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Abstract

Utilizing multi-view inputs to synthesize novel-view im-
ages, Neural Radiance Fields (NeRF) have emerged as a
popular research topic in 3D vision. In this work, we in-
troduce a Generalizable Semantic Neural Radiance Fields
(GSNeRF), which uniquely takes image semantics into the
synthesis process so that both novel view image and the as-
sociated semantic maps can be produced for unseen scenes.
Our GSNeRF is composed of two stages: Semantic Geo-
Reasoning and Depth-Guided Visual rendering. The former
is able to observe multi-view image inputs to extract se-
mantic and geometry features from a scene. Guided by the
resulting image geometry information, the latter performs
both image and semantic rendering with improved perfor-
mances. Our experiments not only confirm that GSNeRF
performs favorably against prior works on both novel-view
image and semantic segmentation synthesis but the effec-
tiveness of our sampling strategy for visual rendering is fur-
ther verified.

1. Introduction
3D scene understanding plays a pivotal role in many vision-
related tasks, including 3D reconstruction and 3D reason-
ing. The former domain focuses on low-level understand-
ing, including developing efficient models that interpret
and reconstruct observations from various data sources,
such as RGB, RGBD, and physical sensors. In contrast,
the latter emphasizes high-level understanding, like encod-
ing, segmentation, and common sense knowledge learning.
For real-world applications like robotic navigation or aug-
mented reality, both these facets - reconstruction and rea-
soning - are crucial to enhance interactions with the real
world [10]. Among the challenges in the reconstruction
domain, novel view synthesis has consistently been a chal-
lenging objective. Being able to generate a novel view im-
age based on a few existing views shows that a model com-
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prehends the scene’s geometry and possesses a foundational
understanding akin to reconstruction.

The Neural Radiance Field (NeRF) [1, 4, 8, 19–22, 28,
35] has recently risen as an exciting research area, provid-
ing a novel way to tackle the task of novel view synthesis.
By encoding the density and emitted radiance at each spatial
location, NeRF is able to compress a scene into a learnable
model given several images and the corresponding camera
poses of the scene. By incorporating a volumetric rendering
skill, images of unseen camera views can be generated with
convincing quality. However, NeRF primarily focuses on
reconstructing the color information of novel views and un-
derstanding the associated high-level semantic information
(e.g., semantic segmentation or object detection) remains a
significant challenge.

Recent works [9, 15, 25, 30, 31, 37] aim to amplify the
high-level scene understanding ability of NeRF by integrat-
ing NeRF with semantic segmentation. By sharing the in-
formation between the semantic object class and their cor-
responding appearances, these two tasks are capable of ben-
efiting from each other’s insights [17]. Nevertheless, these
semantic understanding methods stick closely to the orig-
inal NeRF paradigm, focusing on exploiting the model to
represent a specific scene. As mentioned in [17], such a
strategy requires additional annotations of semantic seg-
mentation maps when applied to a new scene, limiting real-
world applicability and generalizability.

To tackle this problem, generalizable NeRFs [3, 14, 18,
27, 32, 33, 36] have emerged as a promising solution. They
adopt an on-the-fly approach for building a neural radiance
field conditioned on extracted features from input images of
different scenes rather than encoding the scene representa-
tion directly into the model. For instance, PixelNeRF [36]
introduces the idea of conditioning a NeRF model with
multi-view images across multiple scenes. This innovation
boosts NeRF’s ability to generalize to unseen scenes and
avoids retraining for each individual scene. Yet, it leaves
uncertainties in its application to semantic understanding.

As a pioneer in integrating a generalizable NeRF
with semantic segmentation capabilities, Semantic-Ray (S-
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Method generalized NeRF generalized segmentation sampling strategy efficient sampling

Semantic NeRF [37] - - hierarchical ✔✗

Panoptic Neural Fields [15] - - uniform -
Panoptic Lifting [25] - - uniform -
DM-NeRF [31] - - hierarchical ✔✗

NeSF [30] - ✔ hierarchical ✔✗

Semantic Ray [17] ✔ ✔ hierarchical ✔✗

Ours ✔ ✔ depth-guided ✔

Table 1. Comparisons of semantic-aware NeRFs (i.e., NeRFs, which jointly perform novel view synthesis and semantic segmenta-
tion). Note that NeSF only performs generalizable segmentation, yet its view synthesis remains restricted to the scene-specific training
scheme. And, Semantic Ray requires ground truth depth as additional inputs for both training and inference.

