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Abstract

Each photo in an image burst can be considered a sam-
ple of a complex 3D scene: the product of parallax, diffuse
and specular materials, scene motion, and illuminant vari-
ation. While decomposing all of these effects from a stack
of misaligned images is a highly ill-conditioned task, the
conventional align-and-merge burst pipeline takes the other
extreme: blending them into a single image. In this work,
we propose a versatile intermediate representation: a two-
layer alpha-composited image plus flow model constructed
with neural spline fields – networks trained to map input
coordinates to spline control points. Our method is able
to, during test-time optimization, jointly fuse a burst image
capture into one high-resolution reconstruction and decom-
pose it into transmission and obstruction layers. Then, by
discarding the obstruction layer, we can perform a range
of tasks including seeing through occlusions, reflection sup-
pression, and shadow removal. Tested on complex in-the-
wild captures we find that, with no post-processing steps
or learned priors, our generalizable model is able to out-
perform existing dedicated single-image and multi-view ob-
struction removal approaches.

1. Introduction

Over the last decade, as digital photos have increasingly
been produced by smartphones, smartphone photos have in-
creasingly been produced by burst fusion. To compensate
for less-than-ideal camera hardware – typically restricted
to a footprint of less than 1cm3 [6] – smartphones rely on
their advanced compute hardware to process and fuse mul-
tiple lower-quality images into a high-fidelity photo [10].
This proves particularly important in low-light and high-
dynamic-range settings [22,39], where a single image must
compromise between noise and motion blur, but multi-
ple images afford the opportunity to minimize both [26].
But even as mobile night- and astro-photography applica-
tions [16, 17] use increasingly long sequences of photos
as input, their output remains a static single-plane image.
Given the typically non-static and non-planar nature of the
real world, a core problem in burst image pipelines is thus
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Figure 1. Fitting our two-layer neural spline field model to a stack
of images we’re able to directly estimate and separate even severe,
out-of-focus obstructions to recover hidden scene content.

the alignment [32, 45] and aggregation [5, 63] of pixels into
an image array – referred to as the align-and-merge process.

While existing approaches treat pixel motion as a source
of noise and artifacts, a parallel direction of work [9,20,69]
attempts to extract useful parallax cues from this pixel mo-
tion to estimate the geometry of the scene. Recent work by
Chugunov et al. [8] finds that maximizing the photometric
consistency of an RGB plus depth neural field model of an
image sequence is enough to distill dense depth estimates
of the scene. While this method is able to jointly estimate
high-quality camera motion parameters, it does not perform
high-quality image reconstruction, and rather treats its im-
age model as “a vehicle for depth optimization” [8]. In con-
trast, work by Nam et al. [50] proposes a neural field fit-
ting approach for multi-image fusion and layer separation
which focuses on the quality of the reconstructed “canon-
ical view”. By swapping in different motion models, they
can separate and remove layers such as occlusions, reflec-
tions, and moiré patterns during image reconstruction – as
opposed to in a separate post-processing step [19, 54]. This
approach, however, does not make use of a realistic cam-
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era projection model, and relies on regularization penal-
ties to discourage its motion models from representing non-
physical effects – e.g., pixel tearing or teleportation.

In this work, we propose a versatile layered neural im-
age representation [50] with a projective camera model [8]
and novel neural spatio-temporal spline [67] parametriza-
tion. Our model takes as input an unstabilized 12-megapixel
RAW image sequence, camera metadata, and gyroscope
measurements – available on all modern smartphones.
During test-time optimization, it fits to produce a high-
resolution reconstruction of the scene, separated into trans-
mission and obstruction image planes. The latter of which
can be extracted to perform occlusion removal, reflection
suppression, and other layer separation applications. To this
end, we decompose pixel motion between burst frames into
planar motion, from the camera’s pose change in 3D space
relative to the image planes, and a generic flow component
which accounts for depth parallax, scene motion, and other
image distortions. We model these flows with neural spline
fields (NSFs): networks trained to map input coordinates to
spline control points, which are then interpolated at sample
timestamps to produce flow field values. As their output
dynamics are strictly bound by their spline parametrization,
these NSFs produce temporally consistent flow with no reg-
ularization, and can be controlled spatially through the ma-
nipulation of their positional encodings.
In summary, we make the following contributions:

• An end-to-end neural scene fitting approach which fits
to a burst image sequence to distill high-fidelity cam-
era poses, and high-resolution two layer transmission
plus occlusion image decomposition.

