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Abstract

We present a new open-vocabulary detection framework.
Our framework uses both image-level labels and detailed
detection annotations when available. Our framework pro-
ceeds in three steps. We first train a language-conditioned
object detector on fully-supervised detection data. This de-
tector gets to see the presence or absence of ground truth
classes during training, and conditions prediction on the
set of present classes. We use this detector to pseudo-
label images with image-level labels. Our detector pro-
vides much more accurate pseudo-labels than prior ap-
proaches with its conditioning mechanism. Finally, we
train an unconditioned open-vocabulary detector on the
pseudo-annotated images. The resulting detector, named
DECOLA, shows strong zero-shot performance in open-
vocabulary LVIS benchmark as well as direct zero-shot trans-
fer benchmarks on LVIS, COCO, Object365, and OpenIm-
ages. DECOLA outperforms the prior arts by 17.1 APrare

and 9.4 mAP on zero-shot LVIS benchmark. DECOLA
achieves state-of-the-art results in various model sizes, ar-
chitectures, and datasets by only training on open-sourced
data and academic-scale computing. Code is available at
https://github.com/janghyuncho/DECOLA.

1. Introduction
Object detection has seen immense progress over the past
decade. Classical object detectors reason over datasets of
fixed predefined classes. This simplifies the design, train-
ing, and evaluation of new methods, and allows for rapid
prototyping [2–5, 17, 18, 25, 37, 42, 60, 70, 72, 75]. How-
ever, it complicates deployment to downstream applica-
tions too. A classical detector requires a new dataset to
further finetune for every new concept it encounters. Col-
lecting sufficient data for every new concept is not scal-
able [20]. Open-vocabulary detection offers an alterna-
tive [19, 43, 61, 65, 66, 73]. Open-vocabulary detectors
reason about any arbitrary concept with free-form text,
using the generalization ability of vision-language mod-
els. Yet, common open-vocabulary detectors reuse clas-
sical detectors and either replace the last classification layer
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Figure 1. An illustration of how standard open-vocabulary detec-
tors and DECOLA generate pseudo-labels using image-level data.
Standard detectors use image-level information later in the pipeline
after initial box proposals, which may result in low coverage of
unseen classes (e.g., “mentos” and “cola”). DECOLA adjusts the
prediction to the information and ensures sufficient coverage.

with [19, 43, 66, 73], or fuse box feature with [31, 65] text
representation from pretrained vision-language model. The
inner workings of the detector remain unchanged.

In this paper, we introduce a transformer-based object
detector that adjusts its inner workings to any arbitrary set
of concepts represented in language. The detector considers
only the queried set of concepts as foreground and disre-
gards any other objects as background. It learns to adapt
detection to the language embedding of queried concepts at
run-time. Specifically, the detector conditions proposal gen-
eration with respect to the text embedding of each queried
concept and refines the conditioned proposals into predic-
tions. Our detection transformer conditioned on language
(DECOLA) offers a powerful alternative to classical architec-
tures in open-vocabulary detection. Adapting the detector to
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language leads to stronger generalization to unseen concepts,
and largely enhances self-training on weakly-labeled data.

DECOLA’s ability to readily adapt to any queried concepts
makes it particularly suitable for pseudo-labeling weakly-
labeled data. Internet data, specifically images with paired
text, is highly abundant and semantically rich [50, 51, 53].
The best vision models today build on this massive amount
of weakly labeled data [10, 13, 24, 33, 34, 46, 67]. DECOLA
leverages the same data to produce high-quality object de-
tection labels from image-level annotations alone. DECOLA
takes the image-level tags or text descriptions from the
weakly labeled data and generates conditioned predictions
as pseudo-labels. It efficiently processes multiple texts in
parallel and only adds minimal computational overhead com-
pared to the standard pseudo-labeling process. We finetune
DECOLA on this rich detection dataset of pseudo-annotations
and achieve the state-of-the-art open-vocabulary detector.

We evaluate our detector on popular open-vocabulary de-
tection benchmarks on the LVIS dataset [19, 20, 66]. The
final model improves the state-of-the-art methods by 4.4
and 4.9 APnovel on open-vocabulary LVIS [19] benchmark,
and 5.9 and 5.4 APrare on standard LVIS [20] benchmark,
with ResNet-50 [21] and Swin-B [39] backbones, respec-
tively. Our largest model with Swin-L achieves 10.4 APrare
and 3.6 mAP improvement. Furthermore, DECOLA largely
outperforms the state-of-the-art for direct zero-shot trans-
fer benchmark on LVIS, by 12.0 and 17.1 APrare on LVIS
minival and LVIS v1.0, respectively. DECOLA consistently
improves frequent, common, and rare classes altogether for
different backbones and detection frameworks. Much of this
improvement is driven by stronger pseudo-labeling capabili-
ties. All our models are trained using open-sourced datasets
with academic-scale computing. We open-source our code,
pseudo-annotations, and checkpoints of all the model scales.

