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Abstract

Video Frame Interpolation (VFI), which aims at gener-
ating high-frame-rate videos from low-frame-rate inputs, is
a highly challenging task. The emergence of bio-inspired
sensors known as event cameras, which boast microsecond-
level temporal resolution, has ushered in a transformative
era for VFI. Nonetheless, the application of event-based
VFI techniques in domains with distinct environments from
the training data can be problematic. This is mainly be-
cause event camera data distribution can undergo substan-
tial variations based on camera settings and scene condi-
tions, presenting challenges for effective adaptation. In this
paper, we propose a test-time adaptation method for event-
based VFI to address the gap between the source and target
domains. Our approach enables sequential learning in an
online manner on the target domain, which only provides
low-frame-rate videos. We present an approach that lever-
ages confident pixels as pseudo ground-truths, enabling
stable and accurate online learning from low-frame-rate
videos. Furthermore, to prevent overfitting during the con-
tinuous online process where the same scene is encountered
repeatedly, we propose a method of blending historical sam-
ples with current scenes. Extensive experiments validate the
effectiveness of our method, both in cross-domain and con-
tinuous domain shifting setups. The code is available at
https://github.com/Chohoonhee/TTA-EVF.

1. Introduction

Video Frame Interpolation (VFI) is a well-established prob-
lem in the field of computer vision, aiming to enhance
the temporal resolution of videos. In recent times, deep
learning-based VFI approaches [2, 3, 15, 20–22, 33, 35, 37,
38, 50, 60] have achieved remarkable performances across
various benchmark datasets. However, accurate motion es-
timation becomes challenging in scenes with complex and
non-linear motions due to the lack of information, often re-
sulting in the generation of erroneous inter frames.
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Figure 1. TTA-EVF efficiently produces high-quality results by
adapting the network to the target domain in an online manner, al-
leviating the need for offline data supply and addressing the perfor-
mance degradation observed when applying a well-trained event-
based VFI network to a domain with a different distribution.

To address the inherent lack of intermediate information
in frame cameras, recent researches [16, 24, 51, 52, 56] have
explored the potential of event cameras as a promising so-
lution for VFI, especially in scenarios involving complex
motion. Event cameras sense dynamic changes in pixel in-
tensity, triggering an event when the change surpasses a pre-
defined threshold. The incorporation of event cameras as
additional devices in VFI mitigates the challenges associ-
ated with modeling complex motion.

Typically, frame-based VFI methods [17, 33, 38]
are evaluated on test datasets (e.g., SNU-FILM [12],
X4K1000FPS [43]) with distributions different from their
training dataset (e.g., Vimeo90K [61]). Frame-based VFI
demonstrates a certain level of generalization ability even
without additional modules, providing evidence that it can
be applied to real scenario applications, such as dealing with
changes in camera devices. These device and environment
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variations are inherent in VFI, which must learn from High-
Frame-Rate (HFR) cameras and perform inference on Low-
Frame-Rate (LFR) cameras, making them unavoidable.

However, when training event-based VFI using a source
dataset and testing on a different domain, there is a sig-
nificant performance drop compared to frame-based ap-
proaches. This is attributed not only to the inherent noise
from external environment (e.g., illumination) but also to
the distribution variations due to different camera settings
(e.g., event trigger threshold). To address this, one can
utilize self-supervised learning [16, 39] with low-frame-
rate and event data from the target domain, but there is a
drawback in applying them online. In practical application,
event cameras exhibit continuous changes in distribution
with variations in lighting conditions. It is not feasible to
acquire new data for novel scenes each time they arise and
wait for the network to learn offline. In this regard, an on-
line adaptation of the network to the environment is essen-
tial from a practical perspective and is well-known as Test-
Time Adaptation (TTA) [47, 53, 63]. TTA assumes a setting
that does not allow access to source data and prefers online
learning for adaptation. In our case, the target domain lacks
ground-truth data, which means no high-frame-rate video is
available in the target domain.

