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Abstract

We address the problem of generalized category discov-
ery (GCD) that aims to partition a partially labeled col-
lection of images; only a small part of the collection is la-
beled and the total number of target classes is unknown.
To address this generalized image clustering problem, we
revisit the mean-shift algorithm, i.e., a classic, powerful
technique for mode seeking, and incorporate it into a con-
trastive learning framework. The proposed method, dubbed
Contrastive Mean-Shift (CMS) learning, trains an embed-
ding network to produce representations with better cluster-
ing properties by an iterative process of mean shift and con-
trastive update. Experiments demonstrate that our method,
both in settings with and without the total number of clus-
ters being known, achieves state-of-the-art performance on
six public GCD benchmarks without bells and whistles.

1. Introduction

Clustering is one of the most fundamental problems in un-
supervised learning, which aims to partition instances of a
data collection into different groups [2, 15, 34, 42]. Unlike
the classification problem, it does not assume either prede-
fined target classes or labeled instances in its standard setup.
However, in a practical scenario, some data instances may
be labeled for a subset of target classes so that we can lever-
age them to cluster all the data instances while also discov-
ering the remaining unknown classes. The goal of Gen-
eralized Category Discovery (GCD) [48] is to tackle such
a semi-supervised image clustering problem given a small
amount of incomplete supervision.

Clustering is a transductive reasoning process based on
the neighborhood data in the given data collection. To learn
an image embedding for this clustering purpose, we are mo-
tivated to incorporate the neighborhood embeddings into
learning. We revisit mean shift [8, 11, 12, 18, 44], i.e., a
classic, powerful technique for mode seeking and cluster-
ing analysis. The mean-shift algorithm consists of iterative
mode-seeking steps of updating each data point by kernel-
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Figure 1. Contrastive Mean-Shift (CMS) learning. We inte-
grate mean shift [11] into contrastive learning [7, 24, 59]. In train-
ing, image embeddings proceed a single-step mean shift with their
kNNs. The contrastive learning objective pulls the mean-shifted
embeddings of I and I+, while it pushes those from different im-
age inputs. Colors denote different classes and k=4.

weighted aggregation of its neighboring data points; this
process is non-parametric and does not require any informa-
tion about the target clusters, e.g., the number of clusters.
For GCD, we develop a GPU-friendly mean-shift variant
and incorporate it into a contrastive representation learning
framework [7, 24, 59].

We introduce Contrastive Mean-Shift (CMS) learning
for GCD. CMS learning aims to encode the semantic dis-
tance between image embeddings on a mean-shifted space
via contrastive learning. Precisely, we perform a single-step
mean shift for each image embedding by moving it toward
the mean of its neighbors in an embedding space. To per-
form stable mean shifts in the embedding space, we use k

nearest neighbors (kNNs) instead of typical distance-based
neighbors [8, 11]. In learning, an image I and its aug-
mented image I0 are both mean-shifted and pull each other
on the embedding space while pushing I and different im-
ages (Fig. 1). The training objective with mean-shifted em-
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beddings encourages the embedding network to learn im-
age representations with better clustering properties. After
training the network, the actual clustering is performed by
agglomerative clustering with the learned embeddings.

Compared to ours, prior arts [9, 37, 48, 51, 56] on GCD
often employ K-means clustering [2, 34] during the valida-
tion and testing phases. To determine its hyperparameter K,
the ground-truth number of classes K is often exploited in
implementation. The use of the ground-truth K is not only
critical to the clustering performance but also undesirable in
practical clustering scenarios. We thus suggest jointly esti-
mating K within the training stage to strictly avoid using
the ground-truth K for clustering evaluation as well as for
model validation during training.

Our proposed pipeline is extensively evaluated on the
six public GCD datasets [19, 27, 28, 35, 45, 49] includ-
ing the coarse-grained and fine-grained image classification
datasets and achieves the state-of-the-art performance on
the standard and the inductive GCD benchmarks [48, 56].

Our pipeline without given the ground-truth class num-
ber K shows comparable performance than the state of the
arts that do exploit it, moreover, ours presents an even supe-
rior performance with using the ground-truth K. The con-
tribution of our work can be summarized as follows:
• We revisit the mean-shift algorithm and integrate it with

a contrastive learning framework for GCD.
• Our model performs clustering with the total number of

target classes being completely unknown, which has been
often overlooked by previous work on GCD.

• The proposed method is simple yet effective; it introduces
zero extra trainable modules yet achieves state-of-the-art
performance on the public GCD benchmark.

