
LTM: Lightweight Textured Mesh Extraction and Refinement of Large
Unbounded Scenes for Efficient Storage and Real-time Rendering

Jaehoon Choi 1 Rajvi Shah 2 Qinbo Li 2 Yipeng Wang 2 Ayush Saraf 2 Changil Kim 2

Jia-Bin Huang 1,2 Dinesh Manocha 1 Suhib Alsisan 2 Johannes Kopf 2

1University of Maryland 2Meta

Abstract

Advancements in neural signed distance fields (SDFs)
have enabled modeling 3D surface geometry from a set of
2D images of real-world scenes. Baking neural SDFs can
extract explicit mesh with appearance baked into texture
maps as neural features. The baked meshes still have a
large memory footprint and require a powerful GPU for
real-time rendering. Neural optimization of such large
meshes with differentiable rendering pose significant chal-
lenges. We propose a method to produce optimized meshes
for large unbounded scenes with low triangle budget and
high fidelity of geometry and appearance. We achieve
this by combining advancements in baking neural SDFs
with classical mesh simplification techniques and proposing
a joint appearance-geometry refinement step. The visual
quality is comparable to or better than state-of-the-art neu-
ral meshing and baking methods with high geometric ac-
curacy despite significant reduction in triangle count, mak-
ing the produced meshes efficient for storage, transmission,
and rendering on mobile hardware. We validate the effec-
tiveness of the proposed method on large unbounded scenes
from mip-NeRF 360, Tanks & Temples, and Deep Blend-
ing datasets, achieving at-par rendering quality with 73×
reduced triangles and 11× reduction in memory footprint.

1. Introduction

Photorealistic reconstruction and rendering of real-world
objects and scenes is a longstanding problem of importance
with several applications in computer vision, robotics and
AR/VR. In recent years, Neural Radiance Fields (NeRFs)
[1, 2, 38, 39] have been quite successful at novel view syn-
thesis. However, the scene representation is learned as an
implicit volumetric representation that is expensive to eval-
uate. This is a crucial limitation for many applications, such
as Augmented and Virtual Reality (AR/VR), often requiring
real-time rendering with low memory and compute power.

Figure 1. Example results using LTM showing mesh geometry
(top-left) and novel-view synthesis (right). Bottom right plot com-
pares performance of different methods on mip-NeRF360 outdoor
dataset. Our method achieves comparable rendering quality to
BakedSDF while reducing the mesh size considerably.

Since modern graphics engines are highly optimized to ras-
terize triangle meshes, researchers have started exploring
ways to extract explicit mesh representations from volumet-
ric functions.

MobileNeRF [5] uses a polygon mesh with texture maps
storing feature vectors and opacity. Although their ren-
dering quality is good, the mesh quality is far from an
ideal surface. While NeRF2Mesh [50] and NeRFMesh-
ing [44], based on volumetric density fields, excel at gen-
erating highly detailed geometry, they often result in noisy
and bumpy surfaces and numerous floaters, especially in
planar regions, which are common in large-scale scenes.
In contrast, neural Signed Distance Function (SDF) meth-
ods [42, 52, 54] typically excel in reconstructing accurate
surface geometry. However, they may not be able to capture
small or detailed geometry, and their rendering quality is in-
ferior to volumetric density-field methods. BakedSDF [55]
overcomes these limitations by applying mip-NeRF 360
techniques to train SDF representation, though the result-
ing mesh representation has a high memory overhead.

Previous neural SDF methods that rely on the March-
ing Cube algorithm [34] result in meshes with high storage
overhead. This results in a significant challenge for practi-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5053

cal applications on mobile devices, where low disk storage
and fast data transfer are essential. Instead of relying on
the Marching Cubes, some methods [11,28,48,49] propose
differentiable mesh reconstruction methods. These meth-
ods aim to extract an isosurface from an implicit function
and can be seamlessly integrated with differentiable render-
ing approaches [16, 17]. However, most methods primarily
concentrate on a single object with ideal implicit surface
functions, unsuited for large unbounded real-world scenes
[2, 55]. Reconstructing an ideal mesh for the unbounded
large-scale scene is still an open problem, often resulting in
non-manifold geometry or missing surfaces. Consequently,
the renderings can result in visual artifacts due to the incom-
pleteness of the mesh geometry.
Main Results: In this paper, our goal is to achieve a re-
alistic rendering with a compact mesh representation that
optimally utilizes disk storage for unbounded large-scale
scenes, all while preserving geometric quality. Our method
initially trains neural fields for geometry and appearance
separately. For geometry reconstruction, we adopt the
BakedSDF approach [55] to train an SDF in a contracted
space [2]. Regarding the appearance field, we utilize hash-
based encoding [39] with two shallow MLPs to represent
diffuse and specular colors. The SDF and appearance
fields are compact representations for reconstructing a high-
quality mesh and achieving realistic rendering.

Given the initial geometry representations, we perform
mesh extraction and decimation. As unbounded large-scale
scenes occupy a large amount of disk storage, our method
focuses on generating a lightweight mesh without compro-
mising geometric details. We adaptively extract the mesh
for the central and background regions in the contracted
space, respectively. Subsequently, we modify a mesh dec-
imation [14] designed for large-scale scenes. Our method
eliminates redundant triangles corresponding to simple ge-
ometric features, such as planar surfaces, while preserving
complex geometric features.

Since the appearance field is trained by volumetric ren-
dering, the initial model is unsuitable for rasterization-based
rendering. Moreover, the mesh from the previous step still
fails to accurately represent areas with highly-detailed ge-
ometry (thin structures) or semi-transparent objects. These
mesh defects hurt rendering quality. Thus, we use differ-
entiable rendering [27] and utilize image-space supervision
to refine the mesh surface by rectifying these mesh defects
while preserving geometric accuracy. Due to the highly
simplified mesh and various regularization techniques, our
approach can deform the mesh topology without causing
severe mesh distortion, a common issue in gradient-based
mesh optimization [41, 43]. Compared to mesh-based neu-
ral rendering methods [5,44,50,55], our approach results in
lower storage overhead while providing comparable render-
ing quality. To sum up, our contributions include:

• We effectively utilize classical mesh decimation tech-
niques to extract compact geometry from neural SDFs of
large unbounded scenes.

• We introduce a new approach for joint optimization of ap-
pearance and vertex deformation that preserves geometric
details and improves rendering quality.

