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Figure 1. Comparison of vid-TLDR (Ours) with UMT [33]. Without any additional training, vid-TLDR obtains comparable or even better
performance than the base model UMT (left) while reducing the considerable computational cost (right). UMT-B (87M) is used.

Abstract

Video Transformers have become the prevalent solution
for various video downstream tasks with superior expressive
power and flexibility. However, these video transformers
suffer from heavy computational costs induced by the mas-
sive number of tokens across the entire video frames, which
has been the major barrier to train and deploy the model.
Further, the patches irrelevant to the main contents, e.g.,
backgrounds, degrade the generalization performance of
models. To tackle these issues, we propose training-free to-
ken merging for lightweight video Transformer (vid-TLDR)
that aims to enhance the efficiency of video Transformers by
merging the background tokens without additional training.
For vid-TLDR, we introduce a novel approach to capture the
salient regions in videos only with the attention map. Fur-
ther, we introduce the saliency-aware token merging strat-
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egy by dropping the background tokens and sharpening the
object scores. Our experiments show that vid-TLDR sig-
nificantly mitigates the computational complexity of video
Transformers while achieving competitive performance com-
pared to the base model without vid-TLDR. Code is available
at https://github.com/mlvlab/vid-TLDR.

1. Introduction
With the success of Transformers in computer vision, e.g.,
classification [14, 52], object detection [10, 32, 43, 61, 75,
77], segmentation [59, 64], a line of works [16, 33, 51, 57,
60, 76] have proposed video Transformers to comprehend
the video for various downstream tasks. The attention mech-
anism in Transformers shows the desirable characteristics for
video understanding such as the ability to capture the spatial
and temporal dependencies at the same time. Consequently,
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these video Transformers have been the primary backbones
for the various downstream tasks in the video domain, includ-
ing action recognition [65, 73], video-text retrieval [17, 38],
video question-answering [18, 63], etc. Meanwhile, the
self-attention mechanism entails the dot-product calculation
between tokens, which brings the quadratic cost in the num-
ber of tokens. This poses a challenge for existing video
Transformers like UMT [33] that tokenize the whole video
into a large number of tokens.
In the image domain, several works have tried to mitigate
the heavy computation of attention by refining the attention
itself [6, 25, 58, 66], or limiting the range of attention by
a pre-defined window [13, 39]. Yet, these works are not a
favorable solution for video Transformers since the meth-
ods entail architectural changes, requiring re-training video
models with large datasets. As an alternative, in the image
domain several works have proposed ‘training-free’ token re-
duction methods using the flexibility of Transformers in han-
dling a variable number of input tokens. For instance, prior
works [35, 47] simply prune or merge the uninformative to-
kens to reduce the computational cost based on attentiveness.
However, we observed that the existing training-free token
reduction methods for images are suboptimal for video trans-
formers. First, previous attention-based informative scores
are not accurate enough to use in early layers as discussed
in [35]. So, the token reduction cannot be performed at
earlier layers. Further, the attention scores of video Trans-
formers contain a temporal bias, which makes it difficult
to directly adopt them as the informativeness of the tokens,
see Figure 2.
Based on these observations, we propose vid-TLDR,
Training-free token merging for Light-weight viDeo Trans-
formeR, to effectively merge the tokens through two steps.
First, we conduct saliency detection via attention sharpness.
We observe that our proposed metric understands the salient
region, which is more informative than backgrounds, even
with the attention map in the first layer of Transformers. We
also introduce the saliency-aware token merging, a training-
free plug-in module to suppress the tokens irrelevant to the
target tasks. Through saliency-aware token merging, we
effectively drop the information of tokens in backgrounds
and further contrast the informativeness of the foreground
objects. Based on these components, we minimize the hin-
drance by irrelevant tokens from the early layers of video
Transformers. Through experiments, we show that, without
any additional training, the adoption of vid-TLDR brings per-
formance improvements of (+0.8%, +0.5%, +1.1%) with at
least 39.5% lower FLOPs in UMT-B [33] on MSRVTT [68],
MSVD [11], DiDeMo [2], respectively. To summarize, the
contributions of vid-TLDR are presented as follows:

• We propose the novel token merging method vid-TLDR,
which reduces the tokens irrelevant to target tasks from
the early layers of the video Transformer.