2. Related work

2.1. Generalized Category Discovery (GCD)

The task of GCD [48] aims to classify a collection of images
into a class among the known and unknown classes, given
a subset of images labeled with the known classes. Unlike
the standard classification [29, 43] which assumes a preset
number of total classes, the presence of the unknown classes
is the essence of GCD. GCD stems from novel category dis-
covery [20] of which unlabeled images are strictly from un-
known classes, whereas in the GCD task, an unlabeled im-
age might be from either known or unknown classes.

Existing work focuses on transferring the clue from la-
beled images to unlabeled ones. A line of work suggests
leveraging pseudo-labels of the unlabeled images for learn-
ing: DCCL [37] adopts InfoMap clustering for pseudo-
labeling, PromptCAL [56] discovers pseudo-positive sam-
ples based on semi-supervised affinity generation, and
SimGCD [51] adopts a parametric classifier by distilling re-
liable pseudo-labels. The other popular approach suggests

semi-supervised learning objective [23, 39, 54, 58], which
employs the supervised contrastive loss with labeled images
and self-supervised contrastive loss [48], or adopting a bi-
level optimization framework of mutual information [9].

Despite of this remarkable progress, it is worth noting
that most previous work adopts the sequential two-stage
framework of estimating the number of classes after training
the model, which is more favorable to combine them jointly.
A few [37, 57] enable to jointly estimate the number of
classes during training; however, their cost is often expen-
sive: heavy computation for updating pairwise similarities
of the entire training set [37], the dependency to manual hy-
perparameter tuning for cluster merging and splitting [57].
Furthermore, most work has exploited the ground-truth
number of classes for model selection [9, 37, 48, 56], or
defining a classifier [51].

In comparison, our approach shows powerful perfor-
mance without access to the ground-truth number of classes
at all, which is estimated efficiently in the training phase
without the extra post-estimation process. Moreover, our
simple learning framework involves no additional learn-
ing techniques, e.g., teacher-student framework [51, 56],
pseudo-labeling [37]. In terms of our model architecture,
no extra module is introduced than a feature extractor, e.g.,
add-on classifiers [51].

2.2. Mean shift

Mean shift [11] is a fundamental statistical method that
identifies the mode, i.e., the local maximum of data points,
from a density function. The process iterates shifting each
data point to the weighted average of a sample set until
convergence. Introduced by Fukunaga and Hostetler [18],
the theory is well founded and has been rigorously stud-
ied over decades [8, 16, 44]. Among other applications of
mean shift [3, 10, 13, 26, 31], clustering [1, 6, 25, 52, 55] is
one of the major applications. For example, Kobayashi and
Otsu [25] perform mean-shift clustering on hypersphere us-
ing von Mises-Fisher distribution [36].

3. Preliminaries

3.1. Problem definition of GCD

The task of GCD aims to classify images when partially
labeled images are given without knowing the number of
target classes in advance. In other words, the dataset con-
sists of labeled-known images, unlabeled-known images,
and unlabeled-unknown images. Formally, a train set DT
consists of a labeled set DL = {(xi, yi)}NL

i=1 2 X ⇥ YL

and an unlabeled set DU = {(xi, yi)}NU
i=1 2 X ⇥YU, where

YL ⇢ YU. Here we denote the number of target classes as
K, i.e., K = |YU|, which is assumed to be unknown in clus-
tering. A validation set DV consists of known and unknown
images and only the labels of known images are given.
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Figure 2. Contrastive Mean-Shift learning. The mean-shifted embedding z of an input I is represented as a combination of the input
embedding v and the average of its kNN features, which are retrieved from the initial embeddings (gray points). The kNN search space is
conducted on the pre-extracted all training images. The CMS loss pulls a mean-shifted embedding pair of I and its augmented image I+

(yellow points) and pushes the pair from different images apart (blue points).

3.2. Mean-shift algorithm

Mean shift is a non-parametric feature-space analysis tech-
nique for locating the maxima, i.e., the modes, of a density
function or data distribution [11]. Given a collection of data
points V0 on a feature space, the weighted mean m(v) of
each data point v is calculated using its neighborhood N .
The mode of v sought by shifting its mean over multiple
time steps t until convergence:

vt+1  m(vt), (1)

where m(vt) is characterized by the two essential compo-
nents: the set of neighbors N t and the kernel function '(·).
For each time step, '(·) determines the weight of neighbors
in N t for estimating the neighborhood mean:

m(vt) =

P
vi2N t '(vi � vt)viP
vi2N t '(vi � vt)

, (2)

where N t ✓ V0. In typical setups [8, 11, 12, 52], N is
defined by a certain radius and the kernel function '(·) is
set to a uniform, Gaussian or Epanechnikov [41] kernel.