In this paper, we propose Test-time Adaptation for
Event-based Video Frame Interpolation (TTA-EVF) to alle-
viate performance degradation in the face of domain shifts.
As shown in Fig. 1, when encountering a new domain with-
out performing adaptation, even well-trained networks ex-
hibit performance drops. In contrast, TTA-EVF reliably
and rapidly fine-tunes in the target domain through self-
training, even without high-frame-rate videos. For TTA in
event-based VFI, there are two main challenges: Firstly,
even without exposure to HFR videos in the target domain,
the network should adapt to the scene while simultaneously
learning knowledge for HFR generation from LFR data. To
address this challenge, we propose Reliable Pixel Sampling
(RPS), a self-training scheme for selecting pixels from gen-
erated HFR videos, utilizing a confidence estimation based
on a teacher-student framework [49]. The second challenge
is overfitting when continuously provided with data that has
a similar distribution within a successive sequence within
online learning. To mitigate this, we employ a memory
bank that stores only reliable samples from the generated
images. We then propose Patch-Mixed Sampling (PMS) by
blending reliable samples with current images, effectively
preventing overfitting through an augmentation approach.

The main contributions of our works are as follows: (I)
We propose a novel Test-Time Adaptation (TTA) frame-
work for event-based VFI. (II) We introduce a novel Event-
RGB Distribution Shift (ERDS) dataset for event-based
video frame interpolation, where the distribution of the
dataset is continually changing. (III) We compare our

method with existing works and demonstrate its superior-
ity by outperforming supervised methods.

2. Related Works
Event-based Video Frame Interpolation. Frame-based
VFI methods [2, 3, 15, 20–22, 33, 35, 37, 38, 50, 60] have
continuously achieved performance improvements; how-
ever, it still has weaknesses in handling complex motion
and requires motion approximation when synthesizing in-
termediate frames at arbitrary time. Event-based VFI meth-
ods [30, 41, 44, 45, 55, 59, 64, 65], which utilize event
cameras as an additional sensor [6, 7, 9, 28, 34, 45], en-
able not only handling complex motion but also interpo-
lating intermediate frames for irregular objects. However,
there is still room for improvement compared to frame-
based VFI methods. Typically, frame-based VFI methods
perform cross-domain performance evaluations, consider-
ing real scenario applications. Well-trained frame-based
VFI methods exhibit domain generalization ability, main-
taining considerable performance even on different domains
without the need for additional training process for adapta-
tion. On the other hand, event-based VFI experiences a sig-
nificant drop in performance when moving to different do-
mains [16]. Therefore, resolving cross-domain challenges
in event-based VFI is vital for widespread applications.
Test-Time Adaptation. Unlike Unsupervised Domain
Adaptation [8, 48, 58], which necessitates offline learning
for each domain change and relies on labeled data from the
source domain, Test-Time Adaptation (TTA) is more chal-
lenging setup as it adapts to the target domain without ac-
cessing source data. In recent times, the significance of data
privacy has escalated, leading to increased interest in TTA,
a source-free domain adaptation approach. This is primarily
due to the inefficiency of accessing source domain data dur-
ing inference. TTA is actively being researched in the image
domain [5, 14, 19, 27, 31, 32, 36, 40, 42, 47, 53, 63, 66], es-
pecially in areas like object recognition and segmentation.
While there is an approach of its application in event-based
visual recognition, Ev-TTA [23], there is still a lack of re-
search in the domain of video frame interpolation, particu-
larly in relation to events. The existing work, MetaVFI [11],
proposed for the frame-based VFI task, learns to esti-
mate scene-adaptive motion with minimal parameter up-
dates through meta-learning [13]. However, this method
is well-suited when there is not a significant domain gap
between training and testing. We demonstrate that this ap-
proach is suboptimal when applied to event-based VFI with
a substantial domain gap between the training and test sets.

We propose the first-ever Test-Time Adaptation (TTA)
approach for event-based Video Frame Interpolation (VFI).
This is essential because event distributions can vary sig-
nificantly due to external environmental factors and cam-
era parameter settings even when using the same camera.
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Figure 2. Overview of our Test-Time Adaptation for Event-based Video Frame Interpolation (TTA-EVF) framework. Our approach
involves four steps for test-time training in Ev-VFI: 1) We calculate the adaptive threshold, ρ, for RPS using the low frame rate image
triples, I0, I1, and I2 with interval events E0�1 and E2�1. 2) Reliable Pixel Sampling (RPS) is applied for arbitrary t0 between 0 and 1,
and arbitrary t1 between 1 and 2, and in this process, even without intermediate images for training, reliable pixels are estimated through
the student-teacher framework and self-training is performed. 3) Using the estimated intermediate frames Ît0 and Ît1 along with I1, we
form a new triplet, V , check if the entire sampled generated image is reliable, and in that case, update the memory bank. 4) Patch-Mixed
Sampling (PMS) regularizes the network by mixing the generated videos, V with videos from the memory bank, Ṽ .