• We detect the salient region of videos based on the sharp-
ness of the attention scores even from the first layer.

• Based on the saliency scores, we also propose saliency-
aware token merging with the masked saliency scores for
adaptively adjusting the informativeness of the tokens.

• vid-TLDR shows the competitive performance with the
baselines across four benchmarks in video-text retrieval
and two benchmarks in video question-answering. It is
worth noting that vid-TLDR even shows superior perfor-
mance while reducing the computational complexity.

2. Preliminaries

In this section, we briefly review the video Transformers and
token reduction approaches, then introduce techniques to
measure the informativeness of tokens using the attention
map of the video Transformers.
Video Transformer. In Transformers [53], the self-attention
mechanism is defined as

Attention(Q,K, V ) = softmax
(
QK⊤
√
C

)
V, (1)

where Q,K, V ∈ RN×C are the projection of the tokens
X ∈ RN×C by learnable matrices WQ,WK ,WV ∈ RC×C .
Given a video clip composed of T frames in the resolution
of H × W , video Transformers first generate the tokens
X ∈ RN×C by considering the clip as the set of tubes,
where N = T

t × H
P × W

P , and (t × P × P ) is the size of
each tube. All tokens in the video Transformers interact
with others across the frames by spatio-temporal attention.
Despite the advantage of capturing both spatial and tempo-
ral dependencies, it also demands enormous computational
resources to handle the large number of tokens. Compared
to one image, the computational cost for a clip is increased
by (Tt )

2 times since the cost of attention is quadratic in the
number of tokens. This cost further increases as the number
of frames per tube t decreases.
Token Reduction Methods. Based on the flexibility of
Transformers in the number of tokens, token reduction ap-
proaches [8, 15, 26, 36, 47] reduce the intermediate to-
kens by pruning or merging them, leading to the lower
computational cost O((N ′)2C + N ′C2), where N ′ < N .
To minimize information loss after reduction, they mainly
prune/merge the tokens based on the attentiveness defined as

acls = softmax
(
qclsK

⊤
√
C

)
, (2)

where qcls is the query vector of the class token. Prior works
achieve a competitive performance with the original model
through additional training. In parallel, ToMe [8] has demon-
strated the possibility of training-free token merging in the
image domain using the similarity of the tokens. This simple
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(a) Input

(b) Attentiveness ā in Equation (3)

(c) Attention Rollout ã in Equation (4)

(d) Ours s in Equation (5)

Figure 2. Visualization of the attention map of each method in the first layer. Both attentiveness ā and attention Rollout ã confused with
foreground objects and the background, also have a temporal bias, resulting in overall low attention in the later frames. These problems are
mitigated in our method, focusing on the object across all frames.

plug-in approach is favorable for video Transformers consid-
ering its huge complexity, yet the capability to capture the
informativeness of the tokens is absent.
Informativness of tokens. Previous works [35, 47], due to
the low reliability of the attention map in the early stage,
could not reduce the tokens in the earlier layers. However,
we believe that the early pruning/merging is desirable for
video Transformers from two perspectives: 1) it prevents the
interaction between the tokens irrelevant to the main contents
by only retaining the salient tokens, and 2) it largely allevi-
ates the complexity of the entire layers with fewer tokens
from the beginning of Transformer. To validate this, we ex-
plore whether the attention map is a sufficient approximation
of the informativeness estimator even in the first layer. Note
that, due to the absence of the class tokens in recent video
Transformers, we modify Equation (2) by summarizing the
whole query vector as

ā =
1

N

∑N

i
Ai, (3)

where Ai is the i-th row vector of the attention matrix
A = softmax

(
QK⊤
√
C

)
. Further, we visualize the attention

rollout [1], which is the well-known saliency detector by
quantifying the flow of attention from the tokens in the l-th
layer to output, defined as

Ãl =

↶∏L

i=l
Ai and ãl =

1

N

∑N

i
Ãl

i, (4)

where L is the number of layer in Transformers, and Ai ∈
RN×N is the attention map in i-th layer. As shown in Fig-
ure 2, the attentiveness ā failed to capture salient tokens
due to the low reliability of the attention map in the early

stage, and attention rollout ã also largely confused the fore-
ground objects. Further, we have observed the temporal
biases of video Transformers, e.g., the later frames exhibit
lower activation regardless of the importance of the frames.