• We achieve a trifecta of precise geometry, efficient stor-
age, and rendering quality comparable to the state of the
art on diverse captured environments such as mip-NeRF
360, Tanks & Temples, and the Deep Blending dataset.

2. Related Work
Neural Rendering Neural Fields achieve remarkable
photo-realistic rendering quality. One of the most success-
ful approaches is Neural Radiance Fields (NeRFs) [38],
which adopts volumetric implicit representations and trains
a radiance field through ray marching. Mip-NeRF [1, 2]
presents casting a conical frustum into the scene space and
extends this integrated positional encoding to unbounded
scenes by using a novel contraction function. Instead of
learning volumetric density, neural surface reconstruction
methods [6, 42, 52, 54] propose learning a Signed Dis-
tance Function (SDF) for surface reconstruction via vol-
umetric rendering. Furthermore, several methods have
been proposed to accelerate NeRFs by utilizing efficient
data structure [3, 10, 39], although achieving real-time ren-
dering for high-resolutions remains a challenge. Alterna-
tively, to enhance rendering speed, “baking” based meth-
ods [5, 19, 44, 45, 50, 55] typically precompute and store a
trained NeRF into a more efficient representation. SNeRG
[19] adopts a deferred shading model [8] and bakes trained
NeRFs into sparse voxel grid representations with neural
features. In particular, the mesh is widely used as geometry
representation and bakes neural fields into its texture. Mo-
bileNeRF [5] builds on a mesh rasterization pipeline for ef-
ficient rendering on mobile architecture. NeRF2Mesh [50]
introduces a two-step framework for NeRF training and tex-
tured mesh extraction. NeRFMeshing [44] proposes a novel
method to produce a truncated SDF from NeRFs and ex-
tracts the accurate mesh. BakedSDF [55] enables us to re-
construct high-quality mesh and bake it into a small appear-
ance model based on spherical Gaussians for fast rendering.
DNMP [35] and NeuRaS [32] adopt mesh-based geometry
and rasterization-based rendering for large driving scenes.
Mesh Processing Traditional graphics research has devel-
oped effective techniques for simplifying meshes, based on
vertex decimation [46, 47], edge collapse [9, 12–14, 20]
and appearance preservation [7]. Vertex decimation meth-
ods prioritize vertices based on shape heuristics and remove
the least important ones. Edge collapse methods rank the
edges based on the cost and subsequently contract pairs
of vertices. QSlim [12, 13] introduces the concept of the

5054

Quadric Error Metric (QEM), which is defined as the sum
of quadrics representing the distance of a point from a set of
planes. Following the edge collapse, they utilize this QEM
to identify which edges should be removed while preserv-
ing geometric topology. Lindstrom et al. [29,30] use vertex
clustering [46] on a uniform grid and accumulate a quadric
error matrix to the occupied grid cell. Wang et al. [51] em-
ploy RGB-D sequences to reconstruct a lightweight mesh.
Differentiable Rendering and Mesh Optimization Re-
cently, many differentiable rendering techniques [23] have
emerged, aimed at facilitating end-to-end optimization of
the rendering process by employing useful gradients. In
particular, several works [4,33] focus on approximating the
rasterization stage of the rendering to compute meaning-
ful gradients. Furthermore, modular differentiable render-
ers [21, 22, 27] exist, allowing users to customize and mod-
ify specific functions. Differentiable mesh reconstruction
techniques [11, 28, 48] can build a mesh through gradient-
based optimization. In particular, differentiable render-
ing [16, 17, 49] can offer 2D supervision to refine and en-
hance the geometric quality of the mesh. Some works
[16, 17] adopt an inverse rendering approach, leveraging
physics-based rendering to synthesize shapes. Neverthe-
less, gradient-based mesh optimization [41] is highly sensi-
tive to initialization and prone to significant mesh distortion.
Some methods [31, 41, 43] incorporate a novel ADAM op-
timizer and employ strong regularization techniques. How-
ever, this research is currently limited to generating single
objects and is challenging to apply to large-scale scenes.

3. Our Method

Given multi-view images and corresponding camera
poses, we aim to reconstruct the texture and geometry of
unbounded large-scale scenes. Fig. 2 shows the three main
stages of our pipeline: Initialization, Mesh Processing, and
Optimization. In the first stage, we employ volumetric ren-
dering to train neural implicit representation for geometry
fsdf and appearance fcolor. Subsequently, we leverage the
geometry representation fsdf to extract a high-resolution
mesh via Marching Cubes [34] and reduce the number of
triangles without causing geometry distortion. Next, we
utilize differentiable rendering [27] to jointly optimize the
explicit 3D mesh M and implicit appearance field fcolor
obtained from the first stage and refine the mesh surface.

3.1. Initialization of Geometry and Appearance

In this stage, we first learn neural implicit representations
for both appearance and geometry. A neural radiance field
[38] is an implicit representation of a 3D scene volume, a
mapping from a 3D position x and a ray viewing direction
d ∈ R3 to an RGB color c and volume density ρ. In practice,
the networks modeled by MLPs are used to generate this

Mesh

Texture

Output

MLP

Mesh Processing

Mesh
Simplification

Mesh Extraction

Mesh Refinement

Appearance & Geometry
Optimization

Optimization

Neural Geometry
Reconstruction

Neural Appearance
Field

Initialization

Multi-view
Images

Camera
Poses

Input

Figure 2. Overview of Our Pipeline. It consists of three steps:
Initialization (Sec. 3.1), Mesh Processing (Sec. 3.2), and Opti-
mization (Sec. 3.3). Our method focuses on baking the initial ap-
pearance and geometry representation, trained by volumetric ren-
dering, into an explicit mesh and a memory-efficient texture con-
ducive to real-time rendering. We employ classical mesh decima-
tion to minimize storage requirements, introduce the optimization
stage to facilitate rasterization-based rendering and refine the de-
tailed mesh structure.

volume density and view-dependent color:

ρ = fdensity(x), c = fcolor(x, d). (1)

To render the color of a pixel, we first compute the 3D
points ti along the viewing ray associated with each pixel
p as x(t) = o + td. Then, estimated volume densities ρi
and colors ci are utilized to approximate a volume render-
ing equation [37] using numerical quadrature:

C =
∑
i

Tiαici, Ti = exp(−
∑
j<i

ρiδi), (2)

where Ti is the accumulated transmittance and αi = 1 −
exp(−ρiδi) is the discrete opacity of the point. δi = ti −
ti−1 is the distance between two neighboring points along
the ray. To deal with large unbounded scenes, mip-NeRF
360 [2] introduces a proposal MLP for efficient sampling
and space contraction to represent an unbounded scene. The
scene contraction function f (in Eq. 3) maps the unbounded
points into bounded space:

f(x) =

x ||x|| ≤ 1,

(2− 1

||x||
)

x

||x||
||x|| ≥ 1.

