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Abstract

Deep Neural Networks (DNNs) are widely used for vi-
sual classification tasks, but their complex computation pro-
cess and black-box nature hinder decision transparency and
interpretability. Class activation maps (CAMs) and recent
variants provide ways to visually explain the DNN decision-
making process by displaying ‘attention’ heatmaps of the
DNNs. Nevertheless, the CAM explanation only offers rela-
tive attention information, that is, on an attention heatmap,
we can interpret which image region is more or less im-
portant than the others. However, these regions cannot
be meaningfully compared across classes, and the contri-
bution of each region to the model’s class prediction is
not revealed. To address these challenges that ultimately
lead to better DNN Interpretation, in this paper, we pro-
pose CAPE, a novel reformulation of CAM that provides a
unified and probabilistically meaningful assessment of the
contributions of image regions. We quantitatively and qual-
itatively compare CAPE with state-of-the-art CAM methods
on CUB and ImageNet benchmark datasets to demonstrate
enhanced interpretability. We also test on a cytology imag-
ing dataset depicting a challenging Chronic Myelomono-
cytic Leukemia (CMML) diagnosis problem. Code is avail-
able at: https://github.com/AIML-MED/CAPE.

1. Introduction

Deep neural networks (DNNs), despite achieving supe-

rior performance on various tasks such as computer vision

and natural language processing, are known to be black

boxes [23] that lack the ability to explain their decision-

making process. The black-box nature is commonly re-

garded as a result of the complex model structure charac-

terized by stacked computation layers, involving non-linear

functions and many model parameters. Explainable DNN

decisions are crucial to many life-critical scenarios [26]

†Corresponding author.

such as AI-powered autonomous driving and medical diag-

nostics. Taking the example of healthcare applications [2],

decision transparency is critical for doctors to understand

and trust AI analysis, and to use AI to make insightful and

accurate diagnoses or decisions.

DNN interpretability is an emerging and actively stud-

ied research field. For visual classification tasks, a com-

mon type of DNN interpretability analysis is to explain

DNN outputs via finding and displaying model attention

on the input image, i.e., identifying which image regions

the model focused on during the decision-making process.

This type of visual explanation can be achieved via methods

of gradient-based attention visualization [25], perturbation-

based input manipulation [6, 21], and class activation map

(CAM)-based visualization [11, 24]. In particular, CAM

is an inherent intermediate step of DNN prediction which

represents the actual region relevance produced by the net-

work. CAM stands out due to its efficient feedforward pro-

cess, yet its attention values can not directly explain and

compose model outcomes. Specifically, CAM values are

class-wise relative probabilities. They only represent the

relative region importance compared to the highest attention

value within each class map. Thus, CAM values provide a

limited explanation within the context of one target class.

This means that they are incomparable between classes, and

cannot explain image-level predictions. Take the CAM vi-

sualization in Fig. 1 as an example, CAM assigns similar

attention values to two dog breed classes Siberian Husky

and Alaskan Malamute. Differencing the two CAM maps

between the breeds fails to yield meaningful comparisons.

The limited analytical capability of current CAM-based

approaches hinders their use in many downstream applica-

tions. For example, fine-grained classification analysis re-

quires the model’s ability to discriminate regions between

closely related concepts. In addition, for tasks such as

weakly supervised semantic segmentation, CAM threshold-

ing is employed to initialize a segmentation method [13] but

the threshold choice is often arbitrary without any semantic

meaning attached.

In this paper, we reformulate CAM as a Probabilistic

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 1. The comparison between CAM and the proposed CAPE explanation methods for a fine-grained class difference analysis example

between Siberian Husky (Husky) and Alaskan Malamute (Malamute) classes on ImageNet. We overlay the explanation values before

up-sampling on top of the produced heatmaps. CAM explanation is class independent which highlights similar regions for similar object

classes, making the explanation maps incomparable. Instead, CAPE-produced explanation values (before up-sampling and min-max

normalization) are probability values for each spatial location (image region) and class combination. We color code the top-5, next-5

(top-6 to top-10), etc., for the positive values (i.e., more Husky) and the negative values (i.e., more Malamute) on the Diff graph. The green

box shows an example analysis of the +1.9% class difference by summing the color-coded regions and demonstrating to what levels they

explain the class difference.

Ensemble, and name it CAPE. Diverging from the current

CAM methods, CAPE’s activation map seizes the proba-

bilistic and absolute contributions of each image region to-

ward class predictions while enabling meaningful compar-

isons between classes. As illustrated in Fig. 1, CAPE en-

forces a direct composition relationship between the overall

model prediction and image region contributions. Our main

contributions are summarized as follows:

• We propose a novel CAPE method to explicitly capture

the relationship between the model’s attention map and

the decision process. For each class, the summation of the

image region-wise attention values in CAPE is identical

to the image-level prediction, providing a basis for the

analytical understanding of the model attention.