3. Method

We introduce vid-TLDR, Training free token merging for
Light-weight viDeo transformeR. The goal of vid-TLDR
is to effectively merge the tokens from the early stage by
two steps: 1) Saliency detection via attention sharpness
(Section 3.1), 2) Saliency-aware token merging (Section 3.2).

3.1. Saliency detection via attention sharpness

As discussed in Section 2, existing works do not reduce the
tokens in the first few layers because of the low reliability.
However, we believe that tokens irrelevant to the target tasks
should be reduced as early as possible to minimize their
adverse influence. To this end, we analyze the attention
scores Ai = softmax( qiK

⊤
√
C

) in the first self-attention layer
concerning the foreground and background tokens. Figure 4
reveals that the background tokens are quite equally affected
by neighboring tokens, whereas the tokens of foreground
objects gather the information from more specific tokens
showing sharper attention scores compared to backgrounds.
Based on this observation, we devise a sharpness function S
to capture the saliency of tokens with entropy. Specifically,
using the negative entropy given as Hi =

∑N
j Aij logAij ,

we define the sharpness function S as

si = S(Hi) =
Hi −min(H)

max(H)−min(H)
, (5)
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Figure 3. Pipeline of vid-TLDR. (a) Given the attention map A, the saliency score s is approximated by the sharpness function S (Eq. (5)).
After that, we generate background drop mask M (Eq. (8)) to minimize the disturbance of background tokens. With s and M , we generate
masked saliency scores ŝ (Eq. (9)). (b) Given the tokens X and their corresponding mass m, we conduct the matching to group the input
tokens. Following that, we update the mass m to m̃ with ŝ (Eq. (10)) to highlight important foreground tokens and minimize the hindrance
of background tokens. With updated mass m̃, the grouped tokens are merged into a token m′ and X ′ (Eq. (11))

Figure 4. Visualization of attention scores in the first layer of UMT-
B [33]. Given the query qi denoted as a yellow square, we visualize
the attention score ai. Tokens in the foreground objects show a
sharper attention map compared to the background tokens.

where H = [H1, . . . ,HN ]. Since an informative foreground
token has low entropy, its saliency score si is usually high.
Remarks. To validate the saliency scores s, we conduct
the experiments by pruning the 400 tokens in each layer of
UMT [33] on video-text-retrieval task with MSRVTT [68].
In Table 1, we demonstrate that the pruning by the proposed
score accelerates the base model (first row) with the com-
petitive performance across layers. Interestingly, the token
reduction in the earlier layers is more effective. To be spe-
cific, the token reduction in the first layer shows the best
results (50.4%) with the lowest FLOPs (237.6 (G)). Based
on this observation, we mainly applied our token reduction
to earlier layers. Qualitative results in Figure 2d show that
the saliency scores in the first layer successfully detect the

Layer GFLOPs T2V V2T Mean
- 303.3 51.0 49.0 50.0
1 237.6 49.6 51.1 50.4
2 243.1 49.6 50.8 50.2
3 248.6 49.9 50.5 50.2
4 254.0 49.6 50.7 50.2
5 259.5 49.7 50.6 50.2
6 265.0 49.6 50.7 50.2
7 270.5 48.8 50.1 49.5

Table 1. The comparative study of where to reduce the tokens.

salient region.