• A compact, controllable neural spline field model to
estimate and aggregate pixel motion between frames.

• Qualitative and quantitative evaluations which demon-
strate that our model outperforms existing single image
and multi-frame obstruction removal approaches.

Code, data, videos, and additional materials are available on
our project website: light.princeton.edu/nsf

2. Related Work
Burst Photography. A large body of work has explored
methods for burst image processing [10] to achieve high
image quality in mobile photography settings. During burst
imaging, the device records a sequence of frames in rapid
succession – potentially a bracketed sequence with vary-
ing exposure parameters [44] – and fuses them post-capture
to produce a demosaiced [58], denoised [15, 45], superre-
solved [32, 63], or otherwise enhanced reconstruction. Al-
most all modern smartphone devices rely on burst photog-
raphy for low-light [22, 39] and high dynamic range recon-
struction from low dynamic range sensors [13, 22]. While
existing methods typically use sequences of only 2-8 frames

as input, a parallel field of micro-video [25, 69] or “long-
burst photography” [8] research – which also encompasses
widely deployed Apple Live Photos, Android Motion Pho-
tos, and night photography [16, 17] – consumes sequences
of images up to several seconds in length, acquired naturally
during camera viewfinding. Though not limited to long-
burst photography, we adopt this setting to leverage the par-
allax [65] and pixel motion cues in these extended captures
for separation of obstructed and transmitted scene content.

Obstruction Removal and Layer Separation. While their
use of visual cues is diverse – e.g., identifying reflections
from “ghosting” cues on thick glass [54] or detecting lat-
tices for fence deletion [52] – single-image obstruction re-
moval is fundamentally a segmentation [31, 41] and image
recovery [14, 24] problem. In the most severe cases, with
fully opaque occluders, this image recovery problem be-
comes an in-painting task [11, 64] to synthesize missing
content. This is in contrast to approaches which rely on
multiple measurements such as multi-focal stacks [1, 53],
multi-view images [42, 51], flash no-flash pairs [33, 35], or
polarization data [34]. These methods typically treat ob-
struction removal as an inverse problem [4], estimating a
model of transmitted and occluded content consistent with
observed data [36]. This can also be generalized to an image
layer separation problem, an example of which is intrinsic
decomposition [7], where the separated layer is the obstruc-
tion. These methods typically rely on learned priors [14]
and pixel motion [50] to decompose images into multiple
components. Our work explores the layer separation prob-
lem in the burst photography setting, where pixel motion is
on a much smaller scale than in video sequences [43], and
a high-resolution unobstructed view is desired as an out-
put. Rather than tailor to a single application, however, we
propose a unified model with applications to reflection, oc-
clusion, and shadow separation.

Neural Scene Representations. A growing body of work
investigating novel view synthesis has demonstrated that
coordinate-based neural representations are capable of re-
constructing complex scenes [2,3] without an explicit struc-
tural backbone such as a pixel array or voxel grid. These
networks are typically trained from scratch, through test-
time optimization, on a single scene to map input coordi-
nate encodings [59] to outputs such as RGB [55], depth [9],
or x-ray data [56]. While neural scene representations re-
quire many network evaluations to generate outputs, as op-
posed to explicit representations which can be considered
“pre-evaluated”, recent works have shown great success in
accelerating training [48] and inference [68] of these net-
works. Furthermore, this per-output network evaluation is
what lends to their versatility, as they can be optimized
through auto-differentiation with no computational penal-
ties for sparse or non-uniform sampling of the scene [30].
Several recent approaches make use of neural scene rep-
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resentations in tandem with continuous motion estimation
models to fit multi-image [8] and video [38] data, po-
tentially decomposing it into multiple layers in the pro-
cess [27, 50]. Our work proposes a novel neural spline
field continuous flow representation with a projective cam-
era model to separate effects such as occlusions, reflections,
and shadows. In contrast to existing approaches, our flow
model does not require regularization to prevent overfitting,
as its representation power is controlled directly through en-
coding and spline hyperparameters.