Furthermore, our method follows the recent trend of TTA
by addressing the adaptation to unknown distribution shifts
encountered during test-time in an online manner.

3. Proposed Method
3.1. Overview

Given key frames I0, I1 and the inter-frame event stream
E0→1, Event-based Video Frame Interpolation (Ev-VFI)
networks aim to generate the intermediate frame It on an
arbitrary time t ∈ [0, 1]. Following the previous works,
we convert a event stream as a voxel grid [67]. We denote
Eta→tb as a voxel grid form between times ta and tb.

TTA-EVF adapts a pre-trained Ev-VFI network trained
on the source domain to a target domain with domain shift
in the device and setting. In the pre-training phase, we train
the network using source data with high-frame rate videos
in a supervised manner (Sec. 3.2). We then utilize this pre-
trained Ev-VFI network for test-time adaptation using target
data without accessing the source data (Sec. 3.3).

3.2. Pre-training on Source Dataset

In general, TTA methods perform test-time training stably
by updating only a subset of network parameters, such as
Batch Normalization (BN) [18]. As mentioned in [53], up-
dating the full parameters at test-time, especially in an on-
line manner, leads to instability and makes it challenging to
achieve optimal performance. However, in the case of low-
level vision tasks like VFI, normalization layer (e.g. BN)
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Figure 3. The architecture of Norm-Residual (NR) Block.

is often avoided by most networks [20, 24, 51] since it re-
moves range flexibility and can lead to a performance de-
crease [29]. Some alternatives for handling this issue in-
clude using slightly more flexible normalization techniques
(e.g. instance normalization) or selectively updating spe-
cific convolutional layers. Updating only the parameters of
the normalization layer in VFI can lead to sub-optimal per-
formance when there is significant variance between image
patches in the training and test environments. Conversely,
updating specific convolution layers with more parameters
can remove all statistical modulation, causing instability
during the test-time training process. To address this is-
sue, we propose a solution by designing a Norm-Residual
(NR) Block that includes both convolution and normaliza-
tion layers. This approach aims to strike a balance between
updating parameters effectively and maintaining statistical
modulation during the learning process.

As shown in Fig. 3, given a feature Z, NR Block first
split a feature into two feature maps Z(1) and Z(2) along the
channel dimension. The first map Z(1) is skipped to keep
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the context information, and rest feature Z(2) is normalized
by normalization layer. Then, we fuse the two features by
concatenate and convolutional layer. Finally, we apply a
element-wise summation with original feature Z to obtain
the output Ẑ. We use the group normalization [57] in nor-
malization layer, which shows the best performance in our
experiments. For efficiency, we exclusively deploy the NR
Block in the encoders of the networks, replacing the con-
ventional residual blocks of existing networks. Therefore,
TTA-EVF is a general and model-agnostic method specif-
ically crafted to be adaptable to any network architecture
used in Ev-VFI. Further details can be found in the supple.
Network Optimization. The modified Ev-VFI network
with the NR Block is trained on the source dataset using
ground truth with high-frame-rate videos. Specifically, we
optimize the Ev-VFI network, F , by the supervision as:

argmin
θ(F)

(LF (Ît, It)), (1)

where LF is the loss function proposed by each Ev-VFI
network and the generated intermediate frame Ît is obtained
by Ît = F (I0, I1, E0→t, E1→t).

3.3. Test-time Adaptation on Target Dataset

In our TTA setup, the model generates intermediate frames
at each iteration and simultaneously updates the parameters
of the NR Block. Since the target domain only contains
LFR frames, not HFR frames, self-supervised optimization
using only LFR is required.

3.3.1 Reliable Pixel Sampling (RPS)

In the target domain, even without High-Frame-Rate (HFR)
ground truth, when given Low-Frame-Rate (LFR) videos
I0, I1, I2 as triplets, and the events between them E0→1

and E2→1, the network can be trained using the following
self-supervised loss:

LS = LF (Î1, I1), (2)

where Î1 = F (I0, I2, E0→1, E2→1). However, this is prob-
lematic as the network cannot learn the knowledge of gen-
erating HFR because it is generating LFR again from tem-
porally subsampled LFR images, leading to the loss of the
ability to generate HFR trained from the source domain.
As a way to address this, applying the cyclic consistency
loss [16, 39] from the existing unsupervised VFI is one op-
tion. However, directly applying these methods to TTA of
Ev-VFI is intractable, since there is no guarantee that the
generated intermediate frames will be clean and artifact-free
on target domains. Therefore, we need a new paradigm.