• CAPE inference is efficient, introducing nearly zero extra

model parameters and only takes a feed-forward inference

to generate the explanation. By reformulating the soft-

max activation function, CAPE only adds a single train-

able scalar, i.e., the Softmax temperature variable.

• We discover that CAPE explanation maps tend to high-

light class discriminative regions whereas CAM explana-

tion maps are independent for each class that also high-

light class mutual regions. Hence, we further propose an

alternative class mutual region inclusive CAPE explana-

tion, namely the μ-CAPE (μ denotes ‘mutual’), which

restores the attention of CAPE on class mutual regions,

achieving enhanced performance on commonly evaluated

CAM interpretability metrics.

2. Related Work

In this section, we cover closely related works in inter-

pretable machine learning and softmax-based aggregation.

Interpretable Machine Learning. For DNNs, the most

common interpretation approaches are via saliency/heatmap

types of visual explanation using model attention. The

heatmap visualization methods can be loosely grouped

into three categories: gradient-based attention visualiza-

tion [25], class activation maps (CAMs) base visualiza-

tion [11, 24], and perturbation-based [6, 21] input manip-

ulation. Among them, the CAM method has gained sig-

nificant research interest due to its ability to produce in-

tuitive and high-quality visual attention [14]. CAM em-

ploys linear weighting of backbone-produced feature maps

by using classification layer weights to produce a heatmap

for each class category. The heatmap can correspond to

class-wise salient regions of the input image. Based on

how the CAM’s weights are computed, recent works can

be categorized into gradient-based and score-based meth-

ods. Gradient-based CAM methods [3, 10, 17, 24] use the

gradients of a target class with respective to the activation

maps as a CAM’s weights to combine feature maps from the

backbone. On the other hand, score-based methods such as

Score-CAM [29] weights CAMs using a score computed

by the increase of prediction confidence before and after

masking the input image with initial CAM-produced at-

tention. A more recent method, FD-CAM [14], leverages
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gradient-based weights and score-based weights to obtain

the CAM’s weightings, benefiting from both schemes. The

model-agnostic methods treat models as black boxes that

can often be interpreted by input perturbation. LIME [21]

and SHAP [16] are two typical model-agnostic methods

to explain DNNs via input perturbation. They require ad-

ditional sampling processes and fitting separate explainer

models to approximate the original model’s inference pro-

cess, thereby consuming more computations.

Softmax-based Aggregation. The softmax function gives

soft-weighted assignments of member contribution and has

the nice property of summing to 1. Gao et al. [7] proposed

a softmax-based local importance-based pooling method to

down-sample spatial features in receptive fields. The atten-

tion mechanism [1] is another example of softmax-based

feature aggregation which has been the core component

of the modern transformer networks [27]. In capsule net-

works [22], softmax is used in the dynamic routing algo-

rithm which can be viewed as a form of parallel attention

mechanism to connect capsule layers. Our proposed in-

terpretation method also utilizes softmax functions to con-

struct probabilistically comparable attention, overcoming

CAM’s analytical limitation.

3. Methodology of Model Interpretation
3.1. Class Activation Maps (CAMs)

Let x be a single image and y ∈ C be the corresponding

label, where C denotes the label set of the dataset. A func-

tion f produces a feature tensor from x, i.e., F = f(x; θf ),
where F ∈ RH×W×K , H and W denote the spatial dimen-

sions and K represents the number of channels. A typi-

cal deep learning classification model utilizes a sequence of

a global average pooling layer and a fully-connected layer

with a softmax activation function (referred as a vanilla

classification layer) to produce the likelihood probability

distribution p(C|x, θ) (denote as p) from F, which can be

written as:

p = softmaxc

(
Wᵀ 1

H ×W

H∑
i=1

W∑
j=1

Fij + b

)
, (1)

where θ = {θf ,W ∈ RK×|C|,b ∈ R|C|} denotes the

set of trainable parameters. The class activation map Mc

for class c ∈ C is obtained by aggregating the activa-

tion maps Fk weighted by their class weights Wkc, i.e.,

Mc =
∑K

k=1 WkcFk where M ∈ RH×W×|C|. CAM is

commonly used as a heatmap type of visualization. Mijc

indicates the importance of the activation of an image re-

gion at position (i, j) toward class c. For simplicity, we

refer an image region as a pixel and a 3D indexed element

(like Mijc) as a voxel hereafter. The common approach [12]

to produce the explanation (or attention) map E of the clas-

sification model is to apply the rectifier transformation, up-

sampling, and normalization in sequence:

ECAM
c = φ

(
max(Mc, 0)

)
, (2)

where φ(.) denotes a sequential process of up-sampling and

min-max normalization operations.