Ray) [17] made notable advancements by introducing a gen-
eralizable semantic field concept. By incorporating a cross-
reprojection attention module, S-Ray aggregates informa-
tion of multi-view images from all points sampled along
a ray and predicts RGB values and semantic labels. Al-
though this approach appears to capture the necessary con-
textual information for semantic segmentation, aggregating
details of all points introduces noisy features that could in-
terfere with segmentation tasks, as segmentation is mainly
concerned with the first object class that the ray encounters.
Additionally, their hierarchical sampling approach further
increases additional computation and model complexity in
view synthesis. Thus, a properly designed rendering strat-
egy for a generalizable semantic field would be desirable.

In this paper, we propose Generalizable Semantic Neural
Raidance Fields (GSNeRF) to jointly tackle the problems
of generalized novel view synthesis and semantic segmen-
tation. Given a set of source images of a scene with cor-
responding camera views and a novel target camera view,
our GSNeRF is able to derive visual features and depth map
predictions of each source view, which are used to predict
the depth map of the target view. With the depth map of the
target view and properly derived visual features of source
views, the novel view RGB image and semantic segmen-
tation can be derived accordingly. Our GSNeRF consists
of two key learning stages: Semantic Geo-Reasoning and
Depth-Guided Visual Rendering. The former is to derive
visual features and aggregate the predicted depth informa-
tion of each source view to estimate the depth of the novel
view, while the latter renders the RGB image and semantic
segmentation map of the target view. We further design two
distinct sampling strategies to minimize noisy features and
enhance rendering efficiency. Through conducting exten-
sive experiments on both real-world and synthetic datasets,
we show that our method outperforms current state-of-the-
art generalizable NeRF methods in novel view synthesis and
semantic segmentation.

The key contributions of our work are as follows:
• We propose GSNeRF for jointly rendering novel view im-

ages and producing the associated semantic segmentation

mask on unseen scenes.
• The proposed Semantic Geo-Reasoning stage learns

color, geometry, and semantic information of the input
scene, introducing generalization ability of our GSNeRF.

• Based on the inferred geometry information, the intro-
duced Depth-Guided Visual Rendering stage customizes
two different sampling strategies according to the pre-
dicted target view depth map, so that image and semantic
map rendering can be performed simultaneously.

2. Related Work
2.1. Neural Radiance Fields

The Neural Radiance Field [20] has emerged as a widely
embraced implicit representation by encoding a 3D scene
within a neural network. Nonetheless, as mentioned in [7],
the original NeRF method demands extensive training time,
ranging from hours to days, and relies on dozens of multi-
view images as input. As a result, a large number of subse-
quent works [8, 21, 28, 35] are put forward to confront these
issues. To shorten the training process, methods such as In-
stant NGP [21] and DVGO [28] opt for a balance between
speed and memory, using hash encoding and voxel encod-
ing to minimize the training time to minutes. On the other
hand, to address the demand for multiple input views, some
methods [7, 14, 23] introduce depth as additional supervi-
sion, a notable example being DS-NeRF [7]. DS-NeRF ap-
plies extra depth supervision to ensure that the NeRF accu-
rately encodes a scene’s geometry, thus enabling the con-
struction of neural radiance fields with fewer images. This
method shows how incorporating depth information can en-
hance the quality of novel view synthesis while reducing the
number of required source images.

2.2. Generalizable Novel View Synthesis

Since NeRF directly encodes information of a scene into a
neural network, it is only applicable to the training scene
of interest. In response to this limitation, some meth-
ods [3, 14, 16, 18, 27, 29, 32, 36] propose on-the-fly con-
struction of NeRF, allowing trained NeRFs applied for syn-
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thesizing novel views in unseen scenes. The concept is
to extract features from each source view image and con-
dition the NeRF renderer on these scene-specific features,
typically through [36] 2D CNN or [3, 14] cost volume
techniques that aggregate features across different images.
While these methods realize generalizable novel view syn-
thesis, extensions of such NeRFs to high-level scene under-
standing tasks remain an open challenge.