As shown in Fig. 2, given the I0, I1, I2 triplet, we design
Reliable Pixel Sampling (RPS) for the left intermediate time

t0 and the right intermediate time t1. Here, t0 and t1 are se-
lected at random from the time intervals 0 to 1 and 1 to 2,
respectively. Since the RPS process is identical for both t0
and t1, we introduce it here for t0 only. Reliable data sam-
pling without the intermediate ground truth frames, It0 , is
highly challenging and can lead to unstable learning if es-
timated incorrectly. To address this, we adopt the teacher-
student framework [49] commonly used for pseudo label-
ing [10, 58] in other tasks. In this framework, the student
learns from pseudo labels through self-training, while the
teacher is updated solely from the momentum using the pa-
rameters of the student. The motivation behind proposed
RPS stems from the observation that pixels estimated simi-
larly by two networks with slightly different parameters, yet
achieving similar performance in VFI, are likely to be reli-
able, whereas parts that are difficult to estimate and prone to
errors would result in differing predictions between the two
networks. Hence, we classify pixels consistently estimated
by both teacher-student networks as reliable pixels, while
considering pixels with inconsistent predictions as unreli-
able. Given intermediate frames generated from the student
network FS and the teacher network FT denoted as ÎSt0 and
ÎTt0 respectively, the reliable map, Rt0 , with spatial dimen-
sions H ×W × 1 (where H and W represent the height
and width of the image I0) is defined as follows:

Rt0(i, j) =

{
1 , if ∥ÎSt0(i, j)− ÎTt0 (i, j)∥ < ρ,

0 , otherwise,
(3)

where i = 1, . . . ,H , j = 1, . . . ,W , and ρ denote the
threshold. When estimating such reliability, it is crucial
to determine a specific threshold. However, assigning the
same threshold to all scenes is inappropriate since the per-
formance of VFI significantly varies across scenes. To
achieve adaptive thresholding for each scene, we utilize the
LFR frames I0 and I2, along with the interceding events
E0→1 and E2→1, to estimate Î1. Subsequently, we com-
pute a pixel-wise error map, e = ∥Î1− I1∥, between Î1 and
I1, allowing us to calculate ρ, using the average value of e.

However, this approach encounters issues when deal-
ing with scenes that contain motionless, static regions
(e.g., backgrounds). In such cases, these areas exhibit min-
imal pixel-wise errors, which leads to an inadequate adap-
tive threshold calculation for the scene if these pixels are
included in the average calculation. To address this, we pro-
pose an approach that excludes motionless regions based on
optical flow to refine the threshold calculation. Since most
Ev-VFI methods compute optical flow towards the interme-
diate frame from key frames, we can directly calculate a
motion magnitude map [54], M , from the intermediate out-
put of optical flow, denoted as F10 and F12, without requir-
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Algorithm 1 PMS Pseudo Code

Input: Generated HFR set V = {Ît0 , I1, Ît1 , Et0�1, Et1�1}
1: Initialize LM ← 0
2: Get reliability of V based on Eq.(9)
3: Sample Ṽ = {Ĩt̃0 , Ĩ1, Ĩt̃1 , Ẽt̃0�1, Ẽt̃1�1} from Q
4: Sample mixing ratio λ ∈ (0.7, 1.0)
5: if V is reliable then
6: Mt0 = λÎt0 + (1− λ)Ĩ1,Mt1 = λÎt1 + (1− λ)Ĩ1
7: M1 = λI1 + (1− λ)Ĩ1
8: Dt0�1 = Et0�1, Dt1�1 = Et1�1

9: Push V into memory bank Q
10: else
11: Mt0 = (1− λ)I1 + λĨt̃0 ,Mt1 = (1− λ)I1 + λĨt̃1
12: M1 = (1− λ)I1 + λĨ1
13: Dt0�1 = Ẽt̃0�1, Dt1�1 = Ẽt̃1�1

14: if len(Q) > max queue size then
15: Pop oldest ones out of Q
16: LM ← LF (M1,FS (Mt0 ,Mt1 ,Dt0�1,Dt1�1))
Output: LM

ing additional computations as:

M(i, j) = (∥F10(i, j)∥+ ∥F12(i, j)∥)/2, (4)

where ∥ · ∥ denote the magnitude of the motion vector. The
motion mask M̂ , which excludes motionless areas based on
the motion magnitude map for each pixel, can be created as
follows:

M̂(i, j) =

{
1 if M(i, j) ≥ m, ∀i,∀j
0 otherwise,

(5)

where, m represents a predefined minimal amount of mo-
tion, and in our experiment, we use a value of 1. Then, we
calculate the scene adaptive threshold as:

ρ =
1

|M̂ |

∑
M̂ ⊙ e. (6)

We define the self-training loss between the teacher and stu-
dent networks using a pixel-wise reliable map in Eq.(3) and
Eq.(6):

Lt0
R = ∥ÎSt0(i, j)− ÎTt0 (i, j)∥ ⊙Rt0 , (7)

Finally, the reliable pixel-wise loss, taking into account both
intermediate times t0 and t1, is defined as follows:

LR = Lt0
R + Lt1

R , (8)

3.3.2 Patch-Mixed Sampling (PMS)

The issues that can arise in TTA include overfitting to spe-
cific scenes due to the sequential data for the same scene be-
ing continuously fed, as well as the problem of catastrophic
forgetting [4, 26] where existing knowledge is lost.

i) Reliability is True ii) Reliability is False

Figure 4. The examples of patch-mixed sampling (PMS) process.

To address this, we propose the Patch-Mixed Sampling
(PMS) method. In order to avoid overfitting to specific
scenes, PMS involves sampling from the memory bank,
which accumulates reliable samples from the generated
videos of each iteration. The detailed process of PMS is
provided in Algorithm 1.
Reliability Check. Denoting the HFR video and event set,
including Ît0 and Ît1 , from the RPS process as V , we assess
the reliability for the generated frames. If the pixel-wise
reliability map R obtained from the RPS module exceeds η
fraction of the resolution of the entire image, we deem the
generated images as reliable. This is outlined as follows:

Reliablity =

{
True, if ∥Rt0

∥
H×W > η and ∥Rt1

∥
H×W > η

False, otherwise,
(9)

Patch Mixing. Figure 4 shows an example of a patch mix-
ing process. If the currently generated HFR video set V is
reliable (left of Fig. 4), we fetch a single intermediate frame
Ĩ1 from the memory bank and blend it. Since the mixed
frames, Mt0 , M1, and Mt1 , all incorporate the same Ĩ1, any
events that require pixel changes can’t arise from Ĩ1, thus
we directly retain the events Et0�1 and Et1�1 from V . On
the other hand, if V is unreliable (right of Fig. 4), we retrieve
both images and event sets from the memory bank. From
the currently generated V , we only fetch I1 and blend it.
Similar to before, since the same I1 is blended into all three
images, events originating from I1 do not occur. There-
fore, we directly retain the memory bank events Ẽt̃0�1 and
Ẽt̃1�1. For the mixing ratio of blending images, we adopt a
beta distribution [62] that generates values between 0.7 and
1.0. We assign a larger ratio to the reliable set among the
two sets being blended. Finally, using the patch-mixed sets,
we train the student network of the RPS using the loss of
Ev-VFI as follows:

LM = LF (M1,FS(Mt0 ,Mt1 ,Dt0�1,Dt1�1)). (10)

In summary, the total objectiveL of TTA-EVF is as follows:

L = LS + λ1LR + λ2LM (11)

where λ1, λ2 are the hyper-parameters.
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Figure 5. Visual comparisons of interpolated frames on multiple cross-domain settings using various models.

4. Experiments
4.1. Implementation Details

All networks are trained using an Adam optimizer [25] with
a batch size of 2 and a learning rate of 1 × 10−4, for both
the source and target domains. For efficiency, during online
training in the target domain, we crop images to a resolu-
tion of 320 × 320. In our approach, we perform network
updates only once for each triplet provided. For instance,
when interpolating 7 skipped frames, we generate a total of
14 frames from I0, I1, and I2, and update the network pa-
rameters only once using the loss from Eq.(11), making it
highly efficient. All experiments are conducted on a single
NVIDIA TITAN RTX. We set the η as 0.9 in Eq.(9), bin
size of voxel grid as 5, and λ1, λ2 as 1, 0.5 in Eq.(11).

4.2. Test-Time Adaptation Results

During the pre-training phase, we utilize the train sequences
from the source domain for learning, and in the target do-
main, we follow the same sequential online approach as in
the traditional TTA setup [53], using only the test sequences
without utilizing the train set.