As shown in the top row of Fig. 1, the normalized CAM

explanation map ECAM
ijc ∈ [0, 100%] are not comparable

across classes. Note that the comparability could be re-

stored if the min-max normalization uses the global max-

imum value of the entire ECAM but even if this is applied,

ECAM values only explain the relative importance between

voxels but not the absolute importance/contribution toward

the model outcome. This raises an important research ques-

tion of whether CAM methods can show how much each
image region actually contributes to the DNN decision.

As the original CAM formulation ignores the bias term

but the bias is involved in model outcome computation, we

first restore the bias term by defining shifted CAM maps as

M′ = M+ b, and then we define:

p(C|M′
ij ,x, θ) = softmaxc(M

′
ij), (3)

to represent the probability distribution of C at the pixel lo-

cation (i, j). Then, a naive way to compute image level

prediction p is to aggregate all pixel probability distribu-

tions by averaging:

p̂ =

H∑
i=1

W∑
j=1

p(C|M′
ij ,x, θ)

H ×W
. (4)

Even though
∑

c p̂ = 1 appears to satisfy the law of total

probability, the model prediction p and the composed pre-

diction p̂ are not identical, i.e.:

softmaxc
( 1

H ×W

H∑
i=1

W∑
j=1

M′
ij

) �=
H∑
i=1

W∑
j=1

softmaxc(M
′
ij)

H ×W
,

(5)

because the softmax function is neither additive (i.e., f(x+
y) = f(x) + f(y)), nor homogeneous (i.e., f(αx) =

αf(x)). Therefore, p(c|M′
ij ,x, θ) =

softmaxc(M
′
ij)

H×W is not

the true representation of the voxel contribution to the over-
all decision p, and the exact compositional contribution of

each voxel to the overall decision p is intractable.

3.2. CAM as a Probabilistic Ensemble (CAPE)

Since the voxel contributions to p are intractable, we pro-

pose to consider p̂ as the model’s classification outcome for

CAPE. This allows us to build the relationship between the

voxel contributions and the model prediction outcome as a

probabilistic ensemble of voxel contributions:

p̂ =

H∑
i=1

W∑
j=1

p(C|M′
ij ,x, θ)p(M

′
ij |x, θ). (6)
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Figure 2. The overview of the proposed CAPE classification layer with bootstrap training. AVG stands for averaging.

The overview of the proposal is depicted in Fig. 2 and de-

scribed as follows.

3.2.1 Image Region Importance (Saliency)

From Eq. (4), we know the naive representation of

p(M′
ij |x, θ) is 1

H×W . However, to make this formulation

less rigid, we apply the softmax aggregation to compute the

pixel weighting, also using M′:

p(M′
ij |x, θ) = softmaxij

(
M′C

)
, (7)

where the subscripts ij of the softmax function indicate that

the softmax normalizes over both spatial dimensions. Here,

M′C = 1
|C|

∑
c∈C M

′
c denotes the average operation over

the classes of M′. The rationale behind the usage of M′C
comes from the concept of saliency. When a spatial loca-

tion processes high activation values in one pixel, it is likely

that this pixel contains an object part and therefore should

be focused. The average normalization is used to improve

the numerical stability instead of using summation. Note

that Eq. (7) reuses the values from M′
c which means that

the modification to a neural network is only limited to the

softmax function in the output layer without introducing ad-

ditional network parameters.

3.2.2 CAPE Explanation

We can compute the exact decomposition of overall model

prediction p̂ to the contribution from each voxel location

P̂ijc by multiplying Eq. (3) and Eq. (7):

P̂ijc =
exp(M′

ijc)∑
c′∈|C| exp(M′

ijc′)
· exp(M′C)ij∑

i′j′ exp(M′C) i′j′
(8)

where P̂ ∈ RH×W×|C|. To form an explanation map,

we perform the same operations in Eq. (2) and propose:

ECAPE
c = φ

(
P̂c

)
. Note P̂ijc ∈ [0, 1], therefore clipping

negative values of P̂c is unnecessary.

3.2.3 μ-CAPE Explanation

Although the voxel contributions P̂ are the exact decompo-

sition of the image-level prediction, they do not necessar-

ily produce better quantitative measurement values for the

commonly used CAM interpretability evaluation metrics

(see CAPE (TS) and (PF) rows in Table 1). We found the

reason being ECAPE
c creates “sharper” attention than ECAM

c

and it tends to place high attention on the class discrimina-

tive regions of the objects (e.g., what differentiates Husky

and Malamute) but suppresses class mutual regions (e.g.,

what is common between Husky and Malamute such as dog

turso). We also found that the reason for the sharp atten-

tion lies in the super-linearity of the exponential function

used in softmax (and when the rectifier function and min-

max normalization are applied), which causes the relative

distance between the outputs larger than the correspond-

ing inputs, i.e.,
exp(x)−exp(y)

exp(x)−0 > x−y
x−0 , for any x > y > 0.