2.3. Multi-tasking NeRF

Recently, several methods [9, 15, 17, 25, 30, 31, 37] seek
to enhance NeRF with higher-level understanding abilities.
Semantic NeRF [37] stands as the first method to integrate
semantic segmentation with NeRF by designing two projec-
tion heads for predicting both semantics and color simulta-
neously. Although it achieves satisfactory performance and
robustness on semantic segmentation tasks, it requires re-
training for each scene. This implies a need for not only
RGB images but also corresponding semantic segmentation
maps to represent each new scene, hindering their general-
izability. NeSF [30] has made an attempt to improve this as-
pect by proposing a half-generalizable method that includes
a generalizable semantic segmentation module. That is, af-
ter training an original NeRF of each scene, they extract
a 3D voxel-like grid density from the neural radiance field
and train a generalizable 3D UNet to do a semantic seg-
mentation task. However, this learning scheme still requires
additional time to retrain NeRFs for novel scenes.

S-Ray [17] advances further by proposing a generalized
semantic neural field. Following the backbone of Neu-
ray [18], they propose a cross-reprojection attention mod-
ule. Given a ray emitted from the target viewpoint, they
uniformly sample points along the ray, and hierarchically
sample more points on the second forward pass according
to the density predicted from the first pass. With the cross-
reprojection module, they aggregate the contextual infor-
mation on all sampled points. Despite achieving good re-
sults on both real-world and synthetic datasets, the sampling
strategy is time-consuming. Also, aggregating all informa-
tion along the entire ray can introduce noisy features that
may hamper segmentation tasks, as segmentation primarily
focuses on the first object class encountered by the ray.

Contrarily, our proposed GSNeRF aims to predict the
depth map of the target view and utilize it to sample points
along the ray more efficiently. This unique strategy enables
us to sample points focusing on the first encountered object
and filter out unrelated noisy points for semantic segmenta-
tion prediction. In Table 1, we compare the characteristics
of recent semantic-aware NeRFs with GSNeRF.

3. Brief Review of Generalizable NeRFs
For the sake of completeness, we provide a brief review of
generalizable NeRFs [3, 14, 18, 29, 36]. Given K multi-

view images I1:K = {I1, I2, ..., IK} with corresponding
camera poses ξ1:K = {ξ1, ξ2, ..., ξK} of a scene, and a tar-
get camera pose ξT , the goal is to synthesize the novel view
image IT . Rays are sampled across the scene from the tar-
get camera pose to render the novel view image. Along
each ray, r, Nc points (coarse points) are sampled within
the given near bound bl and far bound bu. Existing meth-
ods partition [bl, bu] into Nc bins uniformly and draw one
sample within each bin as defined by:

trn ∼ U [bl +
n− 1

Nc
(bu − bl), bl +

n

Nc
(bu − bl)], (1)

where trn is the n-th sample along r. With the correspond-
ing camera position or and viewing directions ϕr, the n-th
sampled point xr

n can be derived as xr
n = or + trnϕ

r, with
xr
n ∈ R3. Several methods [3, 18, 29, 36] also use hierarchi-

cal sampling, conducting a second forward pass to sample
Nf points (fine points) where the first Nc uniformly sam-
pled points show higher predicted density.

With the above information, a generalized NeRF can be
represented by a learnable continuous function Aθ, where θ
denotes the learnable parameters. Aθ computes a volumet-
ric density σr

n ∈ R+ and a view-dependent color represen-
tation crn ∈ R3 for each point xr

n. That is,

σr
n, c

r
n = Aθ(x

r
n, ϕ

r, f1:K(w(xr
n))), (2)

where f1:K are features of I1:K and w(.) is the function
that reprojects the 3D position xr

n onto the image plane with
known camera poses.