3. Neural Spline Fields for Burst Photography
We begin with a discussion of the proposed neural spline
field model of optical flow. We then continue with our full
two-layer projective model of burst photography, its loss
functions, training procedure, and data collection pipeline.

3.1. Neural Spline Fields.

Motivation. To recover a latent image, existing burst pho-
tography methods align and merge [10] pixels in the cap-
tured image sequence. Disregarding regions of the scene
that spontaneously change – e.g., blinking lights or digi-
tal screens – pixel differences between images can be de-
composed into the products of scene motion, illuminant
motion, camera rotation, and depth parallax. Separating
these sources of motion has been a long-standing challenge
in vision [61, 62] as this is a fundamentally ill-conditioned
problem; in typical settings, scene and camera motion are
geometrically equivalent [21]. One response to this prob-
lem is to disregard effects other than camera motion, which
can yield high-quality motion estimates for static, mostly-
lambertian scenes [8, 25, 69]. This can be represented as

I(u, v, t) = [R,G,B] = f(ππ−1
t (u, v)), (1)

where I(u, v, t) is a frame from the burst stack captured
at time t and sampled at image coordinates u, v ∈ [0, 1].
Operators π and πt perform 3D reprojection on these coor-
dinates to transform them from time t to the coordinates
of a reference image model f(u, v) → [R,G,B]. To
account for other sources of motion, layer separation ap-
proaches such as [27, 50] estimate a generic flow model
∆u,∆v = g(u, v, t) to re-sample the image model

I(u, v, t) = f(u+ ∆u, v + ∆v). (2)

However, this parametrization introduces an overfitting risk,
the consequences of which are illustrated in Fig. 2, as
g(u, v, t) and f(u, v) can now act as a generic video en-
coder [38]. To combat this, methods often employ a form
of gradient penalty such as total variation loss [50]. That is

LTVFlow =
∑

∥Jg(u, v, t)∥1,
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Figure 2. Image and flow estimates for different representations of
a short video sequence of a swinging branch; PSNR/SSIM values
inset top-left. Depth projection alone is unable to represent both
parallax and scene motion, mixing reconstructed content, and an
un-regularized 3D flow volume g(u, v, t) trivially overfits to the
sequence. With an identical network, spatial encoding, loss func-
tion, and training procedure as g(u, v, t), our neural spline field
S(t;P = h(u, v)) produces temporally consistent flow estimates
well-correlated with a conventional optical flow reference [40].

where Jg(u, v, t) is the Jacobian of the flow model. During
training, this can prove computationally expensive, how-
ever, as now each sample requires its local neighborhood
to be evaluated to numerically estimate the Jacobian, or a
second gradient pass over the model. In both cases, a large
number of operations are spent to limit the reconstruction
of high frequency spatial and temporal content.
Formulation. We propose a neural spline field (NSF)
model of flow, a learned spatio-temporal spline [67] repre-
sentation which provides strong controls on reconstruction
directly through its parametrization. This model splits flow
evaluation into two components

∆u,∆v = g(u, v, t) = S(t;P = h(u, v)). (3)

Here h(u, v) is the NSF, a network which maps image coor-
dinates to a set of spline control points P. Then, to estimate
flow for a frame at time t in the burst stack, we evaluate the
spline at S(t;P). We select a cubic Hermite spline