(3)

Appearance Similar to previous works [5, 19, 50], we de-
compose an appearance field fcolor into shallow MLPs to
learn diffuse colors cd and specular colors cs separately.
Particularly, the view-dependent effects are modeled by a
small MLP that can be easily integrated into a fragment
shader. In order to ensure the MLPs are able to model an
unbounded scene well, we adopt strategies similar to the
ones introduced in mip-NeRF360 work, specifically, scene
contraction, proposal MLP, and regularization for the back-
ground. We train both MLP networks fcolor and fdensity
with a multi-resolution hash positional encoding [39] using
the volume rendering objective in Eq. 2. The appearance
field trained in this stage is further optimized to facilitate
rasterization-based rendering, replacing the computation-
ally expensive ray marching. This optimization is described
later in Section 3.3.

5055

Camera
Poses

Output

Transform
SDF

Mesh M Texture T

Geometry Reconstruction

Multi-view
Images

𝜎𝜎
𝒈𝒈𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

𝒇𝒇𝒔𝒔𝒔𝒔𝒇𝒇

𝑥𝑥
𝑑𝑑

Render
Color

Appearance Modeling

𝜌𝜌

𝒇𝒇𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

𝑥𝑥

𝒇𝒇𝒔𝒔𝒅𝒅𝒅𝒅𝒔𝒔𝒅𝒅𝒅𝒅𝒅𝒅

𝒇𝒇𝒔𝒔𝒔𝒔𝒇𝒇
Marching

Cube
Mesh

Decimation

𝒇𝒇𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

Differentiable
Rasterizer

Render
Color

High-resolution Mesh
of Vertices: 4491K / # of Faces: 8940K

Lightweight Mesh
of Vertices: 139K / # of Faces: 271K MLP

Render
Color

Render
Normal

Mesh 𝑀𝑀
vertex deform ∆𝒙𝒙

surface
points 𝒔𝒔

Normal 𝑁𝑁

Image 𝐼𝐼
Input

Refinement

𝑑𝑑 𝑑𝑑

Baking

Mesh Processing Optimization

Contract

Figure 3. Our Approach: In Section 3.1, we start training both the appearance fcolor and geometry fsdf representations for a large-scale
scene using volumetric rendering (shown in orange). Then, in Section 3.2, our method extracts the mesh from fsdf and significantly
simplifies its structure, resulting in the lightweight mesh M (shown in blue). In Section 3.3, we jointly train vertex deformation ∆x and
fcolor computed from appearance modeling.

Geometry Initial geometry modeling in our method is sim-
ilar to BakedSDF [55]. The core mechanism for neural
surface reconstruction was introduced in VolSDF [54] for
small objects. BakedSDF shows that by leveraging the ef-
ficient sampling and contraction ideas introduced in mip-
NeRF360 [2], VolSDF [54] can be extended to large un-
bounded scenes. We follow this and jointly train two MLPs
using the volumetric rendering objective, (i) fsdf - repre-
senting geometry of a scene as a signed distance function,
and (ii) gcolor - a color prediction network, as shown in the
Geometry Reconstruction block in Fig.3.

Following VolSDF, we define the volume density σ(x)
as a function of surface geometry fsdf , namely, σ(x) =
αΨβ(fsdf (x)), where Ψβ is the Cumulative Distribution
Function (CDF) of the Laplace distribution with zero mean
and β is the learnable scaling parameter. The Eikonal loss
[15] to regularize the fsdf is defined as,

Leik = (∥ ∇fsdf (x) ∥2 −1)2. (4)

The color MLP gcolor, in addition to the position and view-
ing direction, also takes the predicted surface normal and a
256-dimensional geometric feature as inputs. It is important
to note that the sole purpose of color MLP gcolor is geome-
try initialization and we discard it after this step. This is not
to be confused with the shallow decomposed color MLP
fcolor trained specifically to model appearance that is also
jointly refined with mesh vertices in the later stage.

3.2. Mesh Extraction and Decimation

In this stage, we first extract a mesh by using March-
ing Cubes (MC) [34] algorithm on learned SDF (fsdf eval-
uated over a uniform grid) and simplify the extracted mesh
using a geometry-aware quadric error based mesh decima-
tion. While this approach works pretty well for extracting
meshes of well-captured small-scale objects and scenes, it
presents unique challenges for large-scale scenes. Mesh-
ing neural SDFs of large-scale scenes with marching cubes
can often result in spurious surfaces arising from (i) insuffi-
cient grid resolution to model complex geometry of nearby

objects, and (ii) poorly learned geometry of distant objects
due to insufficient view-points observing such distant re-
gions. Furthermore, since our SDF fsdf is trained in the
contracted space, the resulting mesh is also defined in the
contracted space. When we uncontract, i.e. warp the mesh
vertices back into the original Euclidean space, it further ex-
acerbates the geometry distortion in the background region.

We aim to preserve the detailed geometry in central
(foreground) regions while achieving a coarser but less
noisy reconstruction of distant (background) regions, within
a small triangle budget. We achieve this by treating fore-
ground and background regions distinctly during both ex-
traction and simplification steps. During MC extraction, we
set a finer grid resolution of 2048 and a spatial range of
[−1, 1]3 for the central region, and a coarser resolution of
1024 and a spatial range of [−2, 2]3 for the background re-
gion. For decimation, we first partition the central and back-
ground regions and employ an aggressive mesh decimation
in background regions. This helps us transform bumpy and
noisy background areas into smooth surfaces while also re-
ducing redundant triangles.

We first apply vertex clustering and then run quadric er-
ror based simplification algorithm - QSlim [12, 13] for all
clusters. Then, we run edge contraction for each cluster to
reach a threshold and repeat this process until convergence.
The QSlim algorithm calculates a quadric metric for each
vertex to decide whether the two vertices should be merged
and aggregates these quadrics during each edge collapse op-
eration. The basic quadric error in QSlim [13] is defined as
the point-to-plane distance from vertex v ∈ R3 to all planes
p ∈ R4 of its adjacent faces N(v):

E(v) =
∑

p∈N(v)

(pT v)2 = vT (
∑

p∈N(v)

ppT)v = vTQvv.