2. Related Work
Open-vocabulary detection aims to detect objects of cate-
gories beyond the vocabulary of the training classes. A com-
mon solution is to inject language embeddings of class names
in the last classification layer. OVR-CNN [66] pretrains a
detector on image-caption data using BERT model [11] as
language embedding. ViLD [19] trains a detector with CLIP
text encoder [46] as language embedding with additional
knowledge distillation [23] between predicted box features
and the image encoder of CLIP. Detic [73] improves the
above approaches through weakly-supervised learning on
image-level annotations. RegionCLIP [71] introduces an
intermediate pretraining step to better align CLIP to box fea-
tures. BARON [61] improves the alignment between text and
image encoders by extracting bag of regions as additional
supervision. F-VLM [31] simplifies the training pipeline
of open-vocabulary detection and explores the limit of the
frozen vision-language model. All of the models above take

the design of the object detector as granted, and inject lan-
guage in the last classification layer of the network. We
take a different approach and design a detector that adapts
predictions to particular categories of interest.
Open-vocabulary DETR integrates DETR architecture into
open-vocabulary detection. OWL [43] introduces a simple
ViT architecture using pretrained CLIP and finetune with the
DETR objective. OWLv2 uses self-training to further im-
prove the performance [41]. OV-DETR [65] fuses features of
a pretrained CLIP model with DETR object queries. Archi-
tecturally, OV-DETR is closest to DECOLA. Both OV-DETR
and DECOLA condition predictions on the text representation
of classes. OV-DETR uses the original DETR queries and
expands each with a CLIP feature per class for all classes.
This leads to a quadratic number of queries, growing with the
original DETR queries and with the classes considered. On
the other hand, DECOLA explicitly controls the first-stage
predictions (proposals) by formulating the scoring function
to respect to the text embedding of each queried class at
run-time. We visualize this difference in Figure ?? in the
supplementary. The advantage is that we entirely remove
inter-class competition and process a manageable amount
of queries each focusing on a specific class, and running as
fast as the vanilla Deformable DETR. This ability to freely
adjust inner workings deviates DECOLA from prior works; it
expands detection data through high-quality pseudo-labeling
and achieves state-of-the-art results.
Large-vocabulary object detection shares similar goals
with open-vocabulary detection. Both learn from natu-
rally long-tail data over large vocabularies. Vanilla large-
vocabulary detectors are often ill-calibrated: The detec-
tor’s final classification layer favors frequently seen ob-
jects over rare ones. This imbalance is usually addressed
through a change in loss [7, 55–57, 72], or leveraging ad-
ditional weakly labeled data for self-training [8, 16, 68,
76]. In large-vocabulary detection, R-CNN-based frame-
works [2, 4, 17, 18, 72] dominate despite DETR-style ar-
chitectures [5, 25, 44, 70] having long surpassed them on
standard benchmarks [36]. DETR automatically assigns
object queries to output classes, and thus it learns to more
heavily focus queries on common classes. We show that
language-conditioning helps address this calibration issue.
Specifically, it removes inter-class competition in the train-
ing objective as queries are no longer shared across cate-
gories. As a result, DECOLA equally focuses on as many
rare classes as frequent ones whenever they are present in an
image. This yields a DETR-style detector that is competitive
with the best R-CNN-based large-vocabulary detectors.

3. Preliminaries
Detection transformers (DETR) [3] build an object detec-
tion pipeline as a single feed-forward network. The network
transforms object queries, arbitrary feature vectors, into la-
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Figure 2. Overview of DECOLA Phase 1 for conditioned prediction (top) and Phase 2 for open-vocabulary detection (bottom). For language-
conditioned detection, each text embedding directly parameterizes the objectness function for each class. In Phase 2, the language-condition
reads “an object” instead of particular class names, and predicts multi-class scores over all classes after decoding layers.

beled bounding boxes through a series of cross-attention
layers in a decoder architecture. Vanilla DETR [3] learns
object queries as free-form parameters, while modern DE-
TRs architectures [25, 37, 60, 70, 75] adopt a two-stage
paradigm similar to RCNNs [48]. This query mechanism
controls much of the inner workings of the detector. Queries
determine what image regions the detector focuses on, and
what object classes are prioritized.
Query selection. Modern DETR architectures use image-
dependent query selection, analogous to R-CNN’s proposal
generation [48]. An objectness function s scores each grid
location (i, j) in the image using a feature xi,j extracted
from the transformer encoder. The top-k scored regions
proceed to the second stage as object queries Q:

s(xi,j) = ⟨xi,j , w⟩, Q = topkxi,j
(s(xi,j)). (1)