S(t,P) = (2t3r − 3t2r + 1)P⌊ts⌋ + (−2t3r + 3t2r)P⌊ts⌋+1

+ (t3r − 2t2r + tr)(P⌊ts⌋ −P⌊ts⌋−1)/2

+ (t3r − t2r)(P⌊ts⌋+1 −P⌊ts⌋)/2

tr = ts − ⌊ts⌋, ts = t · |P|, (4)

as it guarantees continuity in time with respect to its ze-
roth, first, and second derivatives and allows for fast local
evaluation – in contrast to Bézier curves [8] which require
recursive calculations. We emphasize that the use of splines
in graphics problems is extensive [12], and that there are
many alternate candidate functions for S(t,P). E.g., if the
motion is expected to be a straight line, a piece-wise linear
spline with |P| = 2 control points would insure this con-
straint is satisfied irrespective of the outputs of h(u, v).
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Figure 3. Image fitting results for coordinate networks with Small
(Lγ=8) and Large (Lγ=16) multi-resolution hash encodings and
identical other parameters; PSNR/SSIM values inset top-left. Un-
like a traditional band-limited representation [66], the Small reso-
lution network is able to fit both low-frequency smooth gradients
and sharp edge mask images, but fails to fit a high density of either.
This makes it a promising candidate representation for scene flow
and alpha mattes which are comprised of smooth gradients and a
limited number of object edges.

Where the choice of S(t,P) and |P| determines the tempo-
ral behavior of flow, h(u, v) controls its spatial properties.
While our method, in principle, is not restricted to a specific
spatial encoding function, we adopt the multi-resolution
hash encoding γ(u, v) presented in Müller et al. [48]

h(u, v) = h(γ(u, v; paramsγ); θ)

paramsγ = {Bγ ,Sγ ,Lγ ,Fγ ,Tγ}, (5)

as it allows for fast training and strong spatial controls given
by its encoding parameters paramsγ : base grid resolution
Bγ , per level scale factor Sγ , number of grid levels Lγ , fea-
ture dimension Fγ , and backing hash table size Tγ . Here,
h(γ(u, v); θ) is a multi-layer perceptron (MLP) [23] with
learned weights θ. Illustrated in Fig. 3 with an image fitting
example, the number of grid levels Lγ – which, with a fixed
Sγ , sets the maximum grid resolution – provides controls
on the maximum “spatial complexity” of the output while
still permitting accurate reconstruction of image edges.

3.2. Projective Model of Burst Photography

Motivation. With a flow model g(u, v, t), and a canonical
image representation f(u, v) in hand, we theoretically have
all the components needed to model an arbitrary image se-
quence [27,50]. However, handheld burst photography does
not produce arbitrary image sequences; it has well-studied
photometric and geometric properties [8, 9, 20, 63]. This, in
combination with the abundance of physical metadata such
as gyroscope values and calibrated intrinsics available on
modern smartphone devices [8], provides strong support for
a physical model of image formation.
Formulation. We adopt a forward model similar to tradi-
tional multi-planar imaging [21]. We note that this departs
from existing work [8, 9], which employs a backward pro-

jection camera model – “splatting” points from a canonical
representation to locations in the burst stack. A multi-plane
imaging model allows for both simple composition of mul-
tiple layers along a ray – a task for which backward pro-
jection is not well suited – and fast calculation of ray in-
tersections without the ray-marching needed by volumetric
representations like NeRF [47]. For simplicity of notation,
we outline this model for a single projected ray below. We
also illustrate this process in Fig. 4. Let

c = [R,G,B]⊤ = I(u, v, t) (6)

be a colored point sampled at time t in the burst stack at
image coordinates u, v ∈ [0, 1]. Note that these coordi-
nates are relative to the camera pose at time t; for example
(u, v) = (0, 0) is always the bottom-left corner of the im-
age. To project these points into world space we introduce
camera translation T (t) and rotation R(t) models

T (t) = S(t,PT), R(t) = RD(t) + ηRS(t,P
R)

PT
i =

 x
y
z

, PR
i =

 0 −rz ry

rz 0 −rx

−ry rx 0

. (7)