To this end, the color value C(r) of the pixel correspond-
ing to the ray r is formulated as:

C(r) =

Nc∑
n=1

T r
n αr

n c
r
n. (3)

T r
n = exp(−

n−1∑
i=1

σr
i δ

r
i ), αr

n = 1− exp(−σr
nδ

r
n), (4)

where T r
n is the accumulated transmittance and δrn =

||xr
n+1 − xr

n||2 represents the distance between every two
adjacent points along r.

As is the case with other NeRF methods, a generalized
NeRF also optimizes the model based on the rendering loss
between the rendered image and the GT image:

Limage =
∑
r∈R

∥C(r)− Ĉ(r)∥22, (5)

where Ĉ(r) represents the GT color of the renderer image
corresponding to a ray r.

Our method is built on top of generalized NeRF methods
but with a more efficient sampling strategy that can deal
with both semantic segmentation and image rendering.
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Figure 1. Overview of GSNeRF: including Semantic Geo-Reasoning and Depth-Guided Visual Rendering. Given K multi-view image
I1:K of a scene, the Semantic Geo-Reasoner predicts the depth map D1:K for each source image, which is aggregated to estimate the target
view depth map DT . With DT as key geometric guidance, we design Depth-Guided Visual Rendering to render target view image IT and
semantic segmentation ST , by Volume Renderer Rθ and Semantic Renderer Pθ , respectively.
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Figure 2. Semantic Geo-Reasoning. The Semantic Geo-
Reasoner contains a shared Encoder Eθ , a shared Decoder Dθ ,
and a cost-volume aggregator Cθ , producing image and volume
features (fI

1:K and fV
1:K ), with the associated depth maps D1:K .

The depth map DT of the target view is estimated from D1:K .

4. Method
4.1. Problem Formulation and Model Overview

We first define the setting and notations used in this paper.
Given a scene with K multi-view images I1:K and their cor-
responding camera poses ξ1:K along with a target camera
pose as input, we aim to achieve novel-view synthesis and
semantic segmentation simultaneously. During training, we
synthesize both the novel view image IT and the seman-
tic segmentation map ST from ξT , given ground truth (GT)
image ÎT and semantic segmentation map ŜT of the target
view ξT Once the model completes training on a given set
of training scenes, it is able to directly generalize to unseen
scenes without finetuning.

To achieve this goal, we propose Generalizable Seman-

tic Neural Radiance Fields (GSNeRF), as illustrated in Fig-
ure 1. GSNeRF consists of two key learning stages: Seman-
tic Geo-Reasoning and Depth-Guided Visual Rendering.
For Semantic Geo-Reasoning, we employ a Semantic Geo-
Reasoner Gθ on each input source image Ik ∈ RH×W×3

to create 2D feature f I
k ∈ RH×W×d, semantic feature

fS
k ∈ RH×W×d, 3D volume feature fV

k ∈ RH×W×L×d,
and depth predictions Dk ∈ RH×W , where H and W rep-
resent the height and width of the image, L is the depth
sample number defined in [34] to determine the volume
size for the 3D feature, and d is the feature dimension.
The source view depth maps are integrated to estimate the
depth for the target view DT . As for Depth-Guided Visual
Rendering, we conduct a unique sampling strategy based
on DT to minimize noisy features and enhance render-
ing efficiency. The sampled points, along with the previ-
ously extracted feature, are respectively input into the vol-
ume renderer Rθ and semantic renderer Pθ, synthesizing
the target view’s image and semantic segmentation map.
In the following subsection, we will explain the Semantic
Geo-Reasoning and Depth-guided Visual Rendering pro-
cess within our GSNeRF framework.

4.2. Generalizable Semantic NeRF

4.2.1 Semantic Geo-Reasoning

Given K multi-view source images I1:K of a scene, our Se-
mantic Geo-Reasoner Gθ in Figure 1 is designed to achieve
two goals. First, geometric clues are extracted from Gθ,
comprising 3D Volume features fV

1:K and depth maps D1:K

for each source image. In addition, 2D image features f I
1:K

and semantic features fS
1:K for each source image can be

jointly produced. Secondly, our Gθ is learned to predict the
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target view depth map DT , which is realized by determin-
istic aggregation and reprojection of all source view depth
predictions D1:K . We now detail this learning stage.