Here, w are the parameters of the objectness predictor. Each
selected query produces a series of predictions that are re-
fined over multiple iterations, similar to Cascade R-CNN [2].
The final prediction p⃗ contains scores over all classes C and
an associated box. At a high level, DETR and R-CNNs share
the same motivation: first, localize all objects in a scene,
then refine their predictions.
Training objective. During training, DETR assigns each
object query to an object or marks it as background. This
allows DETR to learn non-overlapping object queries with-
out post-processing such as non-maximum-suppression. The
Hungarian matching algorithm finds the optimal assignment
between all predictions P and all ground truth G, minimiz-
ing the loss function as matching cost:

σ∗ = argmin
σ∈S

ℓ(P,G|σ) (2)

where S captures all possible assignments from P to G.
For each assigned prediction, the loss ℓ maximizes its class
log-likelihood and fits its bounding box. For unassigned
predictions, the loss ℓ reduces both the objectness score s
and class log-likelihood for all classes.

4. DECOLA
Our detection transformer conditioned on language,
DECOLA, changes the DETR architecture in one remark-
able way: Object queries are conditioned on a language
embedding. Figure 2 illustrates this change. This simple
change has a few important implications: First, it allows the
language embedding to control and focus queries to localize
on the concepts at hand. Second, it removes any contention
between different object classes. Each class present in the
image uses the same amount of queries. Third, it generalizes
to unseen classes by leveraging semantic knowledge encoded
in language embedding throughout the detection pipeline.
In the remainder of this section, we highlight the changes
in the architecture and training objective for conditioning
(DECOLA Phase 1), and self-training on image-level data for
open-vocabulary detection (DECOLA Phase 2).
Language-conditioned query selection. DECOLA condi-
tions queries to a specific object category by modeling the
objectness function as a similarity score between a region
feature xi,j and a text representation of a category name t(y)
using their cosine similarity:

sy(xi,j) =
⟨xi,j , t(y)⟩
∥xi,j∥∥t(y)∥

, Qy = topkxi,j
(sy(xi,j)) (3)

The above objective avoids any inter-class calibration issue
common in imbalanced data [7, 55, 57]. Queries do not
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compete, as DECOLA independently selects top-k scoring re-
gions Qy for each class y. All queries proceed to the second
stage in parallel. A memory-efficient attention mechanism
isolates interaction within each class. After a series of decod-
ing layers, each language-conditioned query predicts a single
scalar score, corresponding to the likelihood of the class y,
and the associated box. The overall architecture mirrors the
two-stage deformable DETR [75] with two modifications: a
language-conditioned query, and a binary output classifier.
Memory-efficient modeling. DECOLA uses n = |Qy|
queries per class for K classes. Generally, n is smaller than
the total number of queries |Q| of a standard DETR model.
However, since we produce n queries per class, the total
number of queries in DECOLA is much larger |Q| ≪ nK.
A naive implementation of the DETR decoder is unable
to cope with the O(n2K2) memory requirements of the
self-attention layers in the transformer decoder. We thus
modify the self-attention formulation to isolate it within
each class, reducing the memory cost to O(n2K). The
actual implementation uses standard self-attention with a
reshaping operation. See Figure 2 (right) for the illustration.
DECOLA Phase 1: Train to condition on given concepts.
Our goal is to design DECOLA to take a set of class names
in an image (or a batch of images) and predict objects of
the corresponding classes or backgrounds. For each class y,
each conditioned query qy ∈ Qy therefore only predicts a
single presence score for class y and the box location. All
predictions from the conditioned queries Py are matched
with Gy , the subset of ground truth with class y:

σ∗
y = arg min

σ∈Sy

ℓ(Py, Gy|σ) (4)

where Sy is the set of possible matches between Py and Gy ,
and ℓ is the binary cross-entropy loss. Unlike the original
DETR objective in Eqn. 2, Eqn. 4 matches within the condi-
tioned class. It avoids inter-class competition during training
and simplifies the training objective. Instead, it learns to
adapt its predictions to y; the set of conditioned query qy
considers any objects other than y as background.
Pseudo-labeling weakly-labeled data. DECOLA produces
highly accurate predictions when conditioned on the exact
categories of a scene, as shown in Section 5.4. This makes
DECOLA a strong pseudo-labeler for weakly-labeled data
with either image tags or captions. We expand a large amount
of such data with pseudo-bounding boxes of DECOLA Phase
1 and self-train altogether to scale up open-vocabulary object
detection. Unlike other forms of weakly supervised learn-
ing such as knowledge distillation [19] and online pseudo-
labeling [61, 73], we simply generate labels for all images
offline and jointly train over all pseudo-labeled data using
the regular detection losses without any additional compli-
cation or slowdown. For each image and class y, DECOLA
encodes the class’ language feature and predicts a set of de-
tections Py . We simply choose the most confident prediction.