Here S(t,P) is the same cubic spline model from Eq. (4),
evaluated element-wise over the channels of P. We note
there are no coordinate networks employed in these mod-
els. Translation T (t) is learned from scratch, PT initialized
to all-zeroes. Rotation R(t) is learned as a small-angle ap-
proximation offset [25] to device rotations RD(t) recorded
by the phone’s gyroscope – or alternatively, the identity ma-
trix if such data is not available. With these two models, and
calibrated intrinsic matrix K from the camera metadata, we
now generate a ray with origin O and direction D as

O=

Ox

Oy

Oz

=T (t), D=

Dx

Dy

1

=
R(t)K−1

Dz

 u
v
1

, (8)

where D is normalized by its z component. We define our
transmission and obstruction image planes as ΠT and ΠO,
respectively. As XY translation of these planes conflicts
with changes in the camera pose, we lock them to the z-axis
at depth Πz with canonical axes Πu and Πv . Thus, given
ray direction D has a z-component of 1, we can calculate
the ray-plane intersection as Q = O + (Πz − Oz)D and
project to plane coordinates

uΠ, vΠ = ⟨Q, Πu⟩/(Πz −Oz), ⟨Q, Πv⟩/(Πz −Oz), (9)

scaled by ray length to preserve uniform spatial resolution.
Let uT, vT and uO, vO be the intersection coordinates for the
transmission and obstruction plane, respectively. We alpha
composite these layers along the ray as

25766



Time

Burst Stack Burst Frame Obstruction NSFCamera Model

Predicted Image

Sample

Transmission NSF

Transmission

Obstruction Alpha

Composite

Loss

Gyro

Figure 4. We model an input image sequence as the alpha composition of a transmission and obstruction plane. Motion in the scene is
expressed as the product of a rigid camera model, which produces global rotation and translation, and two neural spline field models, which
produce local flow estimates for the two layers. Trained to minimize photometric loss, this model separates content to its respective layers.

ĉ = (1− α)cT + αcO

cT = f T(uT +∆uT, vT +∆vT), ∆uT,∆vT = S(t;hT(uT, vT))

cO = f O(uO +∆uO, vO +∆vO), ∆uO,∆vO = S(t;hO(uO,vO))

α = σ(τσf
α(uO +∆uO, vO +∆vO)), (10)

where ĉ is the composite color point, the weighted sum by α
of the transmission color cT and obstruction color cO. Each
is the output of an image coordinate network f(u, v) sam-
pled at points offset by flow from an NSF h(u, v). The sig-
moid function σ=1/(1+e−x) with temperature τσ controls
the transition between opaque α=1 and partially translu-
cent α=0.5 obstructions. This proves particularly helpful
for learning hard occluders – e.g., a fence – where large τσ
creates a steep transition between α=0 and α=1, which
discourages fα(u, v) from mixing content between layers.

3.3. Training Procedure

Losses. Given all the components of our model are fully
differentiable, we train them end-to-end via stochastic gra-
dient descent. We define our loss function L as

L = LP + ηαRα (11)
LP = |(c− ĉ)/(sg(c) + ϵ)|, Rα = |α|,

where LP is a relative photometric reconstruction loss [8,
46], and sg is the stop-gradient operator. Shown in Fig. 5,
when combined with linear RAW input data this loss proves
robust in noisy imaging settings [46], appropriate for in-
the-wild scene reconstruction with unknown lighting con-
ditions. Regularization term Rα with weight ηα penalizes
content in the obstruction layer, discouraging it from dupli-
cating features from the transmission layer.
Training. Given the high-dimensional problem of jointly
solving for camera poses, image layers, and neural spline
field flows, we turn to coarse-to-fine optimization to avoid
low-quality local minima solutions. We mask the multi-
resolution hash encodings γ(u, v) input into our image, al-
pha, and flow networks, activating higher resolution grids

Single Frame Proposed ReferenceNaive Average

Figure 5. Reconstruction results for noisy, low-light conditions;
exposure time 1/30, ISO 5000. The proposed model is able to
robustly merge frames into a denoised image representation.

during later epochs of training:

γi(u, v) =

{
γi(u, v) if i/|γ| < 0.4 + 0.6(sin epoch)
0 if i/|γ| > 0.4 + 0.6(sin epoch)

sin epoch = sin(epoch/max epoch), (12)

This strategy results in less noise accumulated during early
training as spurious high-resolution features do not need to
be “unlearned” [8, 37] during later stages of refinement.