(5)
The quadric Qv is the symmetric 4x4 matrix, and each edge
computes this quadric by adding the quadrics of the corre-
sponding two vertices. The most commonly used quadric
error is defined solely based on 3D vertex positions v.

5056

Intuitively, the most effective strategy is to represent
planar surfaces with a smaller number of large triangles
while keeping a consistent number of triangles for com-
plex shapes. Variants that incorporate additional surface
attributes, such as normals or textures in calculating the
quadric error are proposed in [12]. We experimentally ob-
served that compared to the basic QSlim algorithm, using
both the vertex positions v ∈ R3 and the corresponding
vertex normal n ∈ R3 for quadric error is very effective
at prioritizing triangle decimation on flat surfaces while re-
taining them on complex surfaces. The combination of ver-
tex clustering and geometry-aware QSlim helps us in effec-
tively reducing the number of triangles while preserving the
original geometry.

3.3. Appearance and Geometry Optimization

In this stage, we optimize the appearance model jointly
with mesh vertex deformation and refine the mesh topology
using a geometric complexity based criterion.
Joint optimization of appearance and vertex deforma-
tion Given the simplified mesh M and the initial appear-
ance field fcolor, we employ the fast differentiable raster-
izer introduced in Nvdiffrast [27] to jointly optimize the
mesh geometry and the appearance field. The initial ap-
pearance field fcolor trained using the volume rendering ob-
jective (Eq. 1) is agnostic of the surface geometry of the
extracted and simplified mesh. To finetune the model to
fit the mesh geometry, we rasterize the mesh into each of
the training camera poses and obtain surface points s and
face normals N interpolated per pixel. Then we apply the
contraction function in Eq. 3 to warp the surface points.
This is because the appearance field defined in contracted
space proves to be more effective in enhancing the render-
ing quality [2]. The appearance field fcolor takes these sur-
face points s and viewing direction d as input, rendering
an image Îi. Initially, rendering performance is degraded
because the appearance field only utilizes the intersection
point between the ray and the surface rather than accumu-
lating all sampled points along the ray. We finetune this ap-
pearance field to be compatible with mesh rendering, akin
to the functionality of a fragment shader.

Given the positions x of the mesh vertices, we train per-
vertex deformation ∆x using differentiable rendering [27].
We explore two approaches to optimize vertex deformation:
a standard ADAM optimizer [24] and a rotation-invariant
ADAM optimizer [43]. The ADAM optimizer is widely
employed [16,50] for deforming mesh topology to enhance
rendering performance. While the ADAM optimizer often
results in mesh distortions such as flipped triangles and
self-intersections, our method mitigates mesh distortion,
especially on smooth surfaces, due to the rigorous mesh
decimation performed in Section 3.2.

Objective Function To jointly train appearance field and
vertex deformation, we minimize the image-space L1 loss
Lappearance between the rendered image Îi of the deformed
surface and the groundtruth image Ii for a camera view Pi:

Lappearance =
∑
i

|Îi − Ii|. (6)

Naively training vertex deformation is highly likely to
result in undesirable mesh topology characterized by a dis-
organized arrangement of triangles, often referred to as a
“polygon soup.” To prevent this mesh distortion, we em-
ploy various regularization methods. We use the Laplacian
mesh smoothness loss and the normal consistency loss in-
spired by [36].

Llap =
∑

∥ LV ∥2 (7)

where V ∈ RNx3 (N is the number of vertices) is the ma-
trix of deformed vertex coordinates, indicating x + ∆x, at
each training step, and L ∈ RNxN is the graph Laplacian
of the mesh [40]. Minimizing the magnitude of a vertex’s
differential coordinates (LV) reduces its distance from its
neighbors’ average position. The normal consistency loss is

Lnc =
∑
i,j∈F

(1− ni · nj)
2, (8)

where ni and nj denote the surface normal of two adjacent
faces and F is the set of faces sharing a common edge. Ad-
ditionally, in Section 3.2, a high-resolution mesh is raster-
ized in the first pass before decimation. The output of this
rasterization is used to interpolate face normals per pixel,
resulting in a normal map N̂i for every viewpoint. We cal-
culate the L1 loss between a rendered normal Ni from cur-
rent mesh M and the N̂i:

Lnorm =
∑
i

|N̂i −Ni|. (9)

Lnorm provides geometry supervision, particularly in pla-
nar regions, helping prevent severe mesh distortion when
moving vertices. The total loss function L is defined as:

L = Lcolor + λlapLlap + λncLnc + λnormLnorm, (10)

where λ∗ is the weight to balance between the loss terms.

Mesh Refinement Inspired by NeRF2Mesh [50], we adopt
a classical mesh refinement approach based on mesh sub-
division and decimation during training. The mesh refine-
ment strategy is applied differently to the central and back-
ground regions. Instead of rendering error proposed by [50],
which can arise from many factors including specularity, we
employ a criterion: the vertex deformation values for sub-
dividing triangle faces. The large vertex deformation im-
plies a more substantial triangle budget to accurately cap-
ture the intricacies of highly detailed geometry associated

5057

(a) Ours (b) NeRF2Mesh (c) BakedSDF

C
ou

nt
er

R
oo

m
G

ar
de

n
B

ic
yc

le

(d) MobileNeRF

Figure 4. Visual comparison of Our Method, NeRF2Mesh [50], BakedSDF [55], and MobileNeRF [5]. Our method and NeRF2Mesh
show shading mesh and wireframe mesh extracted without texture, respectively.

with those vertices. We sort the absolute values of vertex
deformation and determine a 10 % of faces to increase tri-
angles. Then, we apply

√
3 subdivision [26], which adds a

vertex at the barycenter of a triangle and connects it to all
vertices of this triangle. This scheme enables us to augment
the triangle budget for complex geometry and mitigate self-
intersection during vertex deformation. Furthermore, the
mesh decimation presented in Section 3.2 is applied after
every mesh subdivision to remove redundant triangles on
simple and flat geometry. For background regions, we ex-
amine all training views and check faces intersecting with
ray casting. We utilize dilation for all invisible masks and
employ mesh decimation to remove redundant faces.
Rotation-Invariant ADAM The rotation-invariant ADAM
formulation [43] modifies the update rule in ADAM, result-
ing in the update step: ∆x = ζ ·v · lref . Here, ζ is the learn-
ing rate, and v is the standard ADAM update step, which is
the loss gradient with respect to x. lref is the coefficient ini-
tially set to the edge length incident to x, and it gets updated
based on the average v.