Therefore, using ECAPE
c �x to reclassify the image will take

away the decision support from the class mutual regions and

cause a large change in the image classification confidence

compared to using ECAM
c �x, resulting lower measurement

scores as shown in Table 1. A visual illustration can be

found in Fig. 3 between CAM and CAPE (PF) columns.

Intuitively, to restore the class mutual regions, we would

retrieve attention values before the softmax normalization,

like Mijc used in CAM. Therefore, we first transform

Eq. (8) to a “single softmax” form, taking the advantage
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of exp(x)exp(y) = exp(x+ y):

P̂ijc =
exp

(
M′

ijc + (M′C)ij
)

∑
c′∈|C|

∑H
i′=1

∑W
j′=1 exp(M′

ijc′ + (M′C)i′j′)
,

(9)

where the CAM equivalent term in CAPE is M′
ijc +

(M′C)ij . We define μ-CAPE explanation as Eμ-CAPE
c =

φ
(
max(M′

c + M′C , 0)
)
. Note that μ-CAPE restores the

class mutual regions but does not maintain the composition

relationship to the model outcome.

3.2.4 Bootstrap Training

Finally, our loss function is defined in the form of knowl-

edge distillation [9]:

� = α · H(p̂,q) + β · DKL(p̂T ′ ,pT ), (10)

where H(., .) denotes the Cross-Entropy function, q de-

notes the classification one-hot label vector, DKL(., .) de-

notes the Kullback–Leibler divergence (KLD) function. T ′

denotes the addition of a learnable softmax temperature in

Eq. (9) and T denotes the addition of a fixed temperature in

Eq. (1), both temperature parameters are omitted in the re-

spective equation for clarity. We propose this form of train-

ing using softened pT as a mediator because the direct op-

timization using H(p̂,q) is difficult, see the classification

results of ‘Direct CE’ entry in Table 2. Once trained, the

vanilla classifier could be removed from the CAPE model

to maintain nearly identical model parameters except for the

learnable temperature parameter.

We further propose two ways of training the CAPE layer.

1) training from scratch (TS) by setting α = β = 1, and

during the training, the backbone model does not receive

gradients from the CAPE layer but from the vanilla clas-

sification layer. 2) post-fitting (PF) CAPE layer to an al-

ready trained classifier model (e.g., ImageNet pre-trained

models) by setting α = 0 and β = 1. This means that

only the CAPE layer is trained, and we initialize the CAPE

layer by the vanilla classifier’s parameters. Besides, on the

ImageNet dataset, we found the optimization is much more

complex as KLD needs to match probability distributions in

much higher dimensions. To alleviate this optimization dif-

ficulty, we propose a selective KLD variation that optimizes

KLD(p̂T ′ ,pT ) only if the predicted classes of the CAPE

layer and the vanilla classification layer are not the same.

Let ĉ = argmaxc′ p̂c′ present CAPE predicted class and

c = argmaxc′pc′ be the vanilla classifier predicted class,

the selective KLD-enabled bootstrap loss is then:

� = α · H(p,q) + β1(ĉ �= c) · DKL(p̂T ′ ,pT ). (11)

The motivation of the design is from the intrinsic predic-

tion discrepancy between CAPE and the vanilla classifier

(illustrated in Table 2 in the supplementary material), so it

may be unnecessary to match the exact distributions p̂T ′

and pT for the training samples that ĉ = c. With the selec-

tive KLD loss, we only bootstrap the prediction distribution

once ĉ �= c, which significantly reduces the optimization

difficulty.

4. Experiments
The proposed CAPE method can be viewed as a replace-

ment for the softmax activation function in the classifica-

tion module, therefore it is applicable to both DNNs using

global average pooling, which can be found in both CNN

and Transformer families. Therefore, we choose ResNet-

50 [8] and Swin Transformer V2-B [15] as our test beds,

please refer to the Section “Experiments on Swin Trans-

former model” in the supplementary material for the results

of Swin Transformer model. All experiments were con-

ducted on a single Nvidia RTX A6000 GPU (48G video

memory) using PyTorch [19].

4.1. Datasets and Implementation Details

We benchmark on two public datasets: 1) CUB200-

2011 [28]; 2) ImageNet ILSVRC2012 [5]. We also eval-

uate a cytology image dataset depicting a difficult Chronic

myelomonocytic leukemia (CMML) diagnostic problem.