4. Applications
Data Collection. To collect burst data we modify the open-
source Android camera capture tool Pani to record contin-
uous streams of RAW frames and sensor metadata. Dur-
ing capture, we lock exposure and focus settings to record
a 42 frame, two-second “long-burst” of 12-megapixel im-
ages, gyroscope measurements, and camera metadata. We
refer the reader to Chugunov et al. [8] for an overview of
the long-burst imaging setting and its geometric properties.
We capture data from a set of Pixel 7, 7-Pro, and 8-Pro de-
vices, with no notable differences in overall reconstruction
quality or changes in the training procedure required. We
train our networks directly on Bayer RAW data, and apply
device color-correction and tone-mapping for visualization.
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Figure 6. Occlusion removal results and estimated alpha maps for a set of captures with reference views; comparisons to single image,
multi-view, and NeRF fitting approaches. See video materials for visualization of input data and scene fitting.
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Figure 7. Layer separation results in unique real-world cases en-
abled by our generalizable two-layer image model: (a) orange
planter, (b) fenced garden, (c) stickers on balcony glass.
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Figure 8. Qualitative and quantitative obstruction removal results
for a set of synthetic scenes with paired ground truth, camera mo-
tion simulated from real measured hand shake data [9]. Evaluation
metrics formatted as PSNR/SSIM.
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Figure 9. Reflection removal results and estimated alpha maps for a set of captures with reference views; comparisons to single image,
multi-view, and NeRF fitting approaches. See video materials for visualization of input data and scene fitting.
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Scene Transmission Alpha

Obstruction

Figure 10. Layer separation results for additional example appli-
cations: (a) shadow removal, (b) image dehazing, and (c) video
motion segmentation (see video materials for visualization).

Implementation Details. During training, we perform
stochastic gradient descent on L for batches of 218 rays per
step for 6000 steps with the Adam optimizer [28]. All net-
works use the multi-resolution hash encoding described in
Eq. (5), implemented in tiny-cuda-nn [49]. Trained on a
single Nvidia RTX 4090 GPU, our method takes approx-
imately 3 minutes to fit a full 42-frame image sequence.
All networks have a base resolution Bγ=4, and scale fac-
tor Sγ=1.61, but while flow networks hT and O are pa-
rameterized with a low number of grid levels Lγ=8, net-
works which represent high frequency content have Lγ=12
or Lγ=16 levels. These settings are task-specific, and full
implementation details and results for short (4-8 frame) im-
age bursts are included in the Supplementary Material.

Occlusion Removal. Initializing the obstruction plane
closer to the camera than the transmission plane, that is
ΠO

z < ΠT
z , we find that the f O(u, v) naturally reconstructs

foreground content in the scene. Given a scene with con-
tent hidden behind a foreground occluder – e.g., imaging
through a fence – we can then perform occlusion removal
with the proposed method by setting α = 0. We report re-
sults in Fig. 6 for a set of captures collected with reference
views using a tripod-mounted occluder. We compare here
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to the multiview plus learning method presented in Liu et
al. [42], the neural radiance field approach OCC-NeRF [70],
the flow + homography neural image model NIR [50], and
the single image inpainting method Lama [57] as these
methods demonstrate a broad range of techniques for oc-
clusion detection and removal with varying assumptions
on camera motion. We find that in this small baseline
burst photography setting, existing multi-view methods fail
to achieve meaningful occlusion removal; as the occluder
maintains a high level of self-overlap for the whole image
sequence. While the single-image method, Lama is able to
in-paint occluded regions based on un-occluded content, it
cannot faithfully recover lost details such as the carvings in
the Door scene. Furthermore, Lama does not produce an al-
pha matte, and rather requires a hand-annotated mask as in-
put. Illustrated in Fig. 11, even otherwise robust mask seg-
mentation networks such as the Segment Anything Model
(SAM) [29] fail to correctly detect complex occluders. In
contrast, our approach distills information from all input
frames to accurately recover temporarily occluded content,
and jointly produces a high-quality alpha matte. In Fig. 10
we present additional layer separation results for real in-the-
wild scenes with complex occluders, which demonstrate the
versatility of the obstruction image model f O(u, v).
Reflection Removal. We show in Fig. 9 how by flipping the
plane depths ΠO