4. Experiments
4.1. Experiment Settings

Datasets: To validate the effectiveness of our method, we
mainly conduct experiments on seven unbounded, large-
scale 360◦ indoor and outdoor scenes from the mip-NeRF
360 [2] dataset. Also, we validate the generalization ability
of our approach on two different datasets, including large-
scale scenes: two scenes from the Tanks & Temples [25]
dataset and two scenes from the Deep Blending [18] dataset.
Implementation Details: For all datasets, we subsampled
every eight frames for test sets following the mip-NeRF 360
paper [2]. For geometry reconstruction in Section 3.1, we

use SDFstudio [56] to implement BakedSDF. In Section
3.2, we reduce 95% of the triangles in the central region
and 99% of the triangles in the background regions through
decimation. In Section 3.3, we run all experiments for 40k
iterations, and a learning rate is annealed from 1e-2 to 1e-
3. We set the loss weights to λlap=1e-3, λnc=1e-3, and
λnorm=1e-4. We apply mesh refinement at 8k, 16k, and 24k
training steps. Subsequently, we compute diffuse color and
specular features using fcolor to export textures. All these
color maps and features are 3-channel .png files. Additional
details are provided in the supplementary materials.

4.2. Experimental Results

We compare our proposed method with three different
methods: 1) MobileNeRF [5] is the state-of-the-art method,
enabling NeRF to achieve real-time rendering of explicit 3D
mesh and neural features. 2) NeRF2Mesh [50] employs a
volumetric rendering to reconstruct the coarse mesh and re-
fine the mesh by jointly optimizing appearance and geome-
try. 3) BakedSDF [55] is a recent method for optimizing a
neural surface-volume representation for real-time render-
ing of large unbounded scenes. We also add NeRFMeshing
[44], which distills the rendering NeRF into a neural field
that represents TSDF (Truncated SDF) and reconstructs the
3D mesh. As BakedSDF and NeRFMeshing have not re-
leased public code, we adopt the metrics provided in their
original papers. BakedSDF has made its GLB file available.
We utilize this file for visualization.

Figure 4 qualitatively compares our method with
NeRF2Mesh [50], BakedSDF [55], and MobileNeRF [5].
We visualize the shading meshes extracted without texture,
which is the most effective way to visualize geometric dif-
ferences. Furthermore, we include a wireframe mesh, dis-
tinguishing between our method and NeRF2Mesh. Visu-

5058

Method Mesh Outdoor (PSNR ↑ / SSIM ↑ / LPIPS ↓) Indoor (PSNR ↑ / SSIM ↑ / LPIPS ↓)
Bicycle Garden Stump Mean Room Counter Kitchen Bonsai Mean

Instant-NGP [39] X 22.1 / 0.49 / 0.49 24.5 / 0.65 / 0.31 23.6 / 0.57 / 0.45 23.4 / 0.57 / 0.42 29.2 / 0.85 / 0.30 26.43 / 0.80 / 0.34 28.5 / 0.82 / 0.25 30.3 / 0.89 / 0.23 28.6 / 0.84 / 0.28
mip-NeRF 360 [2] X 24.4 / 0.68 / 0.30 26.9 / 0.81 / 0.17 26.4 / 0.74 / 0.26 25.9 / 0.75 / 0.24 31.6 / 0.91 / 0.21 29.5 / 0.89 / 0.20 32.3 / 0.92 / 0.13 33.5 / 0.94 / 0.18 31.7 / 0.92 / 0.18

MobileNeRF [5] O 21.7 / 0.43 / 0.51 18.8 / 0.59 / 0.36 23.9 / 0.56 / 0.43 21.5 / 0.53 / 0.43 28.9 / 0.85 / 0.28 25.1 / 0.72 / 0.29 26.8 / 0.79 / 0.79 23.8 / 0.71 / 0.72 26.2 / 0.77 / 0.52
NeRF2Mesh [50] O 22.1 / 0.48 / 0.51 23.4 / 0.55 / 0.40 22.5 / 0.54 / 0.46 22.7 / 0.52 / 0.46 25.7 / 0.79 / 0.35 23.9 / 0.71 / 0.35 24.0 / 0.61 / 0.36 25.0 / 0.77 / 0.29 24.7 / 0.72 / 0.34
NeRFMeshing [44] O 21.1 / - / - 22.9 / - / - 22.6 / - / - 22.2 / - / - 26.1 / - / - 20.0 / - / - 23.6 / - / - 25.6 / - / - 23.8 / - / -
BakedSDF [55] O 22.0 / 0.57 / 0.37 24.9 / 0.75 / 0.21 23.6 / 0.59 / 0.37 23.5 / 0.64 / 0.32 28.7 / 0.87 / 0.25 25.7 / 0.81 / 0.28 26.7 / 0.82 / 0.24 27.2 / 0.85 / 0.26 27.0 / 0.84 / 0.26

Ours O 22.4 / 0.52 / 0.44 23.5 / 0.64 / 0.30 23.7 / 0.57 / 0.42 23.2 / 0.58 / 0.39 29.3 / 0.88 / 0.23 25.1 / 0.77 / 0.27 26.5 / 0.80 / 0.21 27.3 / 0.84 / 0.22 27.1 / 0.82 / 0.23
Ours w/o Opt O 16.1 / 0.30 / 0.53 18.8 / 0.45 / 0.39 19.4 / 0.39 / 0.50 18.1 / 0.38 / 0.48 17.2 / 0.54 / 0.46 16.2 / 0.47 / 0.47 18.1 / 0.50 / 0.36 16.4 / 0.54 / 0.43 17.0 / 0.51 / 0.43
Ours w/o GO O 21.1 / 0.48 / 0.47 23.2 / 0.65 / 0.30 23.0 / 0.53 / 0.46 22.5 / 0.55 / 0.41 27.5 / 0.85 / 0.26 23.6 / 0.72 / 0.33 25.5 / 0.78 / 0.23 25.9 / 0.76 / 0.3 25.4 / 0.78 / 0.28
Ours w. RADAM O 21.6 / 0.48 / 0.46 23.4 / 0.66 / 0.30 23.5 / 0.56 / 0.45 22.8 / 0.57 / 0.40 27.5 / 0.85 / 0.26 24.1 / 0.74 / 0.31 25.8 / 0.80 / 0.22 26.8 / 0.80 / 0.26 26.0 / 0.80 / 0.26

Table 1. Quantitative Comparison on mip-NeRF 360 Dataset. “-” denotes a missing implementation. The best and second best-
performing algorithms for each metric are bolded and underlineed.