CUB comprises a total of 200 distinct bird species, ac-

companied by 5,995 training images and 5,794 test images.

The input size is 448 × 448 and the produced CAM has

14 × 14 spatial size using both ResNet50 and Swin Trans-

former V2-B model.

ImageNet consists of a total of 1000 object categories

with a collection of 1,281,167 images for training and

50,000 images for validation. We follow the convention in

the literature [12, 14] by randomly selecting 2000 valida-

tion images for interpretability evaluation. The input size is

224× 224 and the CAM size is 7× 7.

CMML dataset contains 3,899 single-cell (Monocyte, a

type of white blood cell) images from 171 individuals, who

were annotated as ‘Normal’ or having ‘CMML’. Each in-

dividual can have a different amount of monocyte images.

We report the average results of 5-fold cross-validation on

the CMML dataset. The input size is 352 × 352 and the

derived CAM size is 11 × 11. Additional information on

the CMML dataset and motivation for comparing CAMs on

CMML can be found in the Section “CMML Dataset De-

tails” in the supplementary material.

Training Settings. We train all CAPE configurations

with SGD optimizer and use temperature T = 2. We set

1e−4 as the initial learning rate for post-fitting (PF) CAPE

models and trained them for 30 epochs, except for Ima-

geNet, which is 5 epochs. For the training-from-scratch

(TS) CAPE models, we uniformly set 1e−3 as the initial

learning rate for all three datasets. We employ step decay

11076



Original CAM SG-CAM++ Lift-CAM Score-CAM CAPE (PF)

 

-CAPE (PF)Diff (CAPE)
C

U
B

Frigatebird

99
.3

%

41
.3

%

German
Shepherd

73
.9

%

32
.9

%

32
.9

%

Im
ag

eN
et

N
or

m
al

:9
9.

9%

C
M

M
L:

0.
1%

C
M

M
L:

23
.4

%

Normal

C
M

M
L

CMML-Normal
=-53.2%

99
.3

%

99
.3

%

99
.3

%

41
.3

%

0.
6%

7.
6%

0.
6%

0.
6%

0.
6%

7.
6%

IoU:79.9% IoU:99.1% IoU:87.8% IoU:93.3% IoU:7.4% IoU:79.3%

73
.9

%

73
.9

%

73
.9

%

9.
2%

11
.7

%

11
.7

%

9.
2%

9.
2%

9.
2%

IoU:94.5% IoU:99.9% IoU:97.4% IoU:91.1% IoU:17.4% IoU:95.7%

N
or

m
al

:9
9.

9%

N
or

m
al

:9
9.

9%

N
or

m
al

:9
9.

9%

N
or

m
al

:7
6.

6%

N
or

m
al

:7
6.

6%

C
M

M
L:

0.
1%

C
M

M
L:

0.
1%

C
M

M
L:

0.
1%

C
M

M
L:

23
.4

%

IoU:0.0% IoU:99.8% IoU:0.0% IoU:87.8% IoU:9.0% IoU:0.0%

German
Shepherd -
Leonberg
=21.2% 

Frigatebird - 
Laysan

Albatross
=33.7%

Figure 3. Qualitative visualisation using ResNet-50. Each dataset has two rows for the top-2 predicted classes’ explanation maps. Class

confidence scores are on the left side of each explanation map. We select CAM, Smooth Grad-CAM++, Lift-CAM, and Score-CAM to

represent different visualization ways for the same vanilla classification layer. We show CAPE and μ-CAPE (PF) explanations for the

proposed CAPE model, full comparisons are in Fig. 2 to 4 in the supplementary material. “SG-CAM++” denotes Smooth Grad-CAM++.

with a 0.1 decay rate per 30 epochs and a weight decay of

1e−4 for CUB (200 total epochs) and ImageNet (90 total

epochs). For the CMML dataset, we use a linear decay with

a weight decay of 5e−4 and 100 training epochs by which

we reduce the learning rate to 1/100 of the initial value.

These hyperparameter settings of learning rate and number

of epochs follow common settings in the literature. The

temperature value was validated on a validation set reserved

as a random proportion of the training set.

4.2. Qualitative Analysis

We compare to eight state-of-the-art DNN-based CAM

interpretation methods, including activation-based CAM

methods: CAM [31], Layer-CAM [10], Score-CAM [29],

LIFT-CAM [12], FD-CAM [14]), and gradient-based CAM

methods: Grad-CAM [24], Grad-CAM++ [3], Smooth

Grad-CAM++ [17]).

The qualitative analysis is visualized in Fig. 3 for CUB,

ImageNet, and CMML datasets using the ResNet50 model.