3.2. Saliency-aware token merging

Given the saliency scores s = [s1, ..., sN ] of the tokens, our
goal is to merge tokens while suppressing the influence of
the irrelevant tokens with low saliency scores. We start with
a brief review of a training-free token reduction method,
ToMe [8]. ToMe splits tokens X into two sets Xsrc, Xdst ⊂
X and performs the bipartite soft matching between the two
sets to form token groups. For each group Gi, the features
are aggregated as

x′
i =

∑
j∈Gi

mjxj∑
j′∈Gi

mj′
, (6)

where {xi}i∈Gi
⊂ X , ∀Gi,Gj

Gi∩Gj = ∅, and mi is the mass
of token xi. Then, the attention is also refined with m as

A′
ij = softmax (Aij + logmj) , (7)
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Dataset Metric UMT-B UMT-L
Base ToMe Ours Base ToMe Ours

MSRVTT

GFLOPs ↓ 303.3 231.4 178.0 984.6 529.7 563.1
R@1 ↑ 50.0 47.0 (−3.0) 50.8 (+0.8) 58.7 55.8 (−2.9) 58.5 (−0.2)

R@5 ↑ 76.8 73.2 (−3.6) 75.7 (−1.1) 81.3 79.6 (−1.7) 81.3 (±0.0)

R@10 ↑ 83.9 82.1 (−1.8) 83.8 (−0.1) 86.8 86.1 (−0.7) 86.9 (+0.1)

MSVD

GFLOPs ↓ 303.3 218.7 181.3 984.6 574.5 563.1
R@1 ↑ 62.1 59.6 (−2.5) 62.7 (+0.6) 70.3 69.5 (−0.8) 70.4 (+0.1)

R@5 ↑ 84.7 83.8 (−0.9) 84.8 (+0.1) 89.3 88.7 (−0.6) 90.5 (+1.2)

R@10 ↑ 90.0 89.0 (−1.0) 89.8 (−0.2) 93.2 92.7 (−0.5) 94.0 (+0.8)

ActivityNet

GFLOPs ↓ 303.3 236.8 227.6 984.6 574.5 572.9
R@1 ↑ 57.2 51.7 (−5.5) 56.6 (−0.6) 65.6 62.5 (−3.1) 65.2 (−0.4)

R@5 ↑ 83.7 80.7 (−3.0) 83.4 (−0.3) 89.1 86.9 (−2.2) 88.7 (−0.4)

R@10 ↑ 91.6 89.6 (−2.0) 91.3 (−0.3) 94.9 93.6 (−1.3) 94.5 (−0.4)

DiDeMo

GFLOPs ↓ 303.3 241.4 212.8 984.6 574.5 559.0
R@1 ↑ 62.1 57.3 (−4.8) 62.4 (+0.3) 70.8 68.0 (−2.8) 70.4 (−0.4)

R@5 ↑ 86.8 82.6 (−4.2) 86.2 (−0.6) 90.6 89.4 (−1.2) 90.5 (−0.1)

R@10 ↑ 92.1 89.3 (−2.8) 91.6 (−0.5) 94.5 93.8 (−0.7) 94.0 (−0.5)

LSMDC

GFLOPs ↓ 303.3 223.2 206.2 984.6 574.5 583.7
R@1 ↑ 32.7 27.3 (−5.4) 32.4 (−0.3) 42.2 39.2 (−3.0) 41.9 (−0.3)

R@5 ↑ 54.1 49.1 (−5.0) 53.3 (−0.8) 64.9 61.6 (−3.3) 64.1 (−0.8)

R@10 ↑ 63.3 57.3 (−6.0) 63.2 (−0.1) 72.3 68.7 (−3.6) 70.8 (−1.5)

SSV2-label

GFLOPs ↓ 303.3 232.2 212.9 984.6 627.2 610.9
R@1 ↑ 64.0 60.2 (−3.8) 63.8 (−0.2) 72.4 69.9 (−2.5) 72.1 (−0.3)

R@5 ↑ 88.3 86.1 (−2.2) 87.7 (−0.6) 93.4 92.2 (−1.2) 93.0 (−0.4)

R@10 ↑ 92.9 91.6 (−1.3) 92.7 (−0.2) 96.7 95.8 (−0.9) 96.5 (−0.2)

SSV2-Template

GFLOPs ↓ 303.3 241.4 203.7 984.6 627.2 572.9
R@1 ↑ 74.6 71.8 (−2.8) 74.0 (−0.6) 78.4 77.0 (−1.4) 78.1 (−0.3)