As depicted in Figure 2, our Semantic Geo-Reasoner
consists of a shared 2D CNN encoder Eθ that extracts f I

1:K

from every image I1:K . To construct geometry-aware fea-
tures, a cost volume aggregator Cθ [6, 12, 13, 34] is applied
to gather 2D features f I

1:K across different images. As a
result, Cθ produces 3D feature fV

1:K , which are ultimately
used to predict the depth map D1:K for every source view
image. To obtain semantic-aware features for semantic pre-
diction, a shared semantic feature decoder Dθ is addition-
ally applied to derive 2D semantic features fS

1:K from f I
1:K .

Since D1:K is a vital intermediate element that assists in
estimating DT , which allows the subsequent depth-guided
rendering process, we strive to ensure the precise predic-
tion of D1:K , whether or not the ground truth depth im-
ages are accessible. To achieve this, we integrate ideas from
DSNeRF [7] and GeoNeRF [14] to supervise our Gθ with
either a depth-supervised loss or a self-supervised depth
loss. If the ground-truth depth maps of D1:K are available,
our depth-supervised loss LD is given as:

LD =
1

K
(

K∑
k=1

∥Dk − D̂k∥s1), (6)

Here, D̂k represents the GT depth map of view k, ∥.∥s1
represents smooth L1 loss [11]. If D̂k is unavailable, we
use a self-supervised depth loss Lssl to regularize our depth
predictions by considering cross-view depth consistency be-
tween all source views. Following the self-supervised depth
estimation approach of RC-MVSNet [2], Lssl is defined as:

Lssl = λ1LRC + λ2LSSIM + λ3LSmooth, (7)

where LRC , LSSIM , and LSmooth represent reconstruc-
tion, structure similarity, and depth smoothness losses [2].
The hyper-parameters λ1, λ2, and λ3 are also selected fol-
lowing [2] (see supplementary material for details).

To this end, the target view depth map DT is calculated
using D1:K through a deterministic algorithm. In simple
terms, we directly project the pixels of each depth map into
3D space and then reproject them back to the target view.
More details about the self-supervised depth loss and cor-
responding pseudo-code of target view depth estimation are
available in the supplementary material.

4.2.2 Depth-Guided Visual Rendering

We now discuss how we perform volume and semantic ren-
dering with the guidance of the predicted DT . That is, given
a target view ξT , a ray is sampled for each pixel on the im-
age plane to render the corresponding RGB value for IT

and the semantic segmentation output for ST via the Vol-
ume Renderer Rθ and the Semantic Renderer Pθ.

Volume Rendering For volume rendering of IT , exist-
ing semantic-NeRF approaches [17, 30, 37] follow conven-
tional NeRFs [20] by applying either uniform sampling or
hierarchical sampling along each ray r, as depicted in Ta-
ble 1. However, both strategies require dense sampling to
locate the surface of objects in the given scene, limiting the
sampling efficiency. To promote the efficiency of our sam-
pling process, we conduct a depth-guided sampling strat-
egy by focusing on sampling points near the depth values
of DT . More specifically, this is achieved by modifying the
sampling strategy in Eq. 1 as follows:

trn ∼ G(z, v2), v =
min(∥z − bu∥, ∥z − bl∥)

3
, (8)

where trn is the n-th sample along the ray r, and G rep-
resents Gaussian (normal) distribution. Note that z and v
represent the mean and standard deviation of the distribu-
tion, respectively, while the value of z is determined as the
predicted depth for the pixel p that emits the ray r (i.e.,
z = DT (p)). By these sampling point values, we derive
N sampled points xr

1:N (i.e., xr
n = or + trnϕ

r) closer to the
surface of the first encountered object by r, avoiding con-
sidering noisy points that are far from the object surface.
Please see the supplementary material for further details.