Method Bicycle Garden Stump Room Counter Kitchen Bonsai Mean
Disk ↓ V ↓ / F ↓ Disk ↓ V ↓ / F ↓ Disk ↓ V ↓ / F ↓ Disk ↓ V ↓ / F ↓ Disk ↓ V ↓ / F ↓ Disk ↓ V ↓ / F ↓ Disk ↓ V ↓ / F ↓ Disk ↓ V ↓ / F ↓

MobileNeRF [5] 201 1435 / 6638 135 723 / 340 164 1069 / 497 220 903 / 421 170 864 / 399 95 552/ 256 84 606 / 284 153 879 / 1262
NeRF2Mesh [50] 129 815 / 858 117 650 / 779 123 415 / 820 69 328 / 462 79 517 / 384 89 601 / 434 70 319 / 636 97 387 / 667
BakedSDF [55] 1087 111248 / 44384 513 10773M / 21072 943 19667 / 38467 385 7227 / 14110 585 12212 / 23892 659 13832 / 27056 641 13629 / 26679 687 1564M / 27951
Ours 83 270 / 529 50 113 / 218 120 425 / 847 45 124 / 238 58 138 / 268 40 70 / 136 42 233 / 459 62 196 / 385

Table 2. Disk Storage (MB), Number of Vertices (V) and Faces (F). The unit for the number of vertices and faces is 103. “M” denotes
the 106 unit. We save 73× the number of triangles and reduce 11× disk storage.

alizing the wireframe mesh from BakedSDF lacks mean-
ingful interpretation due to its extremely high face den-
sity. MobileNeRF generates a “triangle soup” that inaccu-
rately represents the scene’s geometry. Also, compared to
the mesh reconstructed by NeRF2Mesh, our method shows
sharp details of complex geometry and smooth surfaces on
the ground or wall. Moreover, in the wireframe mesh, our
method employs more triangles in intricate shapes like the
bicycle or the garden vase while allocating smaller triangles
to planar regions or simpler structures. While the geome-
try of BakedSDF exhibits superior quality compared to our
mesh reconstruction, achieving this high-quality mesh ne-
cessitates approximately 73× more triangles in Table 2.

Our method effectively achieves the optimal tradeoff be-
tween rendering quality and disk storage cost. For com-
parison, we report two tables for rendering quality and disk
storage. Table 1 reports the rendering quality using the stan-
dard PSNR, SSIM [53], and LPIPS [57] on mip-NeRF 360
dataset. Instant-NGP [39], and mip-NeRF 360 [2] are vol-
umetric rendering approaches that do not reconstruct ex-
plicit geometry, a topic that lies outside the primary fo-
cus of our study. In Table 2, we report the disk storage
in megabytes and the number of vertices and faces. For a
fair comparison, all the mesh files are saved in .obj and .mtl
formats. Texture images are stored as .png files. Other as-
sets, such as view-dependency MLP, are saved as .json files,
except BakedSDF, which only provides gLTF format files.
Our method demonstrates comparable rendering quality in
outdoor scenes (with a 0.3 PSNR drop) and indoor scenes
(with a 0.1 PSNR increase) while saving 73× triangles and
11× storage compared to the state-of-the-art BakedSDF. In
comparison to NeRF2Mesh and MobileNeRF, our method
shows better-rendering quality (Table 1), demands less disk
storage, and fewer triangles (Table 2), and captures superior
mesh quality (Fig. 4). In Table 5, we measure the rendering
speed and GPU memory by running in-browser on a Mac-

Method Mesh Deep Blending [18] Tanks & Temples [25]
DrJohnson Playroom Barn Courthouse

Instant-NGP [39] X 27.7 / 0.84 / 0.38 19.5 / 0.78 / 0.46 23.4 / 0.72 / 0.43 20.0 / 0.68 / 0.53
mip-NeRF360 [2] X 29.1 / 0.90 / 0.24 29.6 / 0.90 / 0.25 27.2 / 0.81 / 0.32 21.3 / 0.72 / 0.47

MobileNeRF [5] O 25.9 / 0.78 / 0.31 28.7 / 0.85 / 0.28 24.4 / 0.77 / 0.24 17.7 / 0.54 0.36
NeRF2Mesh [50] O 24.0 / 0.75 / 0.51 26.6 / 0.83 / 0.41 23.4 / 0.72 / 0.43 18.2 / 0.63 / 0.56
Ours O 26.5 / 0.82 / 0.40 29.1 / 0.87 / 0.32 26.5 / 0.83 / 0.24 20.2 / 0.73 / 0.34

Table 3. Quantitative Comparison. We report PSNR ↑, SSIM ↑,
and LPIPS ↓ on Deep Blending and Tanks & Temples datasets.

Method DrJohnson Playroom Barn Courthouse
Disk ↓ V ↓ / F ↓ Disk ↓ V ↓ / F ↓ Disk ↓ V ↓ / F ↓ Disk ↓ V ↓ / F ↓

MobileNeRF [5] 174.9 602 / 285 281.8 1097 / 521 289.2 1080 / 502 263.6 934 / 417
NeRF2Mesh [50] 108.6 414 / 815 118.7 401 / 793 131.9 397 / 793 145.7 451 / 843
Ours 26.7 46 / 92 60.9 203 / 401 40 86 / 171 47.4 97 / 192

Table 4. Disk Storage (MB), Vertices (V) and Faces (F).
FPS / GPU (MB) MobileNeRF NeRF2Mesh Ours