We compare CAM, Smooth Grad-CAM++, LIFT-CAM,

and Score-CAM with our proposed CAPE and μ-CAPE ex-

planations (PF-trained models). For each compared method

except CAPE, we plot explanation heatmaps for the top-2

predicted classes in the background and overlay their pre-

upsampling attention values in the foreground. Some image

region boxes are omitted from the drawing to avoid clutter-

ing and it is based on whether the region’s attention value

exceeds the 5% threshold of maximum attention values. For

the compared CAM methods this 5% threshold is not mean-

ingful. However, for CAPE visualization, and using the

ImageNet “German shepherd” dog example, the threshold

translates to a minimum probability where below the prob-

ability is considered as noise, i.e., 5% × 2.9% ≈ 0.145%

(2.9% is the largest attention probability), and the kept re-
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Method
CUB ImageNet CMML

AD ↓ IC ↑ ADD ↑ ADCC ↑ mIoU ↓ BC ↑ AD ↓ IC ↑ ADD ↑ ADCC ↑ mIoU ↓ BC ↑ AD ↓ IC ↑ ADD ↑ ADCC ↑ mIoU ↓ BC ↑
CAM 21.2 27.9 67.4 78.8 75.9 0 12.6 41.9 49.2 73.4 84.4 2 17.4 36.0 54.8 73.6 0.1 7

Grad-CAM 21.6 27.5 66.8 77.3 100.0 0 12.7 41.4 48.7 72.9 100.0 0 18.2 35.3 54.0 70.6 100.0 1

Grad-CAM++ 20.3 28.7 68.9 77.4 100.0 0 13.1 39.6 47.8 72.4 100.0 0 20.1 37.7 52.5 68.4 100.0 0

SG-CAM++ 23.7 24.0 64.7 74.2 99.8 0 15.0 35.2 46.2 70.5 99.8 0 31.8 31.5 47.0 70.2 99.7 0

Layer-CAM 20.1 28.7 69.9 77.3 100.0 0 13.1 39.2 48.4 71.4 100.0 0 21.6 37.1 51.8 65.9 100.0 0

FD-CAM 20.5 27.9 70.9 78.1 96.7 1 15.8 38.3 49.5 72.5 100.0 0 17.8 38.9 54.3 71.9 99.7 2

LIFT-CAM 20.9 25.6 64.5 74.6 83.3 0 12.7 41.1 49.3 72.3 89.8 0 16.4 37.8 54.0 72.5 0.1 6
Score-CAM 16.3 33.0 73.1 80.2 81.9 6 8.5 46.9 52.6 72.9 80.2 5 17.0 40.3 48.3 67.7 77.0 1

CAPE (PF) 22.2 26.5 68.7 73.7 13.4 3 17.5 45.2 59.7 69.1 11.0 7 27.9 35.0 39.9 67.9 4.9 0

CAPE (TS) 27.1 31.6 59.1 77.5 28.5 3 34.7 34.2 41.3 69.9 56.8 2 29.9 27.4 36.3 72.0 0.8 1

μ-CAPE (PF) 15.9 30.9 69.6 83.0 66.6 5 12.7 43.9 55.9 74.3 70.3 5 16.5 43.6 45.5 78.2 0.6 7
μ-CAPE (TS) 10.3 48.5 74.2 84.4 80.9 12 10.7 58.3 58.7 73.5 89.0 9 14.1 48.0 50.1 78.4 5.3 9

Table 1. Comparison of CAM interpretation methods using ResNet-50 backbone model. ↓ and ↑ indicate lower or higher is better. “SG-

CAM++” denotes Smooth Grad-CAM++. The top-3 scores are marked from darker to lighter green colors.

gions constitute 32.8% of the class prediction of 32.9%. We

can analytically say the regions cropped above the threshold

maintain 99.7% of the original class confidence.

With CAPE’s probabilistic ensemble formulation, we

can directly compare the two class maps shown in the

Diff(CAPE) column. Furthermore, for the CMML task,

predicting CMML from monocyte images is an exploratory

and open-ended research question, hence we are particu-

larly interested in understanding where the classifier looks

at when the decision is made (e.g., nucleus, cytoplasm, cell

exterior region, or their touching boundaries). Each image’s

attention placement can be significantly different and hard

to manually review beyond a few. Using CAPE with the

additional help of image segmentation, we can easily com-

pute an empirical summary of the attention placement over

all test images such as shown in Table 6 of the supplemen-

tary material.