R@5 ↑ 93.9 93.9 (±0.0) 93.4 (−0.5) 95.9 95.1 (−0.8) 95.8 (−0.1)

R@10 ↑ 96.8 96.6 (−0.2) 96.3 (−0.5) 97.8 97.7 (−0.1) 97.9 (+0.1)

Table 2. Video-text retrieval on MSRVTT [68], MSVD [11], ActivityNet [9], DiDeMo [2], LSMDC [49], SSV2-Label/Template [30].
Underlined results indicate the number reported with the official repository of UMT [33] that corrects the misconfiguration of it.

where Aij is the element in i-th row and j-th column. For the
mass m of the tokens, ToMe uses the number of constituent
tokens. Although it has been proven effective in alleviating
redundancies, it cannot adaptively adjust the influence of
merged tokens considering its importance. We here propose
a saliency-aware token merging that estimates the mass re-
flecting the saliency of the tokens and then merges the tokens
with their corresponding mass to minimize the hindrance
induced by the uninformative tokens. First, we introduce the
background drop mask to update the mass of foreground and
background tokens selectively. Given the saliency scores,
we define the mask as

Mi = 1{si>s̄}, (8)

where 1 is the indicator function and s̄ = 1
N

∑N
i si. Using

the mask above, our framework sets the saliency scores to 0
if a token has a saliency score lower than the average saliency
score. With M , we define masked saliency scores ŝ to focus
more on informative tokens among the foreground objects

by masking and rescaling the saliency scores as

ŝi =
Mi(si − s̄)

max(Mi(si − s̄))
. (9)

Yet, we have one more issue while adopting ŝ as the mass.
If all tokens in the group Gi have the saliency scores lower
than s̄, feature aggregation may result in a zero vector losing
the entire information. So, to prevent this, we compute the
mass with ŝ as

m̃i =

{
ŝimi, if xi ∈ Xsrc

mi if xi ∈ Xdst . (10)

Then, feature merging of Equation (6) is modified as

x′
i =

∑
j∈Gi

m̃jxj∑
j′∈Gi

m̃j′
and m′

i =
∑

j∈Gi

m̃j , (11)

where m′
i is the mass of i-th fused token. It is worth not-

ing that this saliency-aware token merging can be viewed
as feature aggregation only with foreground tokens since
the scores of the background tokens are set to 0. In other
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Method #Pairs MSR. MSVD Act. DiDe.
ClipBERT [29] 5.4M 22.0 - 21.3 20.4
Frozen [5] 5M 31.0 33.7 - 34.6
VIOLET [16] 138M 34.5 - - 32.6
All-in-one [56] 138M 37.9 - 22.4 32.7
LAVENDER [34] 30M 40.7 50.1 - 53.4
Singularity [30] 17M 42.7 - 48.9 53.1
OmniVL [55] 17M 47.8 - - 52.4
VINDLU [12] 25M 46.5 - 55.0 61.2
CLIP4Clip [40] 400M 44.5 46.2 40.5 42.8
CLIP-ViP [69] 500M 54.2 - 53.4 50.5
InternVideo [60] 646M 55.2 58.4 62.2 57.9
UMT-B [33] 25M 51.0 50.8 58.3 63.7
UMT-L [33] 25M 58.8 58.2 66.8 72.5
UMT-B-Ours 25M 50.9 50.5 57.8 64.1
UMT-L-Ours 25M 58.1 57.9 66.7 72.3

Table 3. Text-to-video retrieval on MSRVTT (MSR.) [68], DiDeMo
(DiDe.) [2], ActivityNet (Act.) [9], MSVD [11]. “#Pairs” denotes
the number of pre-training pairs. We use the models of each dataset
in Table 2 to report ours.

words, it is a combination of token merging and token prun-
ing. Although the same number of tokens are merged in each
video, we dynamically adjust the influence of uninformative
tokens by suppressing the mess, leading to promising im-
provements by the proposed saliency-aware token merging,
see Section 4.2.