4. Our approach

We leverage the mean-shift clustering [11] for generalized
category discovery and introduce contrastive mean-shift
learning. For images to be clustered, we obtain their em-
beddings from an image embedding network [5] and update
them with a single-step mean shift using their k-nearest-
neighbors (kNNs) (Sec. 4.1). Then, we update the last
layer of the image encoder based on the semantic distance
of the mean-shifted embeddings through contrastive learn-
ing [7, 24, 59] (Sec. 4.2, Fig. 2). The number of classes
K is jointly estimated during training based on agglomera-
tive clustering [50]. After training, we iterate multiple mean

shift steps, gradually identifying clusters on the embedding
space (Sec. 4.3). The final cluster assignment is performed
with the estimated K. The evaluation metric measures the
accuracy between the optimal match between the ground-
truth class set and the cluster assignment (Sec. 4.4).

4.1. Mean-shifted embedding

A collection of images on both the known and unknown set
of classes is given: {I1, · · · , In}, which corresponds to the
target data to be clustered. The images are first fed through
an image feature extractor f to generate the corresponding
set of d-dimensional l2-normalized image embeddings:

V = {v1, · · · ,vn}, where vi = f(Ii). (3)

We use a self-supervised pre-trained image encoder,
DINO [5], to provide a discriminative feature initialization,
but our method is not restricted to a specific image encoder.

Hereafter we explain the formulation of a mean-shifted
embedding z of the initial embedding v as a result of a
single-step mean shift as in Eq. 1:

z = m(v), (4)

with the following definition of the weighted mean m(·).
The conventional mean-shift algorithm typically defines the
neighborhood range engaged in the weighted mean based
on the distance, i.e., radius. In such a way, the number of
neighbors within a radius may amount from zero to an ar-
bitrary number, moreover, a fixed distance is unsuitable for
learnable feature spaces that are constantly updated. To ad-
dress these, we choose to approximate the fixed-radius near-
est neighbors with the fixed-length kNNs, which is more
suitable for parallel computation with GPUs. The neigh-
borhood set N is defined with an input v and its kNNs:

N = {v} [ argmaxkvi2Vv · vi, (5)
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where argmaxks2S(·) returns a subset of the top-k items that
maximizes a target function. The obtained kNN embed-
dings are aggregated and then l2-normalized, ensuring the
shifted embedding remains on a unit hypersphere:

m(v) =

P
vi2N '(vi)vi

||
P

vi2N '(vi)vi||
. (6)

The '(·) returns higher weights on the input v compared to
the kNNs with a scaling hyperparameter ↵:

'(vi) =

(
1� ↵ if vi = v
↵
k otherwise,

(7)

which can be interpreted as a rough approximation to a
Gaussian kernel with an adaptive bandwidth. For updating
the backbone, the single-step mean-shifted embedding z is
utilized in a contrastive learning objective, described next.

4.2. Contrastive mean-shift learning

The proposed contrastive learning objective pulls positive
image pair embeddings to each other and pushes the oth-
ers, where the notion of positive and negative pairs differs
with respect to the given image label. Note that the training
set consists of the labeled and unlabeled set: DL and DU.
Our learning objective accordingly consists of two objec-
tives: unsupervised contrastive mean-shift learning applied
to all training images, DL [DU, and supervised contrastive
learning applied to the labeled image portion, DL.

The contrastive mean-shift learning objective encour-
ages the model to encode semantic distance on the mean-
shift embedding space: mapping a pair of mean-shifted em-
beddings from the same image closely while pushing apart
different image pairs in a batch. In detail, image augmen-
tations from [48] are applied to all images in the current
batch. An image Ii and its randomly augmented version
I+i form an unsupervised positive image pair. Their mean-
shifted embeddings, zi, z+

i , are pulled to each other, while
the rest of the mean-shifted embeddings in the batch de-
noted as z0

j are pushed apart from zi. Formally,

LCMS = � log
exp(zi · z+

i /⌧u)P
j 6=i exp(zi · z0

j/⌧u)
, (8)

where z0
j is a mean-shifted embedding of either an original

or an augmented image in a batch, and ⌧u is a hyperparam-
eter for adjusting the temperature.