CAPE and μ-CAPE are for different purposes. CAPE

is analytical and can explain class discriminative regions

which generally show less overlap between the top-2 class

explanation maps. In addition, CAPE achieves lower inter-

section over union (IoU, defined in Sec. 4.3). These char-

acteristics make CAPE useful for understanding the sub-

tle differences between visually similar concepts. μ-CAPE

shows significant overlap between the top-2 classes and is

more useful when the full class object is needed. An excep-

tion is in the CMML example where CAM, Lift-CAM, and

μ-CAPE already show the class discriminative characteris-

tic and have 0.0% IoU, meaning that the respective expla-

nation maps do not overlap. This is likely because of the

two classes in the CMML problem because the small num-

ber of classes trained classifiers are more likely to discard

non-discriminative regions [4].

4.3. Quantitative Analysis

We use four common CAM interpretability evaluation met-

rics with an additional metric in our quantitative analysis.

Let Ec = Φ(x, c) denote the overall process that generates

an explanation map Ec from an image given class c, and

pc = Ψ(x, c) denotes the model prediction generation pro-

cess. The measurements are defined below.

Average Drop in Confidence (AD) [3]. For a single

image with target class c, AD(x) = max(yc−oc,0)
yc

; where

yc = Ψ(x, c) and oc = Ψ(Ec�x, c), � defines the element-

wise production, and c = argmaxc′∈|C|(pc′).
Average Increase in Confidence (IC) [3] measures

the confidence gain when the explanation map is applied:

IC(x) = 1(yc < oc), where 1 is an indicator function.

AD in Deletion (ADD) [12] overcomes the drawbacks

that IC and AD give good scores when an interpreta-

tion method always gives an over-confident explanation.

ADD(x) = max(yc−dc,0)
yc

, where dc = Ψ
(
(1−Ec)� x, c

)
.

AD, Coherency, and Complexity (ADCC) [20]

was introduced as a robust measurement in com-

parison to AD and IC. ADCC represents the har-

monic mean of different metrics. ADCC(x) =
3

coh(Ec,E′
c)

−1+(1−com(Ec))−1+(1−AD(x))−1 . coh(Ec,E
′
c) =

2·corr(Ec,E
′
c)+1 measures the min-max normalized Pear-

son Correlation Coefficient (corr) between Ec and E′
c =

Φ(Ec�x, c). com(Ec) = |Ec| measures the complexity of

an explanation map by its L1-norm.

Intersection over Union (IoU) measures the overlap

between the explanation maps of top-2 predicted classes.

We first create a mask Sc = Ec > 0.2 · max(Ec), then

IoU(x) =
|Sc1

∩Sc2
|

|Sc1
∪Sc2

| , for the top-2 classes c1 and c2. We

report the mean IoU (mIoU) in Table 1.

Borda Count (BC) is a voting method to give a score

based on multiple rankings. We assign a 1st ranking a score

of 3, a 2nd ranking a score of 2, and a 3rd ranking a score of

1. The rest ranks are scored 0. Our BC ranking sums over

the scores from the above measurements.

The quantitative analysis is shown in Table 1. We show

the following observations.

1. μ-CAPE explanations hold the top BC rankings across

all datasets because of their AD, IC, ADD, and ADCC

scores. This illustrates the advantage of the μ-CAPE

explanation in terms of the capability to include both

class discriminative and class mutual regions. In con-

trast, the CAPE explanation highlights class discrimina-
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tive regions hence leading the mIoU measurement.

2. All μ-CAPE (TS) measurements are generally better

than the (PF) model measurements but the PF models

are much cheaper to run, especially on large datasets.

Comparing CAPE (TS) and (PF), the (PF) version leads

to better mIoU on the CUB and ImageNet datasets, but

the opposite is observed on the CMML dataset.

3. Score-CAM has a good BC ranking based on high AD,

IC, ADD, and ADCC rankings on CUB and ImageNet.

Notably, it has a significantly lower AD score on Ima-

geNet. Score-CAM explanation map for an image and

a target class pair requires the computation of explana-

tion maps for all classes, which is computationally in-

tensive. In contrast, μ-CAPE and CAPE only need a

simple feed-forward inference that incurs trivial compu-

tation overhead compared to the original CAM. For in-

stance, CAPE and CAM take around 150 milliseconds

to compute for one CUB image on our hardware, and

Score-CAM takes 15 seconds.