Our framework can be applied to existing Ev-VFI meth-
ods regardless of the model. We conduct experiments by
integrating it with TimeLens [51] and CBMNet [24], us-
ing publicly available code provided by the authors. For
TimeReplayer [16], as public code is unavailable, we re-
implement it based on the foundational code [20] as de-
scribed in the paper. To the best of our knowledge, we
are the first to propose test-time adaptation for event-
based video frame interpolation. Therefore, for compari-
son, we adopt the previously proposed meta-learning ap-
proach [11] for frame-based VFI and the self-supervised
optimization [16] for Ev-VFI. When training at test time,
the performance tends to be low if we simply apply the ex-
isting methods [16] as is. Therefore, we keep our NR Block

Table 1. Quantitative comparisons with existing method in cross-
domain datasets. S and T denote the source and target datasets.

TimeReplayer [16] TimeLens [51] CBMNet [24]
S T Methods PSNR SSIM PSNR SSIM PSNR SSIM

B R

No Adapt 32.24 0.9154 32.04 0.9073 31.98 0.9081
Meta [11] 32.75 0.9180 32.43 0.9112 32.21 0.9109
Cycle [16] 32.87 0.9208 33.01 0.9165 33.09 0.9214
TTA-EVF 34.07 0.9286 34.24 0.9299 34.42 0.9312

B H

No Adapt 29.78 0.8378 29.96 0.8413 29.87 0.8395
Meta [11] 30.13 0.8393 30.14 0.8341 30.22 0.8407
Cycle [16] 30.32 0.8104 30.66 0.8441 30.75 0.8466
TTA-EVF 31.45 0.8551 32.13 0.8599 32.07 0.8584

R B

No Adapt 21.94 0.6434 22.32 0.6745 21.89 0.6427
Meta [11] 22.83 0.6818 23.14 0.7020 22.75 0.6822
Cycle [16] 23.98 0.7154 24.11 0.7223 24.43 0.7305
TTA-EVF 25.85 0.7638 26.91 0.7752 27.16 0.7768

R H

No Adapt 27.83 0.8158 27.61 0.8121 27.92 0.8222
Meta [11] 28.11 0.8206 28.32 0.8234 28.54 0.8299
Cycle [16] 28.43 0.8306 29.12 0.8389 29.43 0.8410
TTA-EVF 30.33 0.8464 31.83 0.8587 31.86 0.8590

update and TTA setup intact while only incorporating the
cyclic self-supervised mechanism [16] into Eq.(11).

TTA in Cross-domain Datasets. We conduct cross-
domain experiments using three existing high-quality real
event datasets: BS-ERGB [52], HS-ERGB [51], and High-
REV [46]. We refer to each datasets as B, H, and R, respec-
tively. In each experiment, we alternate between the source
and target datasets, but HS-ERGB exclusively provides with
test sequences and is used solely as the target dataset.

Table 1 presents the quantitative results in cross-domain
datasets. We can confirm that TTA-EVF has significant ad-
vantages over other methods. First, Meta [11] using the
meta-learning shows an overall but subtle improvement in
performance. It indicates that it is not particularly effective
in adapting to entirely new domains, especially when the
distribution of event data changes, operating independently
for each scene. In contrast, we continuously adapt online to
scenes, learning in an optimally directional manner for the
entire domain rather than for each individual scene. Further-
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Table 2. Quantitative comparisons with existing method in continuous domain shifting datasets.
Target Sequences

1 2 3 4 5 6 Total
Networks Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

TimeReplayer [16]

No Adapt 34.67 0.9090 28.52 0.6707 33.20 0.7480 30.94 0.7024 34.87 0.9069 36.50 0.9054 32.81 0.7960
Meta [11] 33.93 0.9063 28.65 0.6732 32.34 0.7303 31.14 0.7045 34.91 0.9083 36.95 0.9106 32.91 0.7996
Cycle [16] 34.74 0.9098 27.43 0.6674 32.54 0.7345 31.22 0.7051 35.10 0.9091 37.05 0.9097 32.99 0.7968
TTA-EVF 35.05 0.9101 29.44 0.6765 33.47 0.7529 31.90 0.7175 36.79 0.9213 37.27 0.9144 33.71 0.8040

TimeLens [51]

