the baseline models in
(I) and (II), identical to the fine-tuned baseline models from
Table 3. We first add the proposed spatial and class aggre-
gations to the cost aggregation baseline in (III) and (IV),

Components A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

(I) Feature Agg. 5.6 12.8 23.6 58.1 96.3 77.7

(II) Cost Agg. 14.7 23.2 35.3 60.3 96.7 78.9
(III) (II) + Spatial agg. 14.9 23.1 35.9 60.3 96.7 79.5
(IV) (II) + Class agg. 14.7 21.5 36.6 60.6 95.5 80.5
(V) (II) + Spatial and Class agg. 15.5 23.2 37.0 62.3 96.7 81.3
(VI) (V) + Embedding guidance 16.0 23.8 37.9 63.3 97.0 82.5

Table 4. Ablation study for CAT-Seg. We conduct ablation study
by gradually adding components to the cost aggregation baseline.

Methods A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

CAT-Seg w/o upsampling decoder 9.9 16.1 28.4 52.9 93.2 73.3
CAT-Seg (ours) 12.0 19.0 31.8 57.5 94.6 77.3

Table 5. Ablation study of upsampling decoder. CLIP with ViT-
B is used for ablation.

respectively. In (V), we interleave the spatial and class ag-
gregations. Lastly, we add the proposed embedding guid-
ance to (V), which becomes our final model.

As shown, we stress the gap between (I) and (II), which
supports the findings presented in Fig. 5. Given that PAS-
20 shares most of its classes with the training datasets[56],
the performance gap between (I) and (II) is minor. How-
ever, for challenging datasets such as A-847 or PC-459, the
difference is notably significant, validating our cost aggre-
gation framework for its generalizability. We also highlight
that as we incorporate the proposed spatial and class ag-
gregation techniques, our approach (V) outperforms (II),
demonstrating the effectiveness of our design. Finally, (VI)
shows that our embedding guidance further improves per-
formance across all the benchmarks. Furthermore, we pro-
vide quantitative results of adopting the upsampling de-
coder in Table 5. The results show consistent improvements
across all the benchmarks.

Analysis on fine-tuning of CLIP. In this section, we an-
alyze the effects and methods of fine-tuning of the encoders
of CLIP. In Table 6, we report the results of different ap-
proaches, which include the variant (I): without fine-tuning,
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Methods A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b #param. Memory
(M) (GiB)

(I) Freeze 10.4 15.0 31.8 52.5 92.2 71.3 5.8 20.0
(II) Prompt 8.8 14.3 30.5 55.8 93.2 74.7 7.0 20.9
(III) Full F.T. 13.6 22.2 34.0 61.1 97.3 79.7 393.2 26.8
(IV) Attn. F.T. 15.7 23.7 37.1 63.1 97.1 81.5 134.9 20.9
(V) QK F.T. 15.3 23.0 36.3 62.0 95.9 81.9 70.3 20.9
(VI) KV F.T. 16.1 23.8 37.6 62.4 96.7 82.0 70.3 20.9

(VII) QV F.T. (Img.) 13.9 22.8 35.1 62.0 96.3 82.0 56.7 20.9
(VIII) QV F.T. (Txt.) 14.7 22.2 35.1 60.0 95.8 80.3 19.9 20.0
(IX) QV F.T. (Both) 16.0 23.8 37.9 63.3 97.0 82.5 70.3 20.9

Table 6. Analysis of fine-tuning methods for CLIP. We addition-
ally note the number of learnable parameters of CLIP and memory
consumption during training. Our method not only outperforms
full fine-tuning, but also requires smaller computation.

Unseen Classes : arcade machine | lamp
Seen Classes : sky | person | sea 

(a) CLIP

machine | lamp | computer | minibike | flag
sea | rock | flower     

(b) Fine-tuned CLIP

Figure 6. Effects of fine-tuning CLIP. We show the t-SNE [50]
visualization of CLIP image embeddings based on its predictions.
In contrast to (a), we observe well-grouped clusters in (b), showing
the adaptation of CLIP to segmentation for both seen and unseen
classes.