We feed all these points alongside the 2D feature f I
1:K

and 3D volume feature fV
1:K as additional conditions into

the volume renderer Rθ to predict the novel view image of
the scene. Specifically, we reproject the point xr

n onto each
source view to get aggregated features from these condition
features. Thus, we write the aggregated feature fn,k ∈ R2d

of the n-th sampled point xr
n from the k-th view as:

fn,k = [f I
k (w(x

r
n)); f

V
k (xr

n)],∀k ∈ [1 : K] (9)

where w(·) is the reprojection function used in Eq. 2 and
[· ; ·] denotes concatenation along feature dimension. We
further define the global feature fn,0 as guidance across all
K source views as:

fn,0 = [mean({fn,k}Kk=1); var({fn,k}Kk=1)]. (10)

Following GeoNeRF [14] methodology, the volume ren-
derer Rθ (with learnable parameters θ) predicts per
point density and radiance based on the feature fn =
{fn,k}Kk=0 ∈ R(K+1)×2d mentioned above:

σr
n, c

r
n = Rθ(x

r
n, ϕ

r, fn,Mn), (11)

where Mn = {Mn,k}Kk=0 denotes the mask used to mask
out unrelated features of a view. If the sampled point xr

n

lies behind the predicted depth map Dk or if the reprojected
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Generalized method
GT Depth ScanNet [5] Replica [26]

Train / Test mIoU acc. / class acc. PSNR↑ SSIM↑ LPIPS↓ mIoU acc. / class acc. PSNR↑ SSIM↑ LPIPS↓

Neuray [18] + semhead ✔ / ✔ 52.09 67.81 / 61.98 25.01 83.07 31.63 44.37 79.93 / 54.25 26.21 87.37 30.93

GeoNeRF [14] + semhead ✔ / 53.78 76.18 / 61.90 32.55 90.88 12.69 45.12 81.67 / 52.36 28.70 88.94 20.42

S-Ray [17] ✔ / ✔ 55.53 77.79 / 60.92 25.19 83.66 30.98 45.30 80.48 / 53.72 26.38 88.13 30.04

GSNeRF (Ours) ✔ / 58.30 79.79 / 65.93 31.33 90.73 12.53 51.52 83.41 / 61.29 31.16 92.44 12.54

MVSNeRF [3] + semhead 43.06 66.90 / 53.63 24.14 80.36 34.63 30.21 69.35 / 39.75 23.68 84.37 28.08

GeoNeRF [14] + semhead 45.11 67.12 / 53.44 30.75 88.27 16.48 40.35 74.63 / 49.18 29.92 91.14 17.60

GNT [32] + semhead 43.49 62.06 / 51.84 24.39 82.37 28.36 38.14 71.44 / 47.46 24.56 87.31 20.97

Neuray [18] + semhead 46.09 66.39 / 53.79 25.24 84.39 31.33 40.91 76.23 / 50.15 27.80 89.55 23.68

S-Ray [17] 47.69 64.90 / 54.47 25.13 84.18 30.44 43.27 77.63 / 52.85 26.77 88.54 22.81

GSNeRF (Ours) 52.21 74.71 / 60.14 31.49 90.39 13.87 51.23 83.06 / 61.10 31.71 92.89 12.93

Table 2. Quantitative results on ScanNet & Replica. Note that methods in the first four rows take GT depth as inputs or training
supervision, while the methods in the last six rows do not observe GT depth during training/testing.

location is outside the source image, Mn,k is set to 0. How-
ever, the mask for the global feature Mn,0 is always set to 1.

To this end, we apply the same volume rendering as in
Eq. 3, predicting the target view Image IT . We also apply
Limage as in Eq. 5 to supervise the rendered image quality.

Semantic Rendering Semantic rendering of ST , on the
other hand, is different from the above volume rendering
process. Specifically, image rendering considers the color
of both the surface and nearby objects because of possi-
ble semi-transparent or transparent objects. Conversely, se-
mantic segmentation focuses only on the first object a ray
touches. Therefore, for each ray r, we sample only one sur-
face point xr

z estimated by the target depth map for each
ray r to render its semantic value (i.e., xr

z = or + zϕr,
where z is the same depth value as mentioned in Eq. 8).
More specifically, with the aggregated semantic feature
fz = {fS

k (w(x
r
z))}Kk=1 ∈ RK×d, our semantic renderer

Pθ with learnable parameters θ predicts the semantic logits
S(r) of ray r as follows:

S(r) = Pθ(x
r
z, f

′
z,M), (12)

where
f ′
z = fz + {f0} ∈ R(K+1)×d. (13)

Note that we follow volume rendering in Eq. 10 to define a
global semantic feature f0 as guidance across all views:

f0 = [mean(fz); var(fz)]. (14)

As for the mask M = {Mk}Kk=0 in Eqn. 12, it is similar
to the one used in Eq. 11, where Mk is to mask out the
unrelated features of a view if the sample point xr

z is behind
the corresponding depth value of Dk.