MacBookPro (1920x1080 Resolution) 59 / 324 205 / 130 212 / 115

Table 5. FPS and GPU memory on mip-NeRF 360 dataset

BookPro (2020, M1).
Figure 5 compares our method to the state-of-the-art

baselines that focus on rendering quality: NeRF2Mesh [50],
BakedSDF* [55], and MobileNeRF [5]. In their first stage,
BakedSDF* represents the volumetric rendering results ob-
tained from a surface-based volumetric representation. The
visual results of our approach exhibit sharper details than
other methods. In the Bicycle and Room scenes, the mesh
surface of the armrest for a bench and tree leaves exhibits
noticeable jiggling, resulting in distorted images. Unlike
BakedSDF*, our method effectively manages the thin struc-
ture of the wheel.
Experimental Results on Deep Blending and Tank &
Temples Datasets: We train and evaluate our method
on four scenes: Playroom and DrJohnson from the Deep
Blending dataset, and Barn and Courthouse from the Tanks
& Temples dataset. The former includes bounded indoor
scenes, while the latter comprises large unbounded outdoor
scenes. Their capture methodology differs from that of the
mip-NeRF 360 dataset, and they do not utilize 360-degree
scenes. In Tanks & Temples, we exclude sky regions during
training and evaluation, as mesh-based rendering tends to

5059

Scene (a) Ours (b) NeRF2Mesh (d) MobileNeRF(c) BakedSDF*

C
ou

nt
er

G
ar

de
n

B
ic

yc
le

R
oo

m

Figure 5. Qualitative Comparisons with Existing Methods. We visually compare our proposed technique with NeRF2Mesh [50],
BakedSDF* [55], and MobileNeRF [5]. The visual results of BakedSDF* generated in its first stage through volumetric rendering. Red
and blue dotted lines emphasize subtle differences in rendering quality.

(a) Ours w/o Opt. (c) NeRF2Mesh (d) BakedSDF(b) Ours

Figure 6. Zoom-in Shading Mesh to see more geometric details.

encounter challenges with far-away sky regions.
Ablation: In Fig. 6, we visualize the zoom-in shading
mesh extracted without texture. “Ours w/o Opt” denotes
we did not execute our optimization stage in Section 3.3
after mesh processing. The optimization stage enables us
to represent the geometric details of garden vases and bi-
cycle wheels. Our method can represent more detailed
structures than BakedSDF and a smoother surface than
NeRF2Mesh. Moreover, it is noteworthy that when em-
ploying rasterization-based rendering with the initial color
model without the optimization stage, the rendering quality
is poor, as shown in Table 1. In this table, “Ours w/o Geo”
only trains appearance model fcolor without training ver-
tex deformation. Training vertex deformation yields a 1.7
gain in indoor scenes by refining the mesh surface. “Ours
w. RADAM” denotes that we use the rotation-invariant

Figure 7. Naive QSlim Results
ADAM (RADAM) for updating mesh vertices instead of a
naive ADAM. However, it provides benefits for preventing
mesh distortion. In Fig. 7, we show the visualization results
of naive QSlim [12]. The naive QSlim leads to shrinkage
and degeneration during the edge collapse process, and the
boundary is over-smoothed compared to our method.

5. Conclusion, Limitations, and Future Work
This paper introduces a practical approach for recon-

structing geometrically accurate meshes with photorealistic
rendering quality. Our method achieves a compact mesh
representation in unbounded large-scale scenes while pre-
serving highly detailed geometry. Furthermore, the ap-
pearance field corresponding to this lightweight mesh is
compatible with the classical rasterization pipeline, en-
abling efficient rendering. However, our method has lim-
itations. BakedSDF employs a well-designed appearance
model based on spherical Gaussians. The potential for en-
hancing rendering quality exists by incorporating a more
sophisticated appearance model. Moreover, the gradient-
based mesh optimization in the final stage may still result
in mesh distortions, including self-intersections. We plan
to employ a carefully designed optimizer to mitigate such
distortions in future work.

5060

References
[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5855–5864,
2021. 1, 2

[2] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5470–5479, 2022. 1, 2, 3, 4, 5, 6, 7

[3] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision, pages 333–350. Springer,
2022. 2

[4] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. Advances in neural information processing
systems, 32, 2019. 3

[5] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
16569–16578, 2023. 1, 2, 3, 6, 7, 8

[6] Jaehoon Choi, Dongki Jung, Taejae Lee, Sangwook Kim,
Youngdong Jung, Dinesh Manocha, and Donghwan Lee.
Tmo: Textured mesh acquisition of objects with a mobile
device by using differentiable rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16674–16684, 2023. 2

[7] Jonathan Cohen, Marc Olano, and Dinesh Manocha.
Appearance-preserving simplification. In Proceedings of the
25th annual conference on Computer graphics and interac-
tive techniques, pages 115–122, 1998. 2

[8] Michael Deering, Stephanie Winner, Bic Schediwy, Chris
Duffy, and Neil Hunt. The triangle processor and normal
vector shader: a vlsi system for high performance graphics.
Acm siggraph computer graphics, 22(4):21–30, 1988. 2

[9] Carl Erikson and Dinesh Manocha. Gaps: General and auto-
matic polygonal simplification. In Proceedings of the 1999
symposium on Interactive 3D graphics, pages 79–88, 1999.
2

[10] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501–5510, 2022. 2

[11] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Learning deformable
tetrahedral meshes for 3d reconstruction. Advances In Neu-
ral Information Processing Systems, 33:9936–9947, 2020. 2,
3

[12] Michael Garland. Quadric-based polygonal surface simpli-
fication. Carnegie Mellon University, 1999. 2, 4, 5, 8

[13] Michael Garland and Paul S Heckbert. Surface simplification
using quadric error metrics. In Proceedings of the 24th an-
nual conference on Computer graphics and interactive tech-
niques, pages 209–216, 1997. 2, 4

[14] Michael Garland and Paul S Heckbert. Simplifying sur-
faces with color and texture using quadric error metrics. In
Proceedings Visualization’98 (Cat. No. 98CB36276), pages
263–269. IEEE, 1998. 2

[15] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. In Proceedings of the 37th International Conference
on Machine Learning, ICML’20. JMLR.org, 2020. 4

[16] Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg.
Shape, light, and material decomposition from images using
monte carlo rendering and denoising. Advances in Neural
Information Processing Systems, 35:22856–22869, 2022. 2,
3, 5

[17] Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg.
Shape, Light, and Material Decomposition from Im-
ages using Monte Carlo Rendering and Denoising.
arXiv:2206.03380, 2022. 2, 3

[18] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics (ToG), 37(6):1–15, 2018. 6, 7

[19] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5875–5884, 2021. 2, 3

[20] Hugues Hoppe. View-dependent refinement of progressive
meshes. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 189–
198, 1997. 2