4. Experiments
Baselines. To show that vid-TLDR effectively boosts video
Transformer, we opt for UMT [33] as the baseline, which
achieves state-of-the-art performance on various video tasks.
Since vid-TLDR is the training-free plug-in module, we
simply apply it right after the self-attention in the early layer
of UMT and evaluate it without any additional training. We
conduct vid-TLDR in the first four layers. The detailed
reduced number of tokens for each dataset is provided in the
supplement. In multi-modal tasks, we adopt vid-TLDR on
the vision encoder of UMT. Except for the reduced number
of tokens, we conduct whole experiments under the same
evaluation settings of UMT. We also report the results with
the previous merging method, ToMe [8], which can be added
to the pre-trained video Transformer. For the settings of
ToMe, we respect the default setups, where the same number
of tokens are merged based on the similarity in every layer.
For a fair comparison, we try to maintain similar FLOPs.

4.1. Experimental results.

Video-text retrieval First, we summarize the results of
video-text retrieval with MSRVTT [68], MSVD [11], Ac-
tivityNet [9], and DiDeMo [2], LSMDC [49], Something-
Something [30]. Video-text retrieval contains two subtasks:
video-to-text retrieval, and text-to-video retrieval. Video-
to-text retrieval is to find the most relevant text concerning

Method #Pairs GFLOPs MSR-QA MSVD-QA

ALPRO [31] 5M 392.5 42.1 45.9
JustAsk [71] 69M 340.7 41.5 47.5
All-in-one [56] 138M 1017.0 44.3 47.9
MERLOT [76] 180M - 43.1 -
VIOLET [16] 138M 282.0 43.9 47.9
Singularity [30] 17M 211.0 43.9 -
OmniVL [55] 17M - 44.1 51.0
VINDLU [12] 25M 278.5 44.6 -
FrozenBiLM [72] 400M 340.7 47.0 54.8
InternVideo [60] 646M 666.2 47.1 55.5
VideoCoCa [70] 4.8B 29820 46.0 56.9
UMT-B [33] 25M 303.3 44.9 49.5
UMT-L [33] 25M 984.6 47.1 55.2
UMT-B-Ours 25M 188.5 44.8 49.4
UMT-L-Ours 25M 569.8 47.0 54.9

Table 4. Video question-answering on MSRVTT-QA [67] &
MSVD-QA [67].

the given video, while text-to-video retrieval is conducted in
the opposite direction. We report the average of the results
in Table 2. As summarized, our proposed method consis-
tently shows competitive performances compared to base
UMT [33] and outperforms ToMe[7] in every backbone and
dataset. Compared to ToMe, vid-TLDR shows a perfor-
mance gap of (+4.0%, +2.1%) on average R@1 in UMT-B,
UMT-L even with the lower FLOPs. Further, vid-TLDR
with UMT-B even surpasses the base model with the im-
provements of (+0.8%, +0.6%, +0.3%) R@1 while reducing
FLOPs by (41.3%, 40.2%, 29.8%) in MSRVTT, MSVD,
DiDeMo, respectively. And, we also observe that vid-TLDR
achieves competitive performance with base UMT-L despite
the much lower FLOPs. We further provide the compari-
son with other video backbones in text-to-video retrieval
(Table 3). For reporting the table, we experiment with the
model used in Table 2. Although we largely reduce the com-
putational cost of UMT-B, and UMT-L by 34.1%, 42.7% on
average, they still show superior performance compared to
other video backbones in MSRVTT, DiDeMo, and Activi-
tyNet.
Video question answering. We experiment with video ques-
tion answering with MSR-QA [67] and MSVD-QA [67],
summarizing the results in Table 4. In MSR-QA, the results
of UMT-B and UMT-L are 44.9% and 47.1%, respectively.
After adopting vid-TLDR on each model, we achieved the
competitive performance of 44.8% and 47.0% while reduc-
ing FLOPs by 37.9% in UMT-B, and 42.1% in UMT-L. Sim-
ilarly, we could lessen the computational cost in MSVD-QA
with the small performance degradation despite the much
lower FLOPs. Specifically, the performance drop is only
0.1% and 0.3% in UMT-B and UMT-L with much lower
FLOPs compared to the original model. To summarize, vid-
TLDR boosts the model with a minor accuracy drop in video
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Method UCF101 SSV2
GFLOPs Acc GFLOPs Acc