We similarly form a supervised contrastive learning
loss [24, 48] with the labeled images, which pulls the same
class features to each other and pushes different class fea-
tures based on the given ground-truth class labels:

LS = � 1

|Ps(i)|
X

p2Ps(i)

log
exp(vi · v0

p/⌧s)P
j /2Ps(i)

exp(vi · v0
j/⌧s)

,

(9)

Algorithm 1 Iterative mean shift and clustering at inference

Input: V0 = VL [ VU = {v1, · · · ,vN}: union set of la-
beled and unlabeled image embeddings

Input: k: number of retrieved nearest neighbors
1: accmax  0
2: t 0
3:
4: while True do

5: for vt in Vt
do

6: N t  {vt} [ kNN set of vt – Eq. (5)
7: vt+1  vt+m(vt) – Eqs. (4-7)
8: end for

9: predst+1  Agglomerative Clustering(Vt+1)
10: acct+1  Compute Accuracy(predst+1)
11:
12: if t > 1 and acct�1

L � acctL � acct+1
L then

13: i argmaxi2{t�1,t,t+1}acciL
14: break
15: end if

16: t t+ 1
17: end while

Output: acci: final clustering accuracy

where Ps(i) is a set of image indices of the same class in the
current batch, v0 denotes either an original or an augmented
image feature, v0

j is a feature labeled as a different class
in the current batch. The learning loss combines the two
losses:

L = �LS + (1� �)LCMS, (10)

where � denotes the weights of supervised contrastive loss.
Note that the mean-shifted embedding learning process

introduces zero extra trainable modules. The only train-
able part affected by the learning loss corresponds to the
last block of the pre-trained image encoder [5] and projec-
tion heads of which 6.3M trainable parameters.
4.3. Iterative mean shift at inference

The proposed mean-shifted embedding update proceeds
with multiple steps once learning is converged. At infer-
ence, we iterate 1) the kNN retrieval, 2) additive feature up-
date, and 3) agglomerative clustering accuracy evaluation
on the labeled data until the accuracy drops or maintains
two consecutive iterations. Algorithm 1 summarizes this
inference process. Note that the conventional mean shift is
to analyze the data points by finding the modes of the static
data points, thus neighborhood is determined on the initial
data points, i.e., N t ✓ V0, with an arbitrary mean-shift it-
eration step t. On the other hand, our iterative mean-shift
process shifts all of the training data representations on the
embedding space, therefore we set the kNN search space as
the currently updated embedding space: N t ✓ Vt.
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While exhibiting the identical form with the mean shift,
our proposed mean-shift formulation does not necessarily
guarantee convergence to the optimum. Rigorously speak-
ing, the primary assumption for convergence of mean shift
includes that the neighborhood kernel must be bounded,
continuous, non-negative, normalized, and radially sym-
metric [32, 53]. However, our choice of mean vector in-
volves kNN retrieval for the neighborhood set for the sake
of computational efficiency, which discretizes the kernel
weights at the cost of violating the continuity and radially
symmetricity. Having said that, we empirically observe our
kNN-based mean shift roughly converges as plotted in Fig-
ure 3 and contributes significantly to performance gain.

4.4. Clustering with cluster number estimation

In training, our framework jointly estimates the number of
classes K and measures the validation accuracy with the
predicted value. To estimate K, we adopt an agglomera-
tive clustering algorithm [50] with ward linkage criterion,
which iteratively merges the closest pair of instances until
it reaches a certain threshold, e.g., distance or number of
clusters. At the end of every training epoch, DV is clustered
with different values of K. The validation accuracy and
the optimal value of K are determined by the maximum
accuracy of labeled images and its corresponding value of
K. Once training is converged, the epoch with the high-
est accuracy is selected as the final model, and the value of
K is also determined with the best model. This approach
allows us to avoid accessing the ground-truth number of
classes during both training and validation, unlike the pre-
vious work [9, 37, 48, 51, 56].

The proposed cluster number estimation is computation-
ally more efficient than the prevalent one based on K-means
clustering particularly on a small-sized clustering set; DV is
used for this purpose as |DV| ⌧ |DT|. To be specific, ag-
glomerative clustering computes all instance-wise distances
as a linkage matrix and produces different granularity of
clusters via hierarchical grouping. The pre-computed link-
age matrix is reused for any K-class clustering, thus O(N2)
regardless of K, being especially effective with a few el-
ements N and many trials of K. On the other hand, K-
means clustering requires updating distance matrix for T

times with different K centroids, hence O(NKT ). Since
K is unknown, a series of trials T with different Ks costs
extensive distance computation. In practice, K estimation
with K-means clustering induces prohibitively long train-
ing time to run at every model validation, whereas, our effi-
cient process enables joint estimation of K during training.

After clustering with the obtained K, the assignments
are matched with ground-truth classes by the Hungarian op-
timal matching [30], based on the number of intersected in-
stances between each pair of classes. The unpaired classes
are considered incorrect predictions, while the instances of

the most dominant class within each ground-truth cluster
are considered correct when calculating the accuracy.