Figure 4d shows our simple offline pseudo-labeling works
better than online pseudo-labeling.
DECOLA Phase 2: Train for open-vocabulary detection.
The advantage of DECOLA comes from adaptability to spec-
ified class names on a per-image basis. However, in open-
vocabulary detection, the set of test classes is neither known a
priori nor available per image. Hence, we convert DECOLA
into a general-purpose detector to detect all objects. We
condition DECOLA with “an object” as the text input,
and inject the class information in the second-stage classi-
fier. Figure 2 highlights this conversion. Since DECOLA is
trained to align image features to text embedding in both
the first and second stages, this change only introduces inter-
class calibration for multi-class object detection. We train
DECOLA with pseudo-labeled and human-labeled data as a
standard supervised detection training, using the standard
matching algorithm of DETR (Section 3). We do not in-
troduce any additional hyper-parameter specifically for the
weakly supervised learning [73] or design choices [31, 71],
extra loss functions such as alignment loss [61], nor a large
teacher model for knowledge distillation [19, 65]. Generat-
ing pseudo-labels with DECOLA Phase 1 runs as fast as a
regular detector and training Phase 2 is as easy as standard
detection training on a supervised dataset. At a high level,
DECOLA Phase 1 training objective optimizes for a strong
pseudo-labeler instead of a multi-class detector, which dif-
ferentiates DECOLA from prior works. Leveraging DECOLA
Phase 1 to expand weakly-labeled data is the key contribu-
tion to scaling up the final open-vocabulary object detection.

5. Experiments
We evaluate the effectiveness of DECOLA in two aspects:
(1) pseudo-labeling quality of DECOLA Phase 1 (Sec-
tion 5.4) and (2) benchmark evaluation (Section 5.3). We
consider three primary benchmarks to evaluate our final
model (DECOLA Phase 2): open-vocabulary LVIS [19], stan-
dard LVIS [20], and direct zero-shot evaluation to LVIS,
COCO [36], Object365 [52], and OpenImages [32].

5.1. Experimental Setup

Datasets and benchmarks. We mainly evaluate our method
on the LVIS dataset [20], a large-vocabulary instance seg-
mentation and object detection dataset with 1203 naturally
distributed object categories. LVIS splits categories into fre-
quent, common, and rare. For open-vocabulary LVIS, we
combine frequent and common categories into LVIS-base
and consider the rare categories as novel concepts used for
testing only [19]. For standard LVIS, we train and evalu-
ate all classes. Direct zero-shot transfer evaluates models
trained on different detection data (e.g., Object365) and other
weakly-labeled data without any prior knowledge about the
target dataset such as the set of classes or object frequency.
In this benchmark, we test DECOLA’s generalization to dif-
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method data APbox
novel APbox

c APbox
f mAPbox

ResNet-50 (1K)
OV-DETR† [65] LVIS-base, IN-21K 18.0 24.8 31.8 26.4
baseline LVIS-base 10.2 30.9 38.0 30.1
baseline + self-train LVIS-base, IN-21K 19.2 31.7 37.1 31.7
DECOLA Phase 2 LVIS-base, IN-21K 23.8 (+4.6) 34.4 (+2.7) 38.3 (+1.2) 34.1 (+2.4)
ResNet-50
baseline LVIS-base 9.4 33.8 40.4 32.2
baseline + self-train LVIS-base, IN-21K 23.2 36.5 41.6 36.2
DECOLA Phase 2 LVIS-base, IN-21K 27.6 (+4.4) 38.3 (+1.8) 42.9 (+1.3) 38.3 (+2.1)
Swin-B
baseline LVIS-base 16.2 43.8 49.1 41.1
baseline + self-train LVIS-base, IN-21K 30.8 43.6 45.9 42.3
DECOLA Phase 2 LVIS-base, IN-21K 35.7 (+4.9) 47.5 (+3.9) 49.7 (+3.8) 46.3 (+4.0)
Swin-L
DITO⋆ [28] O365, LVIS-base, DataComp-1B 45.8 - - 44.2
OWLv2‡ [41] O365, LVIS-base, VG, WebLI 45.9 - - 50.4
baseline O365, LVIS-base 21.9 53.3 57.7 49.6
baseline + self-train O365, LVIS-base, IN-21K 36.5 53.5 56.5 51.8
DECOLA Phase 2 O365, LVIS-base, IN-21K 46.9 (+10.4) 56.0 (+2.5) 58.0 (+1.5) 55.2 (+3.6)

Table 1. Open-vocabulary LVIS using DETR architectures. †: we further finetune the official OV-DETR model trained on LVIS-base by
self-training on ImageNet-21K data similar to “baseline + self-train” and DECOLA. ‡: uses CLIP L/14, which is comparable to Swin-L
backbone. ⋆: is based on Mask R-CNN with ViT L/16. We report the improvement between “baseline + self-train” to DECOLA in green.
Last 4 rows compare DECOLA to Swin-L or equivalent scale of models that use additional detection data (e.g., Objects365, VG [30]) and
billion-scale weakly-labeled data (DataComp-1B [15], WebLI [6]) for training.