VideoMAE [51] 180.5 91.3 180.5 70.8
+ToMe [8] 58.4 75.7 58.4 58.5
+vid-TLDR 56.1 90.1 56.6 69.6

Table 5. Action recognition with VideoMAE on UCF101 [50] &
Something Something V2 [19]

Method FLOPs Base Novel HM

ViFi-CLIP [48] 563 92.9 67.7 78.3
+ToMe [8] 279 72.0 44.8 55.3
+vid-TLDR 279 91.3 63.2 74.7

Table 6. Base-to-novel generalization on UCF101 [50]

question answering as well as video-text retrieval.
vid-TLDR with other video Transformers and tasks. To
demonstrate the generalizability of vid-TLDR, we apply
vid-TLDR to other video Transformers: VideoMAE [51],
and ViFi-CLIP [48]. The results of action recognition with
VideoMAE are presented in Table 5. We use Something
Something V2 (SSV2) [19] and UCF101 [50]. Experimental
results are promising that vid-TLDR lessens the complexity
of VideoMAE by almost 70% (180.5 (G) → 56.1 (G)) with
a minimal performance degradation compared to ToMe (e.g.,
14.4% (75.7 → 90.1) improvement over ToMe). Further, we
adopt vid-TLDR on ViFi-CLIP in the base-to-novel general-
ization tasks (i.e., training only with the base classes, then
evaluating on both seen (base). As shown in Table 6 with
UCF-101, vid-TLDR halving the FLOPs (563 → 279) of
ViFi-CLIP surpassing ToMe with a 19.4% (55.3% → 74.7%)
gain in the harmonic mean (HM).

4.2. Ablation studies

In this section, we provide the ablations studies of vid-TLDR.
We studied the effectiveness of each component with UMT-
B [33] and MSRVTT [68] (Table 7). The first row of the
table indicates the base model without any token reduction.
First, regarding the metric for informativeness, we have com-
pared our proposed saliency scores s in Equation (9) with
the attentiveness ā in Equation (3), and attention rollout
ã in Equation (4). For comparison, based on each metric,
we simply prune the token having the low scores, equal to
the number used for reporting Table 2. As shown in the
table, since the tokens are dropped in the earlier layers, the
attentiveness and attention rollout may drop the salient to-
kens resulting in a substantial performance drop in both
text-to-video retrieval and video-to-text retrieval. Specifi-
cally, the performance degradation on average is 1.0%, 0.7%
when using ā and ã. Further, although attention rollout
shows slightly better performance than simple attentiveness,
it shows worse FLOPS due to the repeated forward process
for estimating attention flows. On the other hand, by drop-
ping the tokens based on our saliency scores s estimated

ā ã s S.A. ToMe GFLOPS T2V V2T Mean
- - - - 303.3 51.0 49.0 50.0
✓ 175.9 50.8 47.2 49.0

✓ 479.2 50.2 48.3 49.3
✓ 175.9 50.6 50.0 50.3
✓ ✓ 178 50.9 50.7 50.8

Table 7. Ablations studies on vid-TLDR. The first row indicates
the base UMT-B [33]. S.A. ToMe denotes the saliency-aware token
merging.

Figure 5. The ratio of the sum of the scores in each frame. Given the
informativeness scores in the first layer of the video Transformer,
we extract the sum of scores in each frame and then calculate the
ratio to the total scores across all the frames.

by the sharpness of attention, we could lessen the FLOPs
with superior performance compared to base. Finally, intro-
ducing the saliency-aware token merging, we have achieved
the +0.8% (50.0% → 50.8%) gain despite the 58.7% FLOPs
compared to the original UMT.