5. Experiments

5.1. Experimental setup

Datasets. We evaluate our method on 6 image classifica-
tion benchmarks: 2 generic image datasets CIFAR100 [28],
ImageNet100 [19, 40] and 4 fine-grained datasets CUB-
200-2011 [49], Stanford Cars [27], FGVCAircraft [35],
and Herbarium19 [45]. For splitting the target classes into
known and unknown class sets, we follow the SSB [47] split
for CUB-200, Stanford Cars, and Aircraft. For the other
benchmarks, random splits are used with the same seed
from [48]. A subset of labeled images is sampled from the
known classes with 80% on CIFAR100 and 50% on other
datasets following [48]. For the detailed class split for each
dataset, please refer to Appendix 7.2 Table 9.
Training details. We use pre-trained DINO ViT-B/16 [5,
14] including the projection head layer on top of it as a
backbone, following the existing methods [37, 48, 56] for
comparison. The last layer and the projection heads are
fine-tuned, where the projection head consists of three con-
secutive pairs of a 2048-dimensional linear layer followed
by GeLU activation [22]. To reduce the computational cost
of kNN retrieval, we keep the final output dimension of the
projection head fixed at 768, unlike other methods that typ-
ically set it to 65536. The pre-extracted embedding set V
consists of image features v of DT, detached from gradi-
ent computation and updated every epoch. The kNN size
is set to 8. The scaling hyperparameter ↵ for mean-shifted
embedding is set to 0.5. The temperature hyperparameter
⌧u and learning rate are set to 0.3, 0.01 for coarse-grained
benchmarks and 0.25, 0.05 for fine-grained benchmarks.
Other hyperparameters such as batch size, ⌧s, weight decay,
and the number of augmented images are set to 128, 0.07,
5e�5, and 2, respectively, following the previous work [48].
All experiments are run on an RTX-3090 GPU.
Evaluation. In GCD, a test set is utilized for validation,
and the performance is evaluated by clustering a train set
DT, and then measuring the accuracy score on DU. The
accuracy is reported on “All” unlabeled data as well as the
accuracy on those of known and unknown classes, denoted
as “Old” and “Novel” in tables, respectively. We evaluate
the performance using the output of the iterative inference
step. We report the accuracy with the estimated K as well as
using the GT number K, following the previous work that
assumes given number of target classes during evaluation.

5.2. Main results

Evaluation on GCD. Table 1 presents a comparison on the
GCD setup in both coarse-grained and fine-grained bench-
marks with or without the ground-truth (GT) number of
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Method
CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft Herbarium 19

All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel

(a) Clustering with the ground-truth number of classes K given

Agglomerative [50]† 56.9 56.6 57.5 73.1 77.9 70.6 37.0 36.2 37.3 12.5 14.1 11.7 15.5 12.9 16.9 14.4 14.6 14.4
RankStats+ [21] 58.2 77.6 19.3 37.1 61.6 24.8 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2 27.9 55.8 12.8
UNO+ [17] 69.5 80.6 47.2 70.3 95.0 57.9 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2 28.3 53.7 14.7
ORCA [4] 69.0 77.4 52.0 73.5 92.6 63.9 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1 20.9 30.9 15.5
GCD [48] 73.0 76.2 66.5 74.1 89.8 66.3 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 35.4 51.0 27.0
DCCL [37] 75.3 76.8 70.2 80.5 90.5 76.2 63.5 60.8 64.9 43.1 55.7 36.2 - - - - - -
PromptCAL [56] 81.2 84.2 75.3 83.1 92.7 78.3 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3 37.0 52.0 28.9
GPC [57] 77.9 85.0 63.0 76.9 94.3 71.0 55.4 58.2 53.1 42.8 59.2 32.8 46.3 42.5 47.9 - - -
SimGCD [51] 80.1 81.2 77.8 83.0 93.1 77.9 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 44.0 58.0 36.4

PIM [9] 78.3 84.2 66.5 83.1 95.3 77.0 62.7 75.7 56.2 43.1 66.9 31.6 - - - 42.3 56.1 34.8
Ours 82.3 85.7 75.5 84.7 95.6 79.2 68.2 76.5 64.0 56.9 76.1 47.6 56.0 63.4 52.3 36.4 54.9 26.4