method framework APbox
novel mAPbox APmask

novel mAPmask

ViLD [19] Mask R-CNN 16.7 27.8 16.6 25.5
RegionCLIP [71] Mask R-CNN - - 17.1 22.5
DetPro [12] Mask R-CNN 20.8 28.4 19.8 25.9
PromptDet [14] Mask R-CNN 21.4 25.3 - -
F-VLM [31] Mask R-CNN - - 18.6 24.2
BARON [61] Mask R-CNN 23.2 29.5 22.6 27.6
OADP [58] Mask R-CNN 21.9 28.7 21.7 26.6
EdaDet [54] Mask R-CNN - - 23.7 27.5
VLDet [35] CenterNet2 - - 21.7 30.1
CORA+ [62] CenterNet2 28.1 - - -
Rasheed et al. [47] CenterNet2 - - 25.2 32.9
Detic-base [73] CenterNet2 17.6 33.8 16.4 30.2
Detic [73] CenterNet2 26.7 36.3 24.6 32.4
DECOLA labels CenterNet2 29.5 37.7 27.0 33.7

(a) Comparison with ResNet-50 backbone.

method backbone APbox
novel mAPbox APmask

novel mAPmask

RegionCLIP [71] R50×4 - - 22.0 32.3
CondHead [59] R50×4 24.1 33.7 24.4 32.0
ViLD [19] EN-B7 - - 26.3 29.3
OWL-ViT [43] ViT-L/14 25.6 34.7 - -
F-VLM [31] R50×64 - - 32.8 34.9
VLDet [35] Swin-B - - 26.3 38.1
3Ways [1] NFNet-F6 30.1 44.6 - -
RO-VIT [29] ViT-L/16 32.1 34.0 - -
CFM-ViT [27] ViT-L/16 35.6 38.5 33.9 36.6
DITO [28] ViT-B/16 34.9 36.9 32.5 34.0
CoDet [40] Swin-B - - 29.4 39.2
Detic-base [73] Swin-B 24.6 43.0 21.9 38.4
Detic [73] Swin-B 36.6 45.7 33.8 40.7
DECOLA labels Swin-B 38.4 46.7 35.3 42.0

(b) System-level comparison.

Table 2. Open-vocabulary LVIS using Mask R-CNN and CenterNet2 detectors. Methods in both tables use LVIS-base as the only
human-labeled data for fair comparison. For system-level comparison (right), we include methods with non R-CNN architectures such as
OWL-ViT [43]. The results show the impact of high-quality pseudo-labels generated by DECOLA Phase 1.

ferent domains. We evaluate DECOLA on LVIS, COCO [36],
Object365 [52], and OpenImages [32] in a fully zero-shot
manner. All our models use the ImageNet-21K [50] dataset
as weakly labeled data, which contains 14M of object-centric
images annotated with a single class.

Evaluation metrics. We evaluate DECOLA on APnovel/rare,
APc, APf, and mAP following the LVIS evaluation met-
ric [20]. We highlight the results in all three groups since
we believe open-vocabulary detectors should not compen-
sate for the performance of common/frequent classes for
novel/rare classes. We evaluate both APbox and APmask

for object detection and instance segmentation. For zero-
shot transfer benchmark with COCO and Object365, we

use AP, AP50, and AP75 following prior work [19, 73].
For OpenImages, we report APflat

50 on the expanded label
space [73, 74]. For zero-shot transfer to LVIS, we consider
LVIS minival [26] and standard LVIS v1.0 validation set
and report APfixed [9] following the prior works [26, 34, 38].
In addition, we pursue a more direct measurement of the
generated pseudo-labeling quality. Hence, we define con-
ditioned mAP/AR (c-mAP/AR) and compare it to baseline
open-vocabulary detectors. c-mAP measures the detection
performance in mAP when the detector is provided the set
of ground truth classes in each image. For example in Fig-
ure 1, both detectors use “cat”, “mentos” and “cola” as
given. This extra information is used to select scores to rank
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method data APbox
rare mAPbox

ResNet-50
baseline LVIS 26.3 35.6
baseline + self-train LVIS, IN-21K 30.0 36.6
DECOLA Phase 2 LVIS, IN-21K 35.9 (+5.9) 39.4 (+2.8)
Swin-B
baseline LVIS 38.3 44.5
baseline + self-train LVIS, IN-21K 42.0 45.2
DECOLA Phase 2 LVIS, IN-21K 47.4 (+5.4) 48.3 (+3.1)
Swin-L
baseline O365, LVIS 49.3 54.4
baseline + self-train O365, LVIS, IN-21K 48.7 53.4
DECOLA Phase 2 O365, LVIS, IN-21K 54.9 (+6.2) 56.4 (+3.0)

(a) Standard LVIS with DETR.
method APbox

rare mAPbox APmask
rare mAPmask

ResNet-50
Detic-base [73] 28.2 35.3 25.6 31.4
Detic [73] 31.4 36.8 29.7 33.2
DECOLA labels 35.6 (+4.2) 38.6 (+1.8) 32.1 (+2.4) 34.4 (+1.2)
Swin-B
Detic-base [73] 39.9 45.4 35.9 40.7
Detic [73] 45.8 46.9 41.7 41.7
DECOLA labels 47.6 (+1.8) 48.5 (+1.6) 43.7 (+2.0) 43.6 (+1.9)

(b) Standard LVIS with CenterNet2.