4.3. Analysis

Temporal bias. As we discussed in in Section 2, the video
Transformers contains the temporal bias that neglects the
later frames of a video. For a better understanding, we here
quantitatively compare three metrics, attentiveness ā (Att.),
attention rollout ã (ATT. Roll.), and our saliency scores ŝ.
We measure each score with UMT-B [33] in MSRVTT [68].
After normalizing the score across all frames, we calculate
the sum of the scores for each frame. In other words, it
represents the ratio of scores per each frame concerning the
total score. (see Figure 5) In both attentiveness and attention
rollout, the earlier frames show higher scores compared to
later frames, specifically, the score of the first frame is almost
×3 times higher than the last frame. As a result, if we rely
on these metrics, it is prone to merge the tokens in the later
frame without considering their informativeness of them.
Whereas, as shown in the figure, our proposed ŝ shows the
more robust ratio across the frame, capturing the informative
tokens even in the last frame.
Visualization of vid-TLDR results. In Figure 6, we show
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Figure 6. Qualitative results of vid-TLDR. Given video clips, we visualize the merged tokens and their corresponding mass.

the qualitative results to understand the behavior of vid-
TLDR. Given video clips of MSRVTT, we visualize the
merged token. We further provide the heatmaps for ana-
lyzing the mass of each token. More precisely, we divide
the mass of merged tokens by the number of constituent to-
kens to represent the mass concerning each input token. As
shown in the figure, through the saliency-aware token merg-
ing, the foreground object shows a much higher mass than
the background tokens. In short, through Equation (7), our
vid-TLDR minimizes the hindrance from the background
tokens during the self-attention layer.

5. Related works

Vision Transformer. ViT [14] has become one of the most
popular and basic components in computer vision along
with CNNs. With the surge of large-scale datasets, its lower
inductive bias compared to CNNs endows it with robust gen-
eralization, leading to another successive adoption on several
downstream tasks in computer vision, including classifica-
tion [14, 52], detection [10, 32, 43, 61, 75, 77] segmenta-
tion [59, 64], image encoding [3, 21, 62] for generation [28].
Although Transformer shows promising results on computer
vision the attention mechanism [4] incurs quadratic complex-
ity and restrains its scalability. So, there have been many
attempts to mitigate this problem. These attempts can be
categorized as ameliorating model architecture itself, lever-
aging pre-trained models, or reducing the input tokens. For
example, [23, 25, 54, 58, 74] focused on the attention mech-
anism itself to approximate the complexity to linear. More
recent works enabled acceleration even without model mod-
ification by pruning [24, 27, 44] or merging [7, 8, 42, 45]
input tokens, with minimal performance degradation.
Video understanding. Video understanding is not the same
as the image, since frames of video are not independent im-
ages, but highly related to each other in the temporal axis.
Prior works have leveraged transformers for understanding
video, including retrieval [12, 16, 30, 33, 40, 55, 56, 70],
question answering [12, 30, 31, 55, 56, 60, 70, 71, 76], cap-
tioning [20, 37] and representation learning [22, 51, 57].
Especially, along with the success of image foundation mod-

els, some works [41, 48] leverage CLIP [46], which is pre-
trained ViTs with the large-scale image-text pairs, for un-
derstanding video. Also, recent studies [33, 51, 57, 60, 76]
focus on scaling the Transformers for video foundation mod-
els to utilize the flexibility for multi-modal tasks. Yet, despite
the intensive computational cost caused by the massive num-
ber of tokens, efficient video Transformers are less explored.

6. Conclusion

In this paper, we propose vid-TLDR, training free token
merging for light-weight video Transformer. We demon-
strate the necessity of performing early token merging in
video Transformers and delineate the associated challenges.
To address these challenges, we design the new token-
merging mechanism as follows. First, we devise a better
saliency detector using attention sharpness which can local-
ize salient regions even in the early layers of the Transformer
and mitigate the temporal biases of video Transformers. In
addition, we revise the mass of token merging so that the
influence of uninformative tokens is suppressed and the im-
portance of tokens within the foreground objects is taken into
account. The experiments show that our method consistently
outperforms previous merging methods in every backbone
and dataset even with lower computation, verifying both the
efficacy and efficiency of our method in video Transformers.
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