No Adapt 33.91 0.8955 28.17 0.6664 32.71 0.7428 30.58 0.7024 33.99 0.9002 34.29 0.8924 32.07 0.7896
Meta [11] 34.05 0.9001 27.84 0.6642 32.80 0.7412 30.15 0.7022 33.69 0.8907 34.49 0.9004 32.09 0.7898
Cycle [16] 34.01 0.9008 27.96 0.6680 32.41 0.7435 30.22 0.7041 34.07 0.9008 34.98 0.9013 32.14 0.7906
TTA-EVF 34.41 0.9055 28.63 0.6737 33.09 0.7493 31.29 0.7100 34.94 0.9059 36.05 0.9040 32.80 0.7974

CBMNet [24]

No Adapt 32.70 0.9014 27.19 0.6597 32.05 0.7326 30.14 0.7015 32.24 0.8962 36.82 0.9117 31.42 0.7879
Meta [11] 32.84 0.9026 27.32 0.6608 32.14 0.7334 30.16 0.7012 32.31 0.8974 36.65 0.9101 31.48 0.7885
Cycle [16] 33.62 0.9097 27.82 0.6695 32.61 0.7372 30.34 0.7058 32.85 0.9013 37.19 0.9145 32.41 0.7988
TTA-EVF 35.82 0.9137 29.25 0.6809 33.26 0.7540 31.65 0.7203 35.12 0.9104 37.54 0.9288 33.53 0.8023
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Figure 6. Visual comparisons of interpolated frames on continuous domain shifting settings. Please zoom for better view.

Table 3. Comparison results between our TTA method and ex-
isting supervised/unsupervised methods in the target domain. *
denotes that the values are taken from the original paper.

TimeReplayer [16] TimeLens [51]
S T Methods Online PSNR SSIM PSNR SSIM

R R Supervised - - 32.81∗ 0.901∗

Unsupervised 32.42 0.898 - -
B R TTA-EVF ✓ 34.07 0.929 34.24 0.930

H H-far Supervised - - 32.31∗ 0.869∗

Unsupervised 30.07∗ 0.834∗ - -
B H-far TTA-EVF ✓ 31.72 0.859 32.42 0.870

H H-close Supervised - - 31.68∗ 0.835∗

Unsupervised 29.83∗ 0.816∗ - -
B H-close TTA-EVF ✓ 30.95 0.829 32.11 0.860

more, when we examine the results of Cycle [16], which
incorporate a self-supervised loss into our TTA approach,
it becomes evident that simply maintaining continuous on-
line updates does not yield significant performance gains.
In the case of Cycle [16], learning cyclically with gener-
ated videos during limited online updates is unable to am-
plify adaptation ability in situations where unavoidable er-
rors occur as domains change. In contrast, our method iden-
tifies significant errors in pixel and samples for each scene,
producing substantial improvements even within the same
setting. Figure 5 also demonstrates the effectiveness of our
method across various datasets and networks.

In addition, we present the comparison of our TTA ap-
proaches with supervised/unsupervised methods in Table 3.
Despite the fact that our method involves online updates on
the target dataset after pre-trained from other source do-
main datasets, it outperforms methods trained on the tar-
get dataset using supervised or unsupervised approaches.
For instance, on the HighREV (R) dataset using the Time-
Lens [51] model, our approach achieved a 1.43 dB higher
PSNR than supervised learning, even when trained in a dif-
ferent domain, highlighting its ability to bridge domain gaps
and improve the versatility of event-based VFI.

TTA in Continuous Domain Shift. We experiments in
a highly challenging setting where the distribution of the
dataset continually undergoes significant changes. Since
there were no existing datasets with consistently changing
domains in high-quality RGB-Event data, we acquire the
novel Event-RGB Distribution Shift (ERDS) dataset. In
the ERDS dataset, the training dataset includes HFR videos
with event data in typical lighting conditions. The test
dataset, on the other hand, includes scenarios where light-
ing conditions are consistently altered, and the event trigger
threshold is adjusted accordingly to obtain sufficient infor-
mation from the events. We present the results in Table 2. In
the highly challenging setting of continuous domain shift-
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Table 4. Ablation study of the proposed components.
LS NR Block LR LM Cross Continuous

No Adaptation 29.96 31.42
✓ 30.42 31.98
✓ ✓ 31.53 32.76
✓ ✓ ✓ 31.84 33.01
✓ ✓ ✓ 31.92 33.15
✓ ✓ ✓ ✓ 32.13 33.53

Table 5. Results based on various parameter update method.
Update PSNR ↑ SSIM ↑

Full Parameters 31.04 0.8489
Encoder Parameters 30.89 0.8455

Batch Normalization (BN) [18] 30.44 0.8423
Layer Normalization (LN) [1] 30.92 0.8477

NR Block w/. BN [18] 31.57 0.8502
NR Block w/. LN [1] 31.94 0.8524

NR Block w/. GN [57] 32.13 0.8599

ing, other methods fail to deliver significant improvements.
In contrast, our method can achieve substantial performance
gains compared to competing methods. Figure 6 clearly
demonstrates the strengths of our method.