Table 3. Standard LVIS benchmark. DECOLA shows consistent
improvement over different model scales and architectures.

the final predictions (baselines), or directly condition the
detector (DECOLA). We analyze the model’s behavior and
label quality in Section 5.4 and Section ?? in supplementary.

5.2. Models

DECOLA is based on two-stage Deformable DETR [75]. As
described in Section 4, the first-stage objectness function for
query selection is replaced by a similarity score between the
image feature and the CLIP text embedding of each class
name. We train the detector with the improved DETR train-
ing recipe [44, 70]: look-forward-twice, larger MLP hidden
dimension, no dropout, etc. We consider four backbones:
a ResNet-50 [21], Swin-B and L for all LVIS benchmarks,
and Swin-T and L for the direct zero-shot transfer. Unless
otherwise mentioned, all backbones are pretrained on the
ImageNet-21K dataset [49]. Next, we describe our key base-
line models to directly compare to DECOLA.
Baseline. We design a baseline open-vocabulary detector to
closely compare to DECOLA. Inspired by Detic [73], base-
line replaces classification layers with the class embedding
of the pretrained CLIP text encoder and is trained using Fed-
erated Loss [72]. DECOLA Phase 1 and baseline are trained
using human-labeled data (e.g., LVIS-base). All other set-
tings (training dataset, number of training iterations, etc.)
are kept the same between DECOLA and baseline.
Baseline + self-train. Similar to DECOLA Phase 2, we self-
train baseline on weakly-labeled data. For the self-training
algorithm, we use online self-training with max-size loss
from Detic [73] as baseline comparison (baseline + self-
train) to DECOLA Phase 2. We tested max-size and max-

score losses from Detic [73] (online pseudo-labeling) as well
as offline pseudo-labeling similar to DECOLA, and max-size
loss consistently performed the best.
DECOLA labels. We train a two-stage detector for broader
comparison: CenterNet2 [72]. Specifically, we use De-
tic’s baseline model (“Detic-base”), a CenterNet2 trained on
LVIS-base with CLIP embedding, and finetune on pseudo-
labeled ImageNet-21K data using DECOLA Phase 1 of the
same backbone size. We denote this as “DECOLA labels”.
Efficient modeling. For DECOLA Phase 1, we use n = 300
queries per class. One memory and time bottleneck during
DECOLA training is the first-stage loss computation. The
original Deformable DETR computes Hungarian matching
with all pixels to all objects in a class-agnostic manner, which
is
∑

l∈L Hl ·Wl predictions. To reduce the memory and time
cost, we only consider the top K = 10, 000 confident pixels
for each class y during the first-stage matching and loss
computation. Together with memory-efficient self-attention
(Sec. 4), the training time and memory cost of DECOLA
increases by less than 20% over the baselines (See Table 6).
Training details. Following Detic [73], we train DECOLA
Phase 1 and baseline 4× on LVIS-base, and further fine-
tune for another 4× on ImageNet-21K data with pseudo-
labeling. For training CenterNet2 with DECOLA labels, we
combine pseudo-labels from different image resolutions for
h ∈ {240, 280, 320, 360, 400}, where h is the shorter side of
the image. Note that this mimics the random image resizing
data augmentation during standard detection training. We
use Detectron2 [63] based on PyTorch [45] in all of the ex-
periments. More details are in Section ?? of supplementary.

5.3. Main Results

Open-vocabulary LVIS. Table 1 compares DECOLA to
baseline as well as state-of-the-art DETR-based open-
vocabulary detectors; OV-DETR [65], OWLv2 [41], and
baseline + self-train. For a fair comparison, we further fine-
tune the official OV-DETR model checkpoint on ImageNet-
21K for 4× schedule same as DECOLA Phase 2 and baseline
+ self-train. For all backbone scales, we show consistent
improvement over other methods. Notably, baseline + self-
train exhibits degradation in frequent classes as a trade-off
with improved novel classes, which is commonly observed
behavior in other open-vocabulary detection methods, too.
DECOLA improves all categories consistently, which high-
lights the quality of our pseudo-labels. In the last rows with
the Swin-L backbone, we report the result of two concur-
rent works, DITO [28] (Mask R-CNN-based) and OWLv2,
to compare to the method that uses additional detection
data (Object365) and billion-scale web data (DataComp-
1B [15], WebLI [6]). DECOLA demonstrates large improve-
ment over the state-of-the-arts despite using orders of mag-
nitude smaller training data and compute resources. To
further examine DECOLA’s scalability, we test the pseudo-
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LVIS minival LVIS v1.0 val
method data APbox