(b) Clustering without the ground-truth number of classes K given

Agglomerative [50]† 56.9 56.6 57.5 72.2 77.8 69.4 35.7 33.3 36.9 10.8 10.6 10.9 14.1 10.3 16.0 13.9 13.6 14.1
GCD [48] 70.8 77.6 57.0 77.9 91.1 71.3 51.1 56.4 48.4 39.1 58.6 29.7 - - - 37.2 51.7 29.4
GPC [57] 75.4 84.6 60.1 75.3 93.4 66.7 52.0 55.5 47.5 38.2 58.9 27.4 43.3 40.7 44.8 36.5 51.7 27.9
PIM [9] 75.6 81.6 63.6 83.0 95.3 76.9 62.0 75.7 55.1 42.4 65.3 31.3 - - - 42.0 55.5 34.7

Ours 79.6 83.2 72.3 81.3 95.6 74.2 64.4 68.2 62.2 51.7 68.9 43.4 55.2 60.6 52.4 37.4 56.5 27.1

Table 1. Comparison with the state of the arts on GCD, evaluated with or without the GT K for clustering. † denotes reproduced results.

Method Known K

CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft Herbarium 19

All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel

GCD [48] 3 70.1 76.8 43.5 79.7 92.7 66.7 57.5 64.5 50.6 - - - - - - - - -
ORCA [4] 3 77.7 83.6 53.9 81.3 94.5 68.0 40.7 61.2 20.2
PromptCAL [56]† 3 81.6 85.3 66.9 84.8 94.4 75.2 62.4 68.1 56.8 62.3 76.9 48.2 43.6 49.5 37.7 37.6 50.3 30.7
Ours 3 80.7 84.4 65.9 85.7 95.7 75.8 69.7 76.5 63.0 57.8 75.2 41.0 53.3 62.7 43.8 46.2 53.0 38.9

Ours 80.5 84.5 64.4 84.2 95.6 72.9 69.0 76.4 61.7 57.9 75.6 40.8 53.8 62.6 44.9 42.4 53.5 30.7

Table 2. Comparison of our model and the state-of-the-art models on the inductive GCD setup on six datasets. The performance of [4, 48] is
taken from PromptCAL. We reproduced PromptCAL on Stanford Cars, FGVC Aircraft and Herbarium19 with its official implementation.

classes K given for clustering. In Table 1 (a), we com-
pare our method with the state-of-the-art methods, all evalu-
ated with the ground-truth number of classes. We present an
agglomerative clustering [50] baseline with the pre-trained
DINO not trained further. Our model achieves significant
gains over the training-free agglomerative clustering base-
line, which signifies the efficacy of the contrastive mean-
shift learning. The other state-of-the-art methods adopt
semi-supervised K-means clustering, where the K cen-
troids are initialized by the labeled data with the GT K.
Note that we do not access the GT K for model selection
during training in this setup as well, but use it only for
model evaluation after training. Our method outperforms
existing methods and achieves state-of-the-art performance
on five out of six datasets. The performance gain is particu-
larly significant on Standard Cars and CUB benchmarks,
with 4.7% and 3.1% point higher accuracy, respectively.
Generally, our model gains notable performance on both
Old and Novel classes, which implies that the knowledge
acquired from known classes is successfully transferred to

unknown classes through the use of nearest neighbor em-
beddings according to the input query.

In Table 1 (b), we present the comparison of ours and the
state of the arts on the same setup with Table 1 (a) but with-
out having the GT number of classes K known for cluster-
ing. For the result of Vaze et al. [48], we take the numerical
results from PIM [9]. Our method shows outstanding per-
formance in most scenarios even though it does not access
to the GT K in both training and testing. Our method is
even superior to the state-of-the-art methods measured with
the known value of K on CUB and FGVC Aircraft. The
results show that our K-estimation process incorporated in
the training phase performs effectively with no significant
performance drop compared to the known-K counterparts.

Evaluation on inductive GCD. We also compare the clus-
tering results on the inductive GCD setup presented in
PromptCAL [56]. Contrary to the transductive GCD prob-
lem setup in Table 1, the inductive GCD setup evaluates the
performance on the unseen test set. In this setup, a sub-
set of the training set is used for validation, and the labeled
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Method
CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft Herbarium 19

K Err(%) K Err(%) K Err(%) K Err(%) K Err(%) K Err(%)

Ground truth 100 - 100 - 200 - 196 - 100 - 683 -
GCD [48] 100 0 109 9 231 15.5 230 17.3 - - 520 23.8
DCCL [37] 146 46 129 29 172 9 192 0.02 - - - -
PIM [9] 95 5 102 2 227 13.5 169 13.8 - - 563 17.6
GPC [57] 100 0 103 3 212 6 201 0.03 - - - -

Ours 95 5 116 16 168 16 156 20.4 90 10 622 8.9
Ours* 97 3 116 16 170 15 156 20.4 98 2 666 2.5