[21] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin
Nimier-David, Delio Vicini, Tizian Zeltner, Baptiste Nicolet,
Miguel Crespo, Vincent Leroy, and Ziyi Zhang. Mitsuba 3
renderer, 2022. https://mitsuba-renderer.org. 3

[22] Justin Johnson, Nikhila Ravi, Jeremy Reizenstein, David
Novotny, Shubham Tulsiani, Christoph Lassner, and Steve
Branson. Accelerating 3d deep learning with pytorch3d. In
SIGGRAPH Asia 2020 Courses, pages 1–1. 2020. 3

[23] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro
Ando, Toru Matsuoka, Wadim Kehl, and Adrien Gaidon.
Differentiable rendering: A survey. arXiv preprint
arXiv:2006.12057, 2020. 3

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[25] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale
scene reconstruction. ACM Transactions on Graphics (ToG),
36(4):1–13, 2017. 6, 7

[26] Leif Kobbelt. Sqrt(3)-subdivision. In Proceedings of the
27th annual conference on Computer graphics and interac-
tive techniques, pages 103–112, 2000. 6

[27] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for

5061

high-performance differentiable rendering. ACM Transac-
tions on Graphics (TOG), 39(6):1–14, 2020. 2, 3, 5

[28] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep march-
ing cubes: Learning explicit surface representations. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2916–2925, 2018. 2, 3

[29] Peter Lindstrom. Out-of-core simplification of large polygo-
nal models. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pages 259–
262, 2000. 3

[30] Peter Lindstrom and Claudio T Silva. A memory insensitive
technique for large model simplification. In Proceedings Vi-
sualization, 2001. VIS’01., pages 121–550. IEEE, 2001. 3

[31] Selena Zihan Ling, Nicholas Sharp, and Alec Jacobson. Vec-
toradam for rotation equivariant geometry optimization. Ad-
vances in Neural Information Processing Systems, 35:4111–
4122, 2022. 3

[32] Jeffrey Yunfan Liu, Yun Chen, Ze Yang, Jingkang Wang,
Sivabalan Manivasagam, and Raquel Urtasun. Real-time
neural rasterization for large scenes. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 8416–8427, 2023. 2

[33] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3d reason-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 7708–7717, 2019. 3

[34] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987. 1, 3, 4

[35] Fan Lu, Yan Xu, Guang Chen, Hongsheng Li, Kwan-Yee
Lin, and Changjun Jiang. Urban radiance field representa-
tion with deformable neural mesh primitives. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 465–476, 2023. 2

[36] Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong.
Unified shape and svbrdf recovery using differentiable monte
carlo rendering. In Computer Graphics Forum, volume 40,
pages 101–113. Wiley Online Library, 2021. 5

[37] Nelson Max. Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graphics,
1(2):99–108, 1995. 3

[38] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 1,
2, 3

[39] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. arXiv preprint arXiv:2201.05989,
2022. 1, 2, 3, 7

[40] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc
Alexa. Laplacian mesh optimization. In Proceedings of
the 4th international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia,
pages 381–389, 2006. 5

[41] Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. Large
steps in inverse rendering of geometry. ACM Transactions
on Graphics (TOG), 40(6):1–13, 2021. 2, 3

[42] Michael Oechsle, Songyou Peng, and Andreas Geiger.
Unisurf: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 5589–5599, 2021. 1, 2

[43] Werner Palfinger. Continuous remeshing for inverse render-
ing. Computer Animation and Virtual Worlds, 33(5):e2101,
2022. 2, 3, 5, 6

[44] Marie-Julie Rakotosaona, Fabian Manhardt, Diego Martin
Arroyo, Michael Niemeyer, Abhijit Kundu, and Federico
Tombari. Nerfmeshing: Distilling neural radiance fields into
geometrically-accurate 3d meshes. In Proc. of the Interna-
tional Conf. on 3D Vision (3DV), 2023. 1, 2, 6, 7

[45] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 14335–
14345, 2021. 2

[46] Jarek Rossignac and Paul Borrel. Multi-resolution 3d ap-
proximations for rendering complex scenes. In Modeling in
computer graphics: methods and applications, pages 455–
465. Springer, 1993. 2, 3

[47] William J Schroeder, Jonathan A Zarge, and William E
Lorensen. Decimation of triangle meshes. In Proceedings
of the 19th annual conference on Computer graphics and in-
teractive techniques, pages 65–70, 1992. 2

[48] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid repre-
sentation for high-resolution 3d shape synthesis. Advances
in Neural Information Processing Systems, 34:6087–6101,
2021. 2, 3

[49] Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue
Yin, Zian Wang, Wenzheng Chen, Zan Gojcic, Sanja Fidler,
Nicholas Sharp, and Jun Gao. Flexible isosurface extraction
for gradient-based mesh optimization. ACM Transactions on
Graphics (TOG), 42(4):1–16, 2023. 2, 3

[50] Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Er-
rui Ding, Jingdong Wang, and Gang Zeng. Delicate tex-
tured mesh recovery from nerf via adaptive surface refine-
ment. arXiv preprint arXiv:2303.02091, 2022. 1, 2, 3, 5, 6,
7, 8

[51] Chao Wang and Xiaohu Guo. Plane-based optimization
of geometry and texture for rgb-d reconstruction of indoor
scenes. In 2018 International Conference on 3D Vision
(3DV), pages 533–541. IEEE, 2018. 3

[52] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Process-
ing Systems, 2021. 1, 2

[53] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 7

[54] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. Advances in Neu-

5062

ral Information Processing Systems, 34:4805–4815, 2021. 1,
2, 4

[55] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron,
and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-
time view synthesis. arXiv, 2023. 1, 2, 4, 6, 7, 8

[56] Zehao Yu, Anpei Chen, Bozidar Antic, Songyou Peng, Apra-
tim Bhattacharyya, Michael Niemeyer, Siyu Tang, Torsten
Sattler, and Andreas Geiger. Sdfstudio: A unified framework
for surface reconstruction, 2022. 6

[57] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 7

5063

	. Introduction
	. Related Work
	. Our Method
	. Initialization of Geometry and Appearance
	. Mesh Extraction and Decimation
	. Appearance and Geometry Optimization

	. Experiments
	. Experiment Settings
	. Experimental Results

	. Conclusion, Limitations, and Future Work