rare APbox
c APbox

f mAPbox APbox
rare APbox

c APbox
f mAPbox

Swin-T
MDETR⋆ [26] LVIS, GoldG, RefC 20.9 24.9 24.3 24.2 7.4 22.7 25.0 22.5
GLIP [34] O365, GoldG, Cap4M 20.8 21.4 31.0 26.0 10.1 12.5 25.5 17.2
GroundingDINO [38] O365, GoldG, Cap4M 18.1 23.3 32.7 27.4 - - - -
GLIPv2 [69] O365, GoldG, Cap4M - - - 29.0 - - - -
MQ-GroundingDINO† [64] O365, GoldG, Cap4M, LVIS-5VQ 21.7 26.2 35.2 30.2 12.9 17.4 31.4 22.1
MQ-GLIP† [64] O365, GoldG, Cap4M, LVIS-5VQ 21.0 27.5 34.6 30.4 15.4 18.4 30.4 22.6
DECOLA Phase 2 O365, IN-21K‡ 32.8 32.0 31.8 32.0 27.2 24.9 28.0 26.6
∆ (+12.0) (+8.7) - (+3.0) (+17.1) (+12.4) (+2.5) (+9.4)
Swin-L
GLIP [34] FourODs, GoldG, Cap24M 28.2 34.3 41.5 37.3 17.1 23.3 35.4 26.9
GroundingDINO [38] O365, OI, GoldG, Cap4M, COCO, RefC 22.2 30.7 38.8 33.9 - - - -
MQ-GLIP† [64] FourODs, GoldG, Cap24M, LVIS-5VQ 34.5 41.2 46.9 43.4 26.9 32.0 41.3 34.7
OWLv2 [41] O365, VG, WebLI 39.0 - - 38.1 34.9 - - 33.5
DECOLA Phase 2 O365, OI, IN-21K‡ 41.5 38.0 34.9 36.8 32.9 29.1 30.3 30.2
∆ (+2.5) (+3.7) - - - (+5.8) - -

Table 4. Direct zero-shot transfer to LVIS. †: methods use 5 per-class vision queries of LVIS dataset (denoted as “LVIS-5VQ”), which use
images and annotations to extract instance-level features. ⋆: MDETR uses ResNet-101 backbone and trained fully-supervised on LVIS.
Results that use LVIS data are in gray . ‡: Full ImageNet-21K. No LVIS information is used in DECOLA.

COCO O365 OI
method AP AP50 AP75 AP AP50 AP75 APflat

50

R-CNNs
ViLD [19] 36.6 55.6 39.8 11.8 18.2 12.6 -
F-VLM [31] 32.5 53.1 34.6 11.9 19.2 12.6 -
DetPro [12] 34.9 53.8 37.4 12.1 18.8 12.9 -
BARON [61] 36.3 56.1 39.3 13.6 21.0 14.5 -
Detic [73] 39.1 56.3 42.2 14.2 20.7 15.2 42.9
DETRs
OV-DETR [65] 38.1 58.4 41.1 - - - -
Detic [73] 39.8 56.6 43.3 14.5 21.4 15.5 41.6
DECOLA Phase 2 40.3 57.0 43.7 15.0 22.0 16.0 43.3

Table 5. Cross-dataset generalization benchmark on COCO,
Object365, and OpenImages. All models use a ResNet-50 backbone
and train on LVIS-base and weakly-labeled data.

train test
method time mem. time mem.
baseline 44 h 8.9 G 0.07 s/img 2.5 G
+ self-train 45 h 10.2 G 0.07 s/img 2.5 G
OV-DETR 73 h 22.0 G 6.4 s/img 3.4 G
DECOLA Phase 1 49 h 12.6 G - -
DECOLA Phase 2 45 h 8.9 G 0.07 s/img 2.8 G

Table 6. Efficiency. Training time is measured with 8 DGX V100
on ResNet-50, 2 images per-GPU. float16 is used in both train-
ing and testing. OV-DETR uses the original optimized inference.