5. Ablation Study
In this section, we conduct experiments to access the effi-
cacy of the proposed approaches. In the cross-dataset set-
ting, we use the TimeLens [51] model, training it with BS-
ERGB and evaluating it on HS-ERGB. In the continuous
setting, we utilize the CBMNet [24] model.
Effectiveness of each components. We conduct experi-
ments in Tab. 4 while adding each component of TTA-EVF
one by one. When optimizing the network using only the
loss LS in Eq.(2) under the TTA setup, it can be observed
that there is not a significant improvement in performance.
This is because directly self-training with only LFR videos
prevents the network from learning the knowledge of gener-
ating HFR, and as training progresses, it loses the ability to
generate HFR learned from the source domain. In contrast,
it can be observed that there is an impressive improvement
in performance with the addition of the proposed modules.
Ablation study on NR Block. We perform ablation by
keeping all our other modules intact while changing only
the update methods. As shown in Tab. 5, batch normal-
ization (BN) [18] and layer normalization (LN) [1] lead
to a decrease in performance. The proposed NR Block
update method significantly improves performance, with
group normalization (GN) [57] being particularly effective.
The benefits of the adaptive threshold in RPS. We cal-
culate the threshold for the reliable map between the stu-
dent and teacher networks adaptively for each scene in the
RPS module. Table 7 compares the adaptive thresholding
method for the reliable map in the RPS module with a fixed-
value thresholding approach.
The ablation study of mixing ratio λ in PMS. Table 6
presents an analysis of the mixing ratio between the sam-
ples in the memory bank and the generated videos in PMS.

Table 6. Performance based on minimum value of mixing ratio λ.

min(λ) 0.5 0.6 0.7 0.8 0.9
Cross 31.92 32.06 32.13 32.04 31.93

Continuous 33.30 33.49 33.53 33.42 33.36

Table 7. Analysis on the reliable threshold.
ρ ∞ 0.2 0.1 0.05 0.01 Adaptive (Ours)

Cross 30.87 30.93 31.44 31.85 31.42 32.13
Continuous 32.21 32.64 33.02 32.97 32.78 33.53

Table 8. Inference time on different updating intervals. In the case
of TTA-EVF, the inference time includes the training time as well.

S T Methods (TimeLens [51]) Time PSNR SSIM

B H-close

No adapt 80 min 29.96 0.8413
TTA-EVF (Interval=5) 81 min 31.44 0.8541
TTA-EVF (Interval=3) 82 min 31.62 0.8571
TTA-EVF (Interval=1) 88 min 32.11 0.8598

We select the mixing ratio λ uniformly, but it can be set with
a minimum value. The best performance is observed when
the minimum value, min(λ), is set to 0.7, demonstrating ro-
bustness to parameter variations.

6. Analysis of Updating Interval
We present the performance based on the updating inter-
val in Table 8. Our TTA method is highly cost-effective
despite performing training during the inference process.
TTA-EVF, which updates only once during the multiple in-
ferences when an video triplet is input, exhibits minimal
time difference compared to simple inference. When the
interval is increased, the time required is almost the same
as simple inference, yet the quality of the generated videos
is significantly higher. For example, with an interval of 5,
there is only a 1 minute difference in total inference time,
but the PSNR is improved by 1.48 dB.

7. Conclusion
In this paper, we present a Test-Time Adaptation (TTA) for
event-based video frame interpolation. We effectively per-
form online TTA using the newly proposed modules in both
cross-domain and continuous domain-shifting settings. Ad-
ditionally, we acquire the ERDS dataset, containing high-
quality RGB and event datasets with continuous distribu-
tion changes. Our TTA-EVF, despite online learning, shows
minimal speed differences compared to simple inference
and outperforms both supervised and unsupervised methods
in cross-domain experiments, showcasing its effectiveness.
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