Eventually, we utilize a semantic loss to supervise the
novel view semantic prediction. Here, we use a multi-class

cross-entropy loss to reduce the semantic prediction error:

Lsem =
∑
r∈R

(S(r)logŜ(r)), (15)

where Ŝ(r) represent the ground truth segmentation score
along the ray r.

4.3. Training and Inference

4.3.1 Training

At the training stage, the total loss is calculated by combin-
ing the losses that are mentioned above. The aggregated
loss function for our model, when ground-truth depth is
available, is given by:

L = Limage + LD + λLsem. (16)

If the GT depth is not available, our model is trained by:

L = Limage + Lssl + λLsem, (17)

where the coefficient λ is set to 0.5 for simplicity.
In essence, this optimization process enables our model

to estimate the depth map of the target camera view accu-
rately. Utilizing this depth information, the model is capa-
ble of efficiently sampling points to render new view images
and create corresponding semantic segmentation maps.

4.3.2 Inference

At the inference stage, our GSNeRF is able to generalize to
unseen scenes without the need for retraining from scratch.
Due to the design of the conditioning renderer on scene-
specific features f I , fV , and fS , our model is able to build
a semantic neural radiance field on the fly. Once we finish
training our model on training scenes, we are able to directly
infer novel view images and semantic segmentation maps
on any scene given multi-view images and corresponding
camera poses of that scene.
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Figure 3. Qualitative evaluation. We compare the visual quality of the rendered novel view images (the first three columns) and semantic
segmentation maps (the last three columns) with S-Ray [17].

5. Experiments

5.1. Datasets

To evaluate the effectiveness of our proposed method,
we conduct experiments on both real-world and synthetic
datasets. For real-world data, we use ScanNet [5], a large-
scale, indoor RGB-D video dataset with over 2.5 million
views from 1513 distinct scenes, including semantic anno-
tations and camera poses. Following the setting presented
in S-Ray [17], we train our model on 60 scenes and test
its generalization on 10 new, unseen scenes. For synthetic
data, we utilize Replica [26], a 3D reconstruction-based in-
door dataset comprising 18 high-quality scenes with dense
geometry, HDR textures, and semantic labels. Following
the Semantic NeRF [37] supplied rendered data, we train
our model on 6 distinct scenes across 12 video sequences
and test on 2 novel scenes across 4 video sequences. Please
see the supplementary material for details.

5.2. Results and analysis

5.2.1 Quantitative Results

Table 2 compares our method against several baselines, in
which S-Ray [17] serves as a primary baseline since it is the
first to address semantic segmentation with NeRF in a gen-
eralized setting. We further conduct experiments on MVS-
NeRF [3], GeoNeRF [14], GNT [32] and NeuRay [18] with

the semantic head as described in [17]. It is worth noting
that, even though S-Ray does not explicitly mention using a
depth map of each source view image as input in their paper,
their official implementation takes the depth maps D1:K as
additional input along with I1:K during training and test-
ing. Therefore, we follow their official implementation to
reproduce S-Ray results.

From Table 2, it can be seen that our model generalizes
well to unseen scenes. To show that our GSNeRF is also ca-
pable of producing impressive results without depth super-
vision, we conduct an additional experiment in which we
only use the loss function in Eq. 17 to train our GSNeRF
in Table 2. We also conduct experiments of S-Ray, Neu-
ray with only RGB images as input, and GeoNeRF without
GT depth as supervision for a fair comparison. From Ta-
ble 2, we see that even without access to GT depth and with
the target depth information regularized in a self-supervised
manner, our method still outperforms all the other baseline
approaches. This suggests that our model can be trained
without requiring depth map supervision, confirming the ef-
fectiveness and practicality of our proposed approach. We
also note that, although GeoNeRF + semhead (with depth
supervision) slightly outperforms our approach regarding
PSNR and SSIM for the rendered RGB images on Scan-
Net, our method excels in all semantic segmentation metrics
by approximately 5%. More comprehensive discussions are
presented in the supplementary materials.
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IT ST