labeling capability of DECOLA on R-CNN-based detectors
with DECOLA labels (Detic-base finetuned with our pseudo-
labels). In Table 2, we compare DECOLA labels to a broad
range of literature based on CenterNet2 [72] and Mask R-
CNN [22]. Table 2a compares methods with ResNet-50
backbone and Table 2b compares larger scale backbones for
system-level comparison. In both tables, DECOLA clearly
improve upon the state-of-the-art by large margins without
additional complication in training and bells-and-whistles.
Standard LVIS. Tables 3 evaluate DECOLA and baseline on
the standard LVIS benchmark, where all object categories
are used to fully supervise the detectors. Similar to the

open-vocabulary LVIS, we compare DETR architectures in
Table 3a and R-CNN architectures in Table 3b. Table 3a
shows that DECOLA remarkably improves baseline by 9.5,
9.1, and 5.6 points on APbox

rare, outperforming baseline + self-
train by 5.9, 5.4, and 6.2 APbox

rare for ResNet-50, Swin-B,
and Swin-L backbones, respectively. Similarly in Table 3b,
DECOLA labels further improves the baseline of Detic by
7.4 and 7.7 APbox

rare, and outperforms Detic [73] by 4.2 and 1.8
APbox

rare with ResNet-50 and Swin-B backbones, respectively.
Direct zero-shot evaluation. For direct zero-shot evaluation,
we train DECOLA with Swin-T [39] and use Object365 data
for Phase 1, and ImageNet-21K for Phase 2 (full dataset and
classes). We compare to MDETR [26], GLIP [34], Ground-
ingDINO [38], and MQ-Det [64] finetuned from GLIP and
GroundingDINO. Table 4 shows the results. DECOLA out-
performs the previous state-of-the-arts, by 12.0/17.1 APrare
and 3.0/9.4 mAP on LVIS minival and LVIS v1.0 val, respec-
tively. Note that all other methods use much richer detection
labels from GoldG data [26], a collection of grounding data
(box and text expression pairs) curated by MDETR. Further-
more, other benchmark methods show highly imbalanced
APrare and APf in both LVIS minival and LVIS v1.0 val
(10-20 points gap). We hypothesize that the large collec-
tion of training data coincides with LVIS vocabulary, as all
data follows a natural distribution of common objects. Also,
DECOLA enjoys significantly faster run-time compared to
all other models that undergo BERT encoding for grounding,
which requires more than 50 forward passes per image in
order to predict all LVIS categories. Similarly, our Swin-L
model outperforms GroundingDINO and GLIP by 19.3 and
13.3 APrare, respectively, despite much smaller training data
compared to FourODs [34] and match to OWLv2 with 10-B
private WebLI data [6]. Table 5 further examines the gener-
ality of DECOLA on different domains. DECOLA Phase 2
with ResNet-50 outperforms all other competitive baselines.
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Figure 3. Examples of prediction on unseen categories. Images from ImageNet-21K dataset. Boxes are the most confident prediction from
DECOLA and baseline. DECOLA conditions on the ground truth label, and baseline selects the max-score box of the ground truth class.
Images are all from unseen categories, which neither model was trained on. Green: DECOLA Phase 1 trained on LVIS-base. Red: baseline
trained on LVIS-base. Both models use a Deformable DETR detector with a ResNet-50 backbone. More in Fig. ?? and ?? of supplementary.

(a) c-AP for ResNet-50 (IN-1K) (b) c-AP for Swin-B (c) c-AR for 1st and 2nd stage boxes (d) online vs offline: c-AP@20

Figure 4. Analyzing DECOLA. All plots show the conditioned AP/AR for unseen classes. We compare DECOLA Phase 1 and baselines. We
highlight more detailed analyses about c-AP and c-AR in Section ??, Table ?? and ?? of the supplementary materials.

5.4. Analyses

In this section, we analyze the model’s behavior with condi-
tioned mAP/AR (c-AP/AR) (defined in Sec. 5.1).
Pseudo-labeling quality. Figure 4a and 4b compare
DECOLA Phase 1, OV-DETR, and baseline on c-AP for un-
seen classes. Compared to baseline and OV-DETR, DECOLA
Phase 1 generates much higher quality pseudo-labels, espe-
cially in low-shot regimes. See examples in Figure 3.
Impact of conditioning. In Figure 4c, we compare c-AR
of unseen classes. This measures the detector’s ability to lo-
calize objects of interest when pseudo-labeling. We observe
significant improvement in c-AR on both first-stage (propos-
als) and second-stage (predictions) due to our conditioning
mechanism. This result demonstrates the key difference
between DECOLA and other open-vocabulary detectors.
Pseudo-labeling algorithms. Figure 4d shows the c-AP
of baseline + self-train and DECOLA Phase 1 for unseen
classes with 20 predictions per-image. Each red bar indicates
the percent of training iteration during self-training. Online

self-labeling suffers a sharp drop during the early iterations,
and c-AP after full iterations still underperforms compared
to DECOLA Phase 1. DECOLA’s simple approach of offline
self-training is more stable and effective.

6. Conclusion

In this paper, we explore a new open-vocabulary detection
framework, DECOLA. It adjusts its inner workings to the
concepts that the user asks to reason over by conditioning
on a language embedding. Our detector generates high-
quality pseudo-labels on weakly labeled data through the
conditioning mechanism. We finetune it with the pseudo-
labels to build the state-of-the-art open-vocabulary detector.
Acknowledgement. We thank Xingyi Zhou, Yue Zhao, Jef-
frey Ouyang-Zhang, and Nayeon Lee for valuable feedback.
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