4.4. Ablation Study on Classification Performance

In Table 2, we show the classification performance using the

vanilla classification layer and the CAPE classification layer

on the same ResNet-50 model with different settings. The

Naive AVG and Off-the-shelf CAPEs reuse the vanilla clas-

sification layer’s parameters where their difference is that

Naive AVG CAPE aggregates all pixel probability distri-

butions by averaging (Eq. (4)) while Off-the-shelf CAPE

employs the image region importance (Eq. (6)). Both mod-

els can be used as post hoc visual interpretation methods

like CAMs, but they have classification performance gaps

toward the vanilla classifier. This leads to our proposal

of training the CAPE model to mitigate the gap. The Di-

rect CE CAPE (TS) employs full course training using the

cross-entropy loss H(p̂,q) but does not show a significant

improvement from Off-the-shelf CAPE. Both Bootstrap-

trained (TS and PF) models get closer performance to the

vanilla classification model but arguably there is a marginal

performance gap. Finally, we stress that our μ-CAPE and

CAPE explanations share the same model and only differ in

their explanation map formation (i.e., Eμ-CAPE
c vs. ECAPE

c ).

Model CMML CUB ImageNet

# Classes (|C|) 2 200 1,000

H ×W 11× 11 14× 14 7× 7
H ·W · |C| 242 39,200 49,000

C
A

P
E

Naive AVG 89.5 79.01 74.01

Off-the-shelf 87.4 80.62 74.01

Direct CE (TS) 88.8 80.51 72.95

Bootstrap (PF) 90.3 82.12 74.42

Bootstrap (TS) 89.8 82.19 74.64

Vanilla classification 90.5 83.34 76.13

Table 2. Classification accuracy evaluated on ResNet50 model for

different CAPE configurations and vanilla classification layer.

Figure 4. The ResNet-50 training and validation classification ac-

curacy recorded during the training course for the CUB dataset.

5. Discussion and Conclusion

We proposed CAPE, a novel DNN interpretation method

that is powerful in visualizing and analyzing DNN model

attention. It enables us to probabilistically understand how

the model predicts, and provides novel insights into mean-

ingful and analytical interpretations. CAPE is a simple re-

formulation of the softmax classification layer that adds a

trivial cost to classification inference and visual explana-

tion compared to the vanilla classifier and CAM explana-

tion. We conclude with CAPE’s characteristics and limita-

tions to motivate future work.

Training convergence and soft prediction confidence.
Fig. 4 illustrates that the training convergence issue affects

the CAPE model’s accuracy. We believe the convergence is-

sue is caused by the soft prediction confidence characteristic

of CAPE (see Table 1 of the supplementary material). We

suspect that the softened predictions in the CAPE formula-

tion are a result of the large number (H ×W × |C|) of vox-

els accumulated in the denominator of the softmax function

(see Eq. (9)). It is commonly known that interpretable mod-

els often have to trade accuracy for improved explainabil-

ity [18, 30]. We believe for CAPE, the trade-off is between

the probability computation capacity (leading to improved

explainability and analytical ability) and the soft prediction

confidence (causing training convergence issues), both re-

sulting from the usage of softmax normalization. Bootstrap

training was introduced to soften the classification confi-

dence scores of the vanilla classifier and therefore mitigate

the optimization difficulty of CAPE training.

CAPE explains itself. Even though the CAPE module’s

training was bootstrapped from the vanilla classifier and the

CAPE models’ classification performance approaches to the

vanilla classifier’s performance, Table 2 in the supplemen-

tary material shows an in-negligible prediction disagree-

ment between the two classification layers. Hence, CAPE’s

probabilistic explanation should not be used to explain the

decision process of the vanilla classification classifier.

11079



References
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473, 2014. 3

[2] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc

Sturm, and Noemie Elhadad. Intelligible models for health-

care: Predicting pneumonia risk and hospital 30-day read-

mission. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1721–1730,

2015. 1

[3] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader,

and Vineeth N Balasubramanian. Grad-cam++: General-

ized gradient-based visual explanations for deep convolu-

tional networks. In 2018 IEEE winter conference on appli-
cations of computer vision (WACV), pages 839–847. IEEE,

2018. 2, 6, 7

[4] Zhaozheng Chen and Qianru Sun. Extracting class activation

maps from non-discriminative features as well. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3135–3144, 2023. 7

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5

[6] Ruth C Fong and Andrea Vedaldi. Interpretable explana-

tions of black boxes by meaningful perturbation. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 3429–3437, 2017. 1, 2

[7] Ziteng Gao, Limin Wang, and Gangshan Wu. Lip: Local

importance-based pooling. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3355–

3364, 2019. 3

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE Conf.
on Computer Vision and Pattern Recognition, pages 770–

778, 2016. 5

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the

knowledge in a neural network. NIPS 2014 Deep Learning
Workshop, 2015. 5

[10] Peng-Tao Jiang, Chang-Bin Zhang, Qibin Hou, Ming-Ming

Cheng, and Yunchao Wei. Layercam: Exploring hierarchical

class activation maps for localization. IEEE Transactions on
Image Processing, 30:5875–5888, 2021. 2, 6

[11] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Tor-
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