Model Depth-guided renderer Pθ Depth-guided PSNR mIoU

A - - - 28.48 37.88

B ✔ - - 30.56 41.72

C ✔ ✔ - 30.88 49.47

Ours ✔ ✔ ✔ 31.49 52.21

Table 3. Ablation studies on GSNeRF. We verify the effective-
ness of using depth-guided rendering for rendering IT and ST .
Note that, without Pθ , we simply take a pre-trained 2D segmentor
on IT to produce ST .
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Figure 4. Sampling efficiency on ScanNet. Compared to SOTAs,
our GSNeRF is able to achieve significantly improved rendering
performance especially when the number of sampling points is
small. Even with increasing numbers of sampling points, GSNeRF
still performs favorably against existing models.

5.2.2 Qualitative Results

The qualitative results of our approach compared to S-
Ray [17] are depicted in Fig. 3. This comparison illus-
trates that while the existing method can approximate the
contours of objects, it is unable to capture the geometri-
cal details, causing segmentation inconsistencies. In con-
trast, our GSNeRF accurately interprets scene geometry
through our targeted view depth estimation design, allow-
ing us to not only precisely segment objects but also render
novel view images more realistically. This confirms that
our depth-guided sampling technique effectively captures
the correct geometry and that the sampled point features
are appropriately aggregated from features of the Semantic
Geo-Reasoner.

5.2.3 Ablation Studies

To further analyze the effectiveness of our designed mod-
ules, we conduct ablation studies on ScanNet, as shown in
Table 3. Baseline model A employs our Semantic Geo-
Reasoner Gθ and volume renderer Rθ to create the target
view image IT , using uniform sampling instead of depth-

guided sampling x1:N . Also, a pre-trained 2D segmen-
tor [24] is applied on the rendered image IT to produce ST

without our semantic renderer Pθ. Model B enhances visual
quality by replacing uniform sampling with depth-guided
sampling. We further replace the 2D segmentor with our
semantic renderer Pθ using uniform sampling for semantic
rendering in model C, illustrating mutual benefits for both
tasks. Our full model in the last row uses depth-guided sam-
pling exclusively for surface points in the semantic renderer,
achieving optimal results. This verifies the success of our
proposed modules and sampling strategies.

5.2.4 Sampling Efficiency

Another benefit of our depth-guided sampling is that the
performance of our GSNeRF is less sensitive to the num-
ber of sampled points along each ray. In Fig. 4, we con-
duct experiments of reducing the number of sampling points
N , showing PSNR of the synthesized novel view images as
evaluation. We find that by employing depth-guided sam-
pling, our method accurately preserves visual details with
less noise (compared to Neuray and S-Ray with 128 sam-
pled points along each ray). It can be seen that GeoNeRF
+ semhead shows a catastrophic drop in PSNR with fewer
points, while ours leveraging depth-guided sampling main-
tains satisfactory visual quality even with a significantly re-
duced number of sampled points (e.g., when sampling only
4 points along a ray, the PSNR remains near 28). This re-
sult further attests to the success of our design in estimating
target depth and implementing the corresponding sampling
strategy with better novel view synthesis performance.

6. Conclusion
In this paper, we proposed Generalizable Semantic Neu-
ral Raidance Fields (GSNeRF) to achieve generalized novel
view synthesis and semantic segmentation. Our GSNeRF
is trained to derive visual features and perform depth map
prediction of each source view so that the depth map for a
novel target view can be estimated. With such target-view
depth information observed, the associated RGB image and
semantic segmentation can be jointly produced via depth-
guide rendering. In our experiments, we quantitatively and
qualitatively confirm that our GSNeRF performs favorably
against existing generalizable semantic-aware NeRF meth-
ods on both real-world and synthetic datasets.
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[2] Di Chang, Aljaž Božič, Tong Zhang, Qingsong Yan, Ying-
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