(II): adopting Prompt Tuning [23, 68], (III): fine-tuning the
entire CLIP, (IV): fine-tuning the attention layer only [49],
(V): fine-tuning query and key projections only, (VI): fine-
tuning key and value projections only, (VII): our approach
for CLIP image encoder only, (VIII): our approach for text
encoder only, and (IX): our approach for both encoders.
Note that both image and text encoders are fine-tuned in
(I-VI). Overall, we observed that fine-tuning enhances the
performance of our framework. Among the various fine-
tuning methods, fine-tuning only the query and value pro-
jection yields the best performance improvement while also
demonstrating high efficiency. Additionally, as can be seen
in (VII-IX), fine-tuning both encoders leads to better per-
formance compared to fine-tuning only one of them in our
framework.

In Fig. 6, we show the t-SNE [50] visualization of the
dense image embeddings of CLIP within the A-150 [65]
dataset. We color the embeddings based on the prediction
with text classes. From (a), we can observe that the clusters
are not well-formed for each classes, due to the image-level
training of CLIP. In contrast, we observe well-formed clus-
ters in (b) for both seen and unseen classes, showing the
adaptation of CLIP for the downstream task.

Training with various datasets. In this experiment, we
further examine the generalization power of our method in
comparison to other methods [9, 56] by training our model
on smaller-scale datasets, which include A-150 and PC-

Methods Training dataset A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

ZegFormer COCO-Stuff 5.6 10.4 18.0 45.5 89.5 65.5
ZSseg COCO-Stuff 7.0 9.0 20.5 47.7 88.4 67.9
CAT-Seg (ours) COCO-Stuff 12.0 19.0 31.8 57.5 94.6 77.3

ZegFormer A-150 6.8 7.1 33.1 34.7 77.2 53.6
ZSseg A-150 7.6 7.1 40.3 39.7 80.9 61.1
CAT-Seg (ours) A-150 14.4 16.2 47.7 49.9 91.1 73.4

ZegFormer PC-59 3.8 8.2 13.1 48.7 86.5 66.8
ZSseg PC-59 3.0 7.6 11.9 54.7 87.7 71.7
CAT-Seg (ours) PC-59 9.6 16.7 27.4 63.7 93.5 79.9

Table 7. Training on various datasets. CLIP with ViT-B is used
for all methods. Our model demonstrates remarkable generaliza-
tion capabilities even on relatively smaller datasets. The scores
evaluated on the same dataset used for training are colored in gray.

Methods ZegFormer ZSSeg OVSeg CAT-Seg (Ours)

# of learnable params. (M) 103.3 102.8 408.9 70.3
# of total params. (M) 531.2 530.8 532.6 433.7
Training time (min) 1,148.3 958.5 - 875.5
Inference time (s) 2.70 2.73 2.00 0.54
Inference GFLOPs 19,425.6 22,302.1 19,345.6 2,121.1

Table 8. Efficiency comparison. All results are measured with a
single RTX 3090 GPU.

59, that poses additional challenges to achieve good perfor-
mance. The results are shown in Table 7. As shown, we find
that although we observe some performance drops, which
seem quite natural when a smaller dataset is used, our work
significantly outperforms other competitors. These results
highlight the strong generalization power of our framework,
a favorable characteristic that suggests the practicality of
our approach.

Efficiency comparison. In Table 8, we thoroughly com-
pare the efficiency of our method to recent methods [9, 30,
56]. We measure the number of learnable parameters, the
total number of parameters, training time, inference time,
and inference GFLOPs. Our model demonstrates strong ef-
ficiency in terms of both training and inference. This effi-
ciency is achieved because our framework does not require
an additional mask generator [9].

5. Conclusion

In conclusion, we introduce a cost aggregation framework
for open-vocabulary semantic segmentation, aggregating
the cosine-similarity scores between image and text embed-
dings of CLIP. Through our CAT-Seg framework, we fine-
tune the encoders of CLIP for its adaptation for the down-
stream task of segmentation. Our method surpasses the pre-
vious state-of-the-art in standard benchmarks and also in
scenarios with a vast domain difference. The success in di-
verse domains underscores the promise and potential of our
cost aggregation framework in advancing the field of open-
vocabulary semantic segmentation.
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