z > ΠT
z , our model is also able to separate re-

flected from transmitted content. Here, we compare again to
Liu et al. [42] and NIR [50], as well as the reflection-specific
neural radiance approach NeRFReN [18] and single-image
reflection removal network DSR-Net [24]. Similarly to oc-
clusion removal, we observe that given small-baseline in-
puts the multi-view methods fail to achieve meaningful
layer separation, and NeRFRen struggles to converge on
a sharp reconstruction. Only DSR-Net is able to suppress
even small parts of the reflection such as the car in the Hy-
drant scene. In contrast, the proposed method not only esti-
mates nearly reflection-free transmission layers, but is also
able to recover hidden content – such as the flowerpot high-
lighted in Pinecones – in the reflection layer.
Synthetic Validation. Given in-the-wild captures do not
have perfectly aligned reference images, to further vali-
date our method we construct a set of rendered scenes with
paired ground truth data. Quantitative and qualitative results
in Fig. 8 and the Supplementary Material align with our
findings from real-world captures, with significant PSNR
and SSIM improvements across all scenes.
Image Enhancement through Layer Separation. In ad-
dition to occlusion and reflection removal, a wide range
of other computational photography applications can be
viewed through the lens of layer separation. We showcase
several example tasks in Fig. 7, including shadow removal,
image dehazing, and video motion segmentation. The key
relationship between all these tasks is that the two effects

Proposed AlphaScene SAM MasksRAFT Flow

Figure 11. Learned flow estimator RAFT [60] and segmentation
model SAM [29] struggle to produce meaningful outputs for a
small-motion scene with an out-of-focus occluder. SAM success-
fully segments some objects behind the occluder (e.g., the statues
on the building) but does not correctly segment the occluder itself.

undergo different motion models – e.g., photographer-cast
shadows move with the cellphone, while the paper target
stays static. By grouping color content with its respective
motion model, f T(u, v) with hT(u, v) and f O(u, v) with
hO(u, v), just as in the occlusion case, we can remove the
effect by removing its image plane. Fig. 7 (c), which fits
our two-layer model for an image sequence of a moving
tree branch, also highlights that our method does not rely
solely on camera motion. Scene motion itself can also be
used as a mechanism for layer separation in image bursts,
similar to approaches in video masking [27, 43].

5. Discussion and Future Work
In this work, we present a versatile representation of burst
photography built on a novel neural spline field model of
flow, and demonstrate image fusion and obstruction re-
moval results under a wide array of conditions. In future
work, we hope this generalizable model can be tailored to
specific layer separation and image fusion applications:
Learned Features. Video layer separation works [27, 43,
67] make use of pre-trained segmentation networks and op-
tical flow estimators to help guide reconstruction. However,
shown in Fig. 11, we found these could not be directly ap-
plied to small-motion data with large obstructions, as this
is far outside the domain of their training data. Adapting
these models to complex burst photography settings could
potentially help disambiguate image layers in areas without
reliable parallax or motion information.
Physical Priors. Our generic image plus flow represen-
tation can accommodate task-specific modules for applica-
tions where there are known physical models, such as chro-
matic aberration removal or refractive index estimation.
Beyond Burst Data. There exist many other sources of
multi-image data to which the method can potentially be
adapted – e.g., microscopes, telescopes, and light field,
time-of-flight, or hyperspectral cameras.
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