Table 3. Estimated number and an error rate of a class number K
Figure 3. Clustering accuracy over mean-
shift iteration on CUB.

training inference CIFAR100 ImageNet100 CUB Stanford Cars

CMS SSK IMS All Old Novel All Old Novel All Old Novel All Old Novel

(1) X 71.5 77.3 60.1 74.1 89.8 66.3 51.2 49.2 52.2 37.9 57.8 28.3
(2) X 71.6 77.3 60.0 80.3 91.7 74.6 58.7 62.0 57.1 40.8 54.5 34.2
(3) X X 81.1 85.6 72.1 83.4 95.8 77.2 66.7 75.3 62.5 54.5 76.4 43.9
(4) X ⇧ (1-step) 80.1 86.0 68.4 84.1 95.6 78.3 68.2 76.4 64.1 56.1 74.6 47.1
(5) X X 82.3 85.7 75.5 84.7 95.6 79.2 68.2 76.5 64.0 56.9 76.1 47.6

Table 4. Effectiveness of each component of our method. SSK denotes semi-supervised K-means clustering and IMS iterative mean-shift.

validation set is utilized to verify the termination condition
during the iterative inference process. The comparison is
presented in Table 2, where our method exhibits superior
performance in the inductive category discovery scenario
as well. We also report the performance measured with the
estimated number of classes K, which is more practical as
it assumes both unseen data and unknown classes in a test
set. Our method shows comparable or even higher perfor-
mance without the ground-truth K than the other models.
The result demonstrates that incorporating nearest-neighbor
embeddings enhances image clustering by ensuring consis-
tency among relevant images, thus enabling generalization
to discover novel classes.
Estimated number of clusters. Table 3 shows the com-
parison of the ground-truth K, ours, and others reported by
Vaze et al., DCCL, PIM, and GPC. Among these baselines,
DCCL and GPC jointly estimate the number of classes dur-
ing training, while the others post-estimate K after training
as done in [48]. Our method estimates class number on par
with others without exploiting any dataset-specific hyperpa-
rameters. When utilizing the ground-truth K during valida-
tion as with other baselines (Ours*), the estimates become
more accurate. Note that the K values are estimated on the
validation set, which is relatively small and hence compu-
tationally efficient for clustering compared to the previous
work [9, 37, 48, 57] which uses the entire training set.

5.3. Ablation study

Performance over mean-shift iterations. In Figure 3,
we examine the clustering accuracy of our method over
iterations during the inference phase on the CUB bench-
mark. The iteration 1 indicates the clustering accuracy us-
ing the features extracted from the trained backbone, which
is learned to transform a given image to a probable shifted-

feature space. The result demonstrates that iterating the
mean shift during inference leads to an additional perfor-
mance gain without further training. We empirically ob-
serve that the accuracy saturates beyond a certain optimal
number of iterations, akin to the behavior of the conven-
tional mean-shift algorithm. This result shows that iterative
mean shift based on kNNs roughly approximates the mean-
shift kernels that guarantee convergence.
Effect of each proposed component. Table 4 shows the ab-
lation of CMS learning (Sec. 4.2) and Iterative Mean Shift
(IMS, Sec. 4.3). For training, we examine the effect of the
embedding without mean shift, i.e., equivalent to the em-
bedding in Vaze et al. [48]. At inference, semi-supervised
K-means clustering (SSK) [48], single-step mean shift, and
IMS are compared. Comparing (1) vs (3) and (2) vs (5),
we observe that CMS learning boosts performance signifi-
cantly. After training, IMS brings additional gains at infer-
ence when comparing (1) vs (2) and (3) vs (5), plus recursive
iterations: (4) vs (5). The final model (5) outperforms others
with the combined gain of each proposed component.
Comparison with different mean-shift kernels. We vali-
date our kNN-based mean-shift learning framework by re-
placing the neighborhood criterion with uniform and Gaus-
sian kernels, which are commonly used for mean shift. For
implementation details, please refer to Appendix 7.1. As
shown in Table 5, the performance significantly deterio-
rates with both kernels. For constantly updating embed-
ding spaces, it is tricky to set a fixed distance radius for
mean-shift kernels. Noticeably, we observe that the fixed-
radius kernels tend to blur the embedding space by incor-
porating more neighbors within its radius as training pro-
gresses. In other words, this makes irrelevant embeddings
to be involved over training, eventually leading the model to
produce indistinguishable image embeddings to each other.
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Kernel
CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft Herbarium 19

All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel

Uniform 75.2 77.6 70.5 76.9 92.0 69.3 53.5 59.4 50.6 34.3 54.7 24.5 39.9 43.6 38.1 36.0 55.8 25.4
Gaussian 72.2 80.6 55.4 67.2 94.9 53.2 45.5 43.2 46.6 34.9 56.2 24.5 36.6 36.7 36.6 25.6 38.4 18.8
Ours 82.3 85.7 75.5 84.7 95.6 79.2 68.2 76.5 64.0 56.9 76.1 47.6 56.0 63.4 52.3 36.4 54.9 26.4

Table 5. Comparison of ours and different mean-shift kernels on GCD.

ImageNet100 CUB

N '(·) All Old Novel All Old Novel

(1) kNN attention 82.2 95.2 75.7 63.6 70.1 60.3
(2) random mean 82.6 75.0 76.3 58.1 65.4 54.5
(3) kNN mean 84.7 95.6 79.2 68.2 76.5 64.0

Table 6. Comparison with different feature aggregation methods

method CIFAR100 ImageNet100 CUB

Vaze et al. [48] 54.8 74.1 27.9
Ours 60.5 (+5.7%p) 77.9 (+3.8%p) 32.4 (+4.5%p)

Table 7. Comparison of two methods on the unsupervised setup

CIFAR100 ImageNet100 CUB

setup All Old Novel All Old Novel All Old Novel

Unsup. 67.4 67.0 67.6 88.1 92.2 86.8 29.5 35.2 27.6
GCD [48] 87.9 97.8 81.2 90.2 99.2 87.2 82.6 98.5 64.0

Table 8. The kNN retrieval performance of ours in Recall@8 on
the unsupervised category discovery and the GCD setups

Notice that the performance gap with ours (with kNN) is
larger on the small-scale benchmarks: CUB, Cars, and Air-
craft, which might be more sensitively influenced by the
kernel parameters on less data. Through this, we vali-
date that kNN retrieval performs as a less brittle and more
GPU-friendly approximation of a Gaussian kernel for fea-
ture learning, which adjusts the radius of the mean-shift ker-
nel as the embedding space is updated.
Comparison with different embedding aggregation. We
verify the proposed contrastive mean-shift learning by re-
placing the nearest neighbor retrieval and mean aggregation
with random retrieval and learnable attentive aggregation.
For the learnable attentive aggregation, we adopt the cross-
attention mechanism [46] without the value projection, us-
ing a query embedding as a query and kNN embeddings
as key and value. Without value projection, attentive pool-
ing of kNN embeddings is analogous to the attentive mean
shift. For random aggregation, we randomly select k em-
beddings for each query image instead of the nearest neigh-
bors, which are then shared among both the original and
augmented embeddings for stable learning.

As shown in Table 6, the mean aggregation with kNNs is
the most effective one. We observe that the random aggre-
gation significantly deteriorates the performance as training
progresses. On the other hand, the attentive aggregation in-
volves more trainable parameters and exhibits stable learn-

ing curves in training but generalizes worse than the mean
aggregation method at inference with iterative mean shift,
e.g., 2.6% point drop after iterations on ImageNet100.

Unsupervised category discovery with CMS. We further
analyze our method to interpret its behavior and elucidate
why it performs particularly well on GCD by comparing
ours on the unsupervised category discovery setup. As
shown in Table 7, CMS improves clustering effects even in
an unsupervised setup but quickly enhances with additional
labels, leveraging the help of higher-quality kNNs. Specif-
ically, when comparing CMS and Vaze et al. [48] without
labels, ours better performs by an average of 4.7%p across
three benchmarks. The gap widens when using additional
labels, i.e., on the GCD task, as shown in Table 1. We then
evaluate the quality of the retrieved 8NNs in our method
across these setups (Table 8), and observe that the model
trained on the GCD setup retrieves more accurate embed-
dings even for unknown classes than the one trained on
the unsupervised setup. Since CMS propagates supervision
in incorporating the relevant kNNs, and the relevant kNNs
lead robust mean shift as examined in Table 6, it eventually
establishes better representations for final clustering.

6. Conclusion

We have proposed to revisit the mean-shift algorithm and
incorporated it with contrastive representation learning for
generalized category discovery. The training procedure
trains an embedding network via contrastive learning of the
single-step mean-shifted embeddings. The evaluation pro-
cedure iterates the mean-shift steps, mapping the resultant
clustered groups to categories. While the previous work on
GCD often exploits the ground-truth number of classes for
clustering, we avoid doing so and propose a cluster number
estimation process based on agglomerative clustering to en-
able clustering in the absence of the ground-truth number
of classes. In experiments, our method achieves state-of-
the-art performance on the public GCD benchmarks with-
out bells